
An Experiment in Formal Design Using Meta-properties

Mark Bickford, Christoph Kreitz, Robbert van Renesse, Robert Constable
Department of Computer Science,

Cornell-University,
Ithaca, NY 14853-7501

{markb,kreitz,rvr,rc}@cs.cornell.edu

J. Lala, D. Maughan, C. McCollum, and B. Witten, eds,DARPA Information Survivability Conference and Exposition (DISCEX-II), Anaheim, CA, June 2001. Volume II,
pp. 100–107,c©IEEE Computer Science Press, 2001.

Abstract

Formal methods tools have greatly influenced our ability
to increase the reliability of software and hardware systems
by revealing errors and clarifying critical concepts. In this
article we show how a rich specification language and a
theorem prover for it have contributed to the design and im-
plementation of verifiably correct adaptive protocols. The
protocol building team included experts in formal methods
who were able to use the theorem prover to help guide pro-
tocol construction at the pace of implementation that is not
formally assisted.

This example shows that formal methods can have a
large impact when being engaged at the earliest stages of
design and implementation, because they add value to all
subsequent stages, including the creation of informative
documentation needed for the maintenance and evolution
of software.

1. Introduction

It is well established that formal methods contribute to
our ability to build reliable software. Tools such as ex-
tended type checkers, model checkers and theorem provers
have been used to detect subtle errors in prototype code and
to clarify critical concepts in the design of hardware and
software systems. System falsification is already an estab-
lished technique for finding errors in the early stages of the
development of hardware circuits and the impact of formal
methods has become larger the earlier they are employed in
the design process.

In contrast to testing and a-posteriori verifications, which
try to detect and eliminate errors in existing codes, formal
methods used in the early stages of design and implemen-
tation cannot rely on details of the code, which is not yet
written. Engagement of formal methods at this stage de-
pends on the ability of the formal language to naturally and
compactly express the ideas underlying the system.

At this early stage it is possible to state assumptions and
goals that drive the system design. When it is possible
to precisely define the concepts and goals, then a theorem
prover can be used as a design assistant that helps the de-
signers explore in detail ideas for overcoming problems or
clarifying goals.

The formal process can proceed quickly if there is a suffi-
cient database of basic facts about systems concepts already
available and if these facts are ones that the design team uses
in its discussions. We were able to achieve this state because
of two years of prior work at the level of proving properties
of protocols [13, 10, 3, 14]. This might be a natural evolu-
tion of formal methods, and if so it reveals additional value
implicit in the work of falsification and verification, namely
the task of building formal models and accumulating a body
of formal facts.

In this paper we describe a case study in formal design
that involves designing and implementing an adaptive net-
work protocol for the Ensemble Group Communication sys-
tem [9] using theNUPRL Logical Programming Environ-
ment (LPE) [8, 1] and the database of four thousand defini-
tions, theorems and examples built up in the Common Log-
ical Library of the LPE. Our design was centered around
a characterization of communication properties that can be
preserved by the adaptive protocol, which led to a study of
meta-properties(i.e. properties of properties) as a means for
classifying those properties.

We will first explore the formal background for design-
ing communication systems and the representation of the
corresponding concepts in the formal framework of the
NUPRL LPE. We will then describe how our formal frame-
work was used in the design of a verified hybrid protocol.

2. A formal model of communication

In order to support the formal design of protocols, we
have developed a formal model of distributed communica-
tion systems and their properties. Our model formalizes
notions for the specification of distributed algorithms in-

troduced by Lynch [16] and concepts used for the imple-
mentation of reliable network systems [6], particularly of
Ensemble and its predecessors [5, 19, 9].

The model is based on the formal language of theNUPRL

proof development system [8, 1], which already provides
formalizations of the fundamental concepts of mathematics,
data types, and programming. TheNUPRL system supports
conservative extensions of this language by user-defined
concepts via abstractions and display forms. Anabstrac-
tion of the form

opid (parameters)
≡ expression with parameters

defines a new (possibly parameterized) term of the formal
language in terms of already existing formal expressions.
Display formscan be used to change the textual representa-
tion of this term on the screen or within formal printed doc-
uments almost arbitrarily. In particular they can be used to
suppress the presentation of implicit assumptions and thus
ease the comprehensibility of formal text.

The NUPRL LPE supports interactive and tactic-based
reasoning, decision procedures, an evaluation mechanism
for programs, and an extendable library of verified knowl-
edge from various domains. Aformal documentationmech-
anism supports the automated creation of “informal docu-
ments” from the formal objects. We have used this mech-
anism to create a technical report that provides a complete
account of the formal work described in this paper [4].

2.1. Events and Traces

Processes multicastmessagesthat contain a body, a
sender, and a unique identifier. We will consider two types
of events. A Send(m) event models that processp has
multicast a messagem. A Deliver(p:m) event models
that processp has delivered messagem. A trace is an or-
dered sequence ofSendandDeliver events without dupli-
cateSendevents.

For formal reasoning about events and traces we intro-
duce a classEventStruct of formalevent structures. An
event structureE ∈EventStruct provides a carrier| E|
and three functions,is-send E, loc E, andmsgE, where

• is-send E(x) is true when the evente ∈| E| is a
Sendevent (otherwise it is aDeliver event);

• loc E(e) , the locationof the evente, is the identifier
of the process that sends or receivese; and

• msgE(e) is the messagem contained in the evente.

Using the latter we define a binary relation,e1 =m
E e2,

which holds if the messages contained in the eventse1 and
e2 are equal. For example,e1 ande2 might beDeliverevents
of the same messagem at two different locations.

Given an event structureE, a trace is simply a list of
events of type| E| . The data type of traces overE is thus
defined as

Trace E ≡ | E| List

The requirement that traces should have no duplicate
Sendevents will be formalized later as one of the proper-
ties of meaningful traces. All the usual list operations apply
to traces as well, such as computing the length| tr| of a
tracetr, selecting thei-th elementtr[i] of tr, concatenation
tr1@tr2 of two traces, the prefix relationtr1

vtr2 between
two traces, and filtering elements from a trace that satisfy a
propertyP , denoted by[e ∈ tr|P] .

For process identifiers we introduce a (recursive) type
PID that contains tokens and integers and is closed under
pairing. A similar type, calledLabel , will be later be used
to tag events processed by different protocols.

2.2. Properties of traces

A trace propertyis a predicate on traces that describes
certain desired behaviors of communication. Typical exam-
ples areReliability (every message that is sent is delivered
to all receivers),Integrity (messages that are delivered have
been sent by a trusted process),Confidentiality(non-trusted
processes cannot see messages from trusted ones), orTotal
Order (processes that deliver the same two messages deliver
them in the same order). We formalize trace properties as
propositions on traces, i.e. as functions fromTrace E to the
typeP of all logical propositions.

TraceProperty E ≡ Trace E → P

In this setting the propertiesreliability (for multicasting),
integrity, confidentiality, andtotal ordercan be formalized
as follows.

Reliable E(tr)
≡ ∀e ∈ tr. is-send E(e)

⇒ ∀p:PID. ∃e1
∈ tr. ¬is-send E(e 1)

∧ e =m
E e1

∧ loc E(e 1) = p

Integrity E(tr)
≡ ∀e ∈ tr.

(¬is-send E(e) ∧ trusted(loc E(e)))
⇒ ∀e1

∈ tr. (is-send E(e 1) ∧ e =m
E e1)

⇒ trusted(loc E(e 1))

Confidential E(tr)
≡ ∀e ∈ tr.

(¬is-send E(e) ∧ ¬trusted(loc E(e)))
⇒ ∀e1

∈ tr. (is-send E(e 1) ∧ e =m
E e1)

⇒ ¬trusted(loc E(e 1))

TotalOrder E(tr)
≡ ∀p,q:PID. tr↓p ¼tr↓q = tr↓q ¼tr↓p

101

wheretrusted(p) characterizes trusted processes,tr↓p
is the tracetr delivered at processp (the projection of all
Deliver(p:m) events from tracetr), andtr1¼tr2

is the re-
striction oftr1 to events whose messages also occur intr2.

tr↓p
≡ [e ∈ tr | ¬is-send E(e) ∧ loc E(e)= p]

tr1¼tr2

≡ [e 1
∈ tr1 | ∃e2

∈ tr2. e 1=m
E e2]

Three other properties are important as well. Every de-
livered message must have been sent before (causality), no
message is sent twice, and no message is delivered twice
(replayed) to the same process. These properties are as-
sumed implicitly in the implementation of communication
systems but need to be made explicit in a formal account.

Causal E(tr)
≡ ∀i<| tr|. ∃j ≤i. tr[j] = m

E tr[i]
∧ is-send E(tr[j])

No-dup-send E(tr)
≡ ∀i,j<| tr|. (is-send E(tr[i])

∧ is-send E(tr[j])
∧ tr[j] = m

E tr[i]
) ⇒ i = j

No-replay E(tr)
≡ ∀i,j<| tr|. (¬is-send E(tr[i])

∧ ¬is-send E(tr[j])
∧ tr[j] = m

E tr[i]
∧ loc E(tr[i])=loc E(tr[j])
) ⇒ i = j

A protocol is a module available at every process that
implements certain properties on behalf of the set of pro-
cesses. It can be thought of as having a top and a bottom
side, applications sitting at the top, and the network sitting
at the bottom. Applications submitSendevents to it, and the
protocol submitsSendevents to the network below it. Vice
versa, the network submitsDeliver events to the protocol,
and the protocol submitsDeliver events to the application.

This symmetry makes it possible for protocols to be
composed by layering them on top of one another. In effect,
protocols are closed under composition: astackof proto-
cols is another protocol. It is also possible to view the ap-
plication and the network as instances of protocols. In the
context of a stack, we call a protocol alayer. Every process
is required to have the same stack of layers.

2.3. Meta-properties

Meta-propertiesare predicates on properties that are
used to classify which properties are preserved by a pro-
tocol layer. In principle, any predicate on properties is a
meta-property. But the meta-properties that we are inter-
ested in relate properties of the tracestru andtr

l
above and

below a protocol layer. We say that a reflexive and transitive
relationR on tracespreservesa propertyP if P holds for
the tracetru, whenever the two tracestru andtr

l
are related

by R andP holds fortr
l
. A similar definition is also given

for ternary relations.

R preserves P
≡ ∀tr u,tr

l
:Trace E. (P (tr

l
) ∧ tr u R tr

l
)

⇒ P (tr u)

R preserves 3 P
≡ ∀tr u,tr 1,tr 2:Trace E. (P (tr 1)

∧ P (tr 2)
∧ R(tr u,tr 1,tr 2)
) ⇒ P (tr u)

In the following investigations we also need a notion of
refinementon trace properties, which is defined as follows.

P refines Q
≡ ∀tr:Trace E. P (tr) ⇒ Q(tr)

Preservation by a relationR is a predicate on properties,
i.e. a meta-property. Below, we will formalize four such
relations that are important when dealing with protocols in
any layered communication system. In section 4.1 we will
discuss two additional relations that are necessary for the
adaptive protocol.

Safety Safety [2] is probably the best-known meta-pro-
perty. It means that a property does not depend on how far
the communication has progressed: if the property holds for
a trace, then it is also satisfied for every prefix of that trace.
An example of a safe property is total order: taking events
off the end of a trace cannot reorder message delivery. As
an example of a property that is not safe, consider reliabil-
ity. A reliable trace is one in which all sent messages have
been delivered everywhere. However, if we chop off a suffix
containing aDeliver event without the correspondingSend
event, the resulting trace is no longer reliable.

The corresponding relationR for safety isRsafety which
specifies that the upper trace is a prefix of the one below the
protocol:

tru R safety E tr
l

≡ tru v tr
l

Asynchrony Any global ordering that a protocol imple-
ments on events can get lost due to delays in the send and
deliver streams through the protocol layers above it. Only
properties that are asynchronous, i.e. do not depend on the
relative order of events of different processes, are preserved
under the effects of layering. Total order is asynchronous
as well, as it does not require an absolute order of delivery
events at different processes.

102

The corresponding relationRasynch specifies that two
traces are related if they can be formed by swapping events
that are adjacent and that belong to different processes.
Events belonging to the same process may not be swapped.

tru R async E tr
l

≡ tru swap-adjacent [locE(e) 6=locE(e′)] tr
l

where tr1 swap-adjacent [c(e;e′)] tr2 denotes thattr1

can be transformed intotr2 by swapping adjacent eventse
ande′ that satisfy the conditionc(e; e′).

Delayable Another effect of layered communication is lo-
cal: at any process,Sendevents are delayed on the way
down, andDeliver events are delayed on the way up. A
property that survives these delays is calleddelayable. To-
tal order is delayable, since delays do not change the order
of Deliver event. This meta-property is similar to delay-
insensitivity in asynchronous circuits.

The corresponding relationRdelayable specifies that ad-
jacentSendandDeliver events in the lower trace may be
swapped in the upper. Events of the same kind or contain-
ing the same message may not be swapped.

tru R delayable E tr
l

≡ tru

swap-adjacent [e 6=m

E
e′ ∧ is−sendE(e) 6=is−sendE(e′)]

tr
l

Send Enabled A protocol that implements a property for
the layer above typically does not restrict when the layer
above sends messages. We call a propertySend Enabled
if it is preserved by appending newSendevents to traces.
Total order is obviously send enabled.Send Enabledand
Delayableare related, as both are concerned with being un-
able to control when the application sends messages.

The corresponding relationRsend−enabled specifies that
the upper trace is formed by addingSendevents to the end
of the lower trace.

tru R send-enabled E tr
l

≡ ∃e:| E|. is-send E(e) ∧ tru = tr
l
@[e]

3. The problem: building adaptive protocols

Networking properties such as total order or recovery
from message loss can be realized by many different pro-
tocols. These protocols offer the same functionality but are
optimized for different environments or applications.Hy-
brid protocolscan be used to combine the advantages of
various protocols, but designing them correctly is difficult.
As a result, most existing adaptive protocols only adapt cer-
tain run-time parameters such as the flow window size in
TCP [11] but not the overall behavior of the protocol, or

focus on particular protocols such as flow control [17] or
total order [18].

The approach of our systems Horus [20] and Ensemble
[21, 9] is toswitchbetween different protocols at run-time
when necessary. However, it was never quite clear under
what circumstances such a switch would actually preserve
the properties of the individual protocols, i.e. how to guar-
antee that the result was actuallycorrect.

The purpose of our experiment was to design a generic
switching protocol(SP), that would serve as a wrapper for
a set of protocols with the same functionality. This switch-
ing protocol is supposed to interact with the application in a
transparent fashion, that is, the application cannot tell eas-
ily that it is running on the switching protocol rather than
on one of the underlying protocols, even as the switching
protocol switches between protocols. The kinds of uses we
envision include the following:

• Performance.By using the best protocol for a particu-
lar network and application behavior, performance can
always be optimal.

• On-line Upgrading. Protocol switching can be used
to upgrade networking protocols at run-time without
having to restart applications. Even minor bug fixes
may be done in this way.

• Security. System managers will be able to increase
security at run-time, for example when an intrusion
detection system notices unusual behavior, or when it
gets close to April 1st.

To guarantee that the switching protocol preserves a vari-
ety of communication properties, formal methods were used
early in the design phase. In addition to the four meta-
properties discussed so far we have developed two meta-
properties to classify properties that areswitchableat all.
To design the switching protocol correctly, we have charac-
terized theinvariants it has to satisfy and proved that they
are sufficient to preserve switchable properties.

4. Formal design of hybrid protocols

The basic idea of the switching protocol is to operate in
one of two modes. Innormal modethe switching proto-
col simply forwards messages from the application to the
current protocol and vice versa. Should there be a need to
switch to a different protocol, the switching protocol goes
into switching mode, during which any process will deliver
all messages for the previous protocol while buffering mes-
sages that are to be delivered for the new one. The switching
protocol will return to normal mode as soon as all messages
for the previous protocol have been delivered.

The switching protocol will reside on top of the indi-
vidual protocols, coupled by a multiplexer below them, as
illustrated in the following diagram.

103

Protocol1 Protocol2

?
6

?
6

?
6

?
6

MULTIPLEX

6

?

Switching Protocol

?
6

?
6

To prove that the resulting hybrid protocol preserves the
specification of the individual protocols we proceed in two
phases. We first give an abstract classification ofswitchable
communication properties and develop aswitching invari-
ant that a protocol with the above architecture must satisfy
in order to preserve switchable properties. We then develop
and formalize a concrete switching protocol that preserves
the switching invariant.

4.1. Meta-properties of hybrid protocols

The four meta-properties discussed so far,Safety, Asyn-
chrony, Send Enabled, and Delayable, are sufficient for
properties to survive the effects of delay in a layered en-
vironment. Since the switching protocol does introduce de-
lays, these meta-properties are going to be important for a
property to be preserved by the switching protocol.

1. Liveness properties require that the input satisfy some
fairness condition. Since the switching protocol di-
vides the input between the two protocols,safetycan
guarantee that the fairness condition holds.

2. Asynchronyis needed because delays in distributed
systems can re-order global orderings.

3. Delayable is needed because the switching protocol
will introduce a delay that can re-order local orderings.

4. Send Enabledis needed because any restriction on the
relative order of sending is lost when we switch be-
tween protocols.

In addition to these meta-properties we need two meta-
properties, which express that properties shall be preserved
under switching. These will be discussed below.

Memoryless When we switch between protocols, the cur-
rent protocol may not see part of the history of events that
were handled by a different protocol. It thus has to be able
to workmemoryless, i.e. as if these events never happened.

A property ismemorylessif we can remove all events
pertaining to a particular message from from a trace with-
out violating the property. That is, whether such a message
was ever sent or delivered is no longer of importance. This

does not imply, however, that a protocol that implements the
property has to bestateless(i.e. withoutlocal memory) and
must forget about the message. Total order is memoryless,
since it only places conditions on events that actually take
place, but its implementations are certainly not stateless.

The corresponding relationRmemoryless defines that the
upper trace can be formed from the one below by removing
all events related to certain messages.

tru R memoryless E tr
l

≡ ∃e:| E|. tru = [e 1
∈ tr

l
| e 6=m

E e1]

Composable Protocol switching causes the traces of sev-
eral protocols to be glued together. Since we expect the
resulting trace to satisfy the same properties as the individ-
ual traces, these properties must becomposablein the sense
that if they hold for any two traces that have no messages
in common, then they also must hold for their concatena-
tion. Total order is composable, because the concatenation
of traces does not change the order of events in either trace.

The corresponding relationRcomposable is ternary, as it
characterizes the upper tracetr as concatenation of two
lower traces without common messages.

R composable E(tru, tr1, tr2)
≡ tru = tr1@tr2 ∧ ∀e1

∈ tr1. ∀e2
∈ tr2. e 1 6=m

E e2

4.2. Switchable properties

The above collection of meta-properties and its formal-
ization is the result of a complex formal analysis of the
switching protocol. The formal verification process with
the NUPRL proof development system [1] required us to
make many assumptions explicit that are usually implicitly
present in an informal analysis of communication protocols.
In the process we have refined the notion of switchability
until it was formally strong enough for a verification of the
switching protocol while being expressed in terms of con-
cepts that are natural to communication systems.

A trace propertyP is switchableif it satisfies all of the
six meta-properties and requires the trace to be meaningful,
i.e. that delivered messages were actually sent and never
delivered twice to the same process.

switchable E(P)
≡ P refines Causal E

∧ P refines No-replay E
∧ R safety E preserves P
∧ R async E preserves P
∧ R delayable E preserves P
∧ R send-enabled E preserves P
∧ R memoryless E preserves P
∧ R composable E preserves 3 P

104

4.3. The switching invariant

While switchability is an abstract characterization of
communication protocols whose properties can be pre-
served by switching, the switching invariant is an abstract
characterization of the switching protocol that an imple-
mentation must satisfy if it shall be guaranteed to preserve
switchable properties. Like the switchability meta-property,
it is the result of several refinements of a design process that
was guided by verification.

In order to prove the switching protocol preserves a prop-
ertyP we have to show thatP holds for the tracetru above
the switch whenever it holds for the tracestr1 andtr2 of the
two protocols below. That is, an application cannot tell eas-
ily that it is running a hybrid protocol with a switch instead
of one of the individual protocols.

tr1 tr2

tru

tru

P P
?

6
?

6

?
6

?
6

MULTIPLEX

6

?

Switching Protocol

?
6

?
6

� P

?
6

?
6

The switching protocol affects the tracestr1 and tr2 in
two ways: first, they will be merged in some way, and sec-
ond, the order of some events in the merged trace may be
modified due to the effects of layering.

To investigate these effects separately we have intro-
duced avirtual middle tracetrm that consists of the events
of tr1 andtr2. We have developed alocal switch invariant,
whichtrm must satisfy to guarantee that a property holds on
trm whenever it holds on its subtraces. From that we have
derived a (global)full switch invariantby linking trm to tr1

andtr2 via merging and by linkingtrm to tru through the
introduction of global and local delays and additionalSend
events. The full switch invariant models the basic architec-
ture of the switching protocol described at the beginning of
this section and has formally been proven to guarantee its
correctness.

In order to identify the origin of events in a
merged trace we define a classTaggedEventStruct
of tagged event structures. A tagged event structure
TE ∈TaggedEventStruct provides the same compo-
nents as any element ofEventStruct but an additional
function tag TE that computes the labeltg ∈Label of an
evente ∈| TE| . By TaggedEventStruct E we denote
the subclass of tagged event structures whose components
as event structure are identical to those ofE.

Traces over tagged events are defined as before, but ev-
ery event of such a tracetr is associated with a tag as well.
This enables us to define the subtrace oftr that consists of
all events with a given tagtg as

tr|tg
≡ [e ∈ tr | tag TE(e)= tg]

Note that the termtr|tg contains an implicit indexTE,
whose display is suppressed to simplify the notation.

The local switch invariant shall guarantee that a switch-
able propertyP holds fortrm wheneverP holds for all sub-
tracestr

m
|tg. From the description of the switching pro-

tocol we know that if two messages are sent using differ-
ent protocols, then each process buffers the second message
until the first one has been delivered. In other words, if two
Sendevents have different tags, then at any location, the first
message must have been delivered before the second. This
requirement is represented by the following invariant.

switch inv TE(tr)
≡ ∀i,j,k<| tr|.

(i<j
∧ is-send TE(tr[i])
∧ is-send TE(tr[j])
∧ tag TE(tr[i]) 6=tag TE(tr[j])
∧ tr[j] ↓TEtr[k]
)
⇒ ∃k’<k. loc TE(tr[k’])=loc TE(tr[k])

∧ tr[i] ↓TEtr[k’]

wheree↓TEtr[k] denotes that an evente is delivered at
timek in tr:

e↓TEtr[k]
≡ e =m

T E tr[k] ∧ ¬is-send TE(tr[k])

The full switch invariant expresses that the local switch
invariant must be satisfied by some virtual inner tracetrm,
which is created by merging the tracestr1 and tr2 of the
protocols below the switching protocol and is linked to the
upper tracetru by introducing global and local delays and
additionalSendevents.

In the formal model, we describe the tracestr1 andtr2

by a single lower tracetr
l
of tagged events.tr

l
is related

to trm by allowing adjacent events with different tags to be
swapped while leaving the order of events with a given tag
unchanged, which accounts for the effects of buffering dur-
ing switch mode. trm is related totru by allowing (global
and local) delays and enablingSendevents. Furthermore,
the upper trace must be free of duplicateSendevents.

full switch inv TE(tr u;tr
l
)

≡ ∃tr m:Trace TE. tr
l

RtagTE
tr m

∧ switch inv TE(tr m)
∧ tr m R layer TE tr u

∧ No-dup-send E(tr u)

105

where the relationsRtag andR layer TE are defined as fol-
lows (R∗ denotes the transitive closure of a relationR).

Rtag

≡ (swap-adjacent [tag(e)6=tag(e′)])
∗

R layer TE
≡ (R async TE

∨ R delayable TE
∨ R send-enabled TE
) ∗

4.4. Proving hybrid protocols correct

Using theNUPRL theorem prover [1] we have shown
that switching protocols that satisfy the full switching in-
variant can support those protocols that implement switch-
able properties. Whenever a trace propertyP is switchable
and holds for all tracestr

l
|tg of the individual protocols be-

low the switching protocol, then it also holds for the trace
tru above the switching protocol, provided that the switch-
ing protocol satisfies the global switching invariant. In the
NUPRL system this theorem is formalized as follows.

Theorem (Correctness of Switching)

` ∀E:EventStruct. ∀P:TraceProperty E.
∀TE:TaggedEventStruct E.
∀tr u:Trace E. ∀tr

l
:Trace TE.

(switchable E(P)
∧ full switch inv TE(tr u;tr

l
)

∧ ∀tg:Label. P(tr l|tg)
) ⇒ P(tr u)

The proof of this theorem proceeds by induction is based
on a complex series of intermediate lemmata that refine
the prerequisites for preserving certain classes of proper-
ties. These lemmata eventually lead to a proof that the local
switch invariant suffices to preserve switchable predicates
on the virtual middle trace: a switchable predicateP holds
for trm whenever it holds for all tracestr

l
|tg and trm sat-

isfies the local switch invariant. We then prove thatP is
preserved by the tag-relation betweentr

l
andtrm and layer

relation betweentrm andtru.
The proof, whose details can be found in [4], was devel-

oped completely within theNUPRL LPE and thus provides
a formal verification of the switching protocol.

4.5. Implementing the switching protocol

The switching invariant characterizes properties that a
switching protocol has to implement in order to preserve
switchable properties of protocols below it. We now de-
scribe a particular switching protocol that has been designed
in the process of this experiment and satisfies the switch-
ing invariant.

As mentioned above, this switching protocol has two
modes of operation. Innormal mode, when the application
submits a message for sending to the switching protocol, the
switching protocol in turn offers the message to the current
protocol. Whenever receiving a message from the current
protocol, the switching protocol simply forwards the mes-
sage to the application. However, when there is a request to
switch, the switching protocol goes intoswitching mode.

First, one of the processes called themanagerbroad-
casts aPREPAREmessage to the other members. On re-
ceipt, a member returns anOK message that includes the
number of messages that the member has sent so far over
the current protocol. New data messages will be sent over
the new protocol, but messages received over this protocol
will be buffered.

The manager awaits allOK messages, and then broad-
casts aSWITCH message, including a vector with the
message-send count of each member. On receipt, a member
knows how many messages it should have delivered from
each other member. When it has received and delivered all
messages of the current protocol from each member, the
member switches over to the new protocol and delivers any
messages that were buffered.

To avoid congestion on the network, our implementation
of the switching protocol does not actually do network-level
broadcasts, but rotates a token message in a logical ring of
the group members. We have evaluated the performance
implications of using our switching protocol by switching
between two well-known mechanisms for implementing to-
tal order, one based on a centralized sequencer [12] and the
other using a rotating token with a sequence number [7].

These two mechanisms have an interesting trade-off.
The sequencer-based algorithm has low latency, but the se-
quencer may become a bottleneck when there are many
active senders. The token-based algorithm does not have
a bottleneck, but the latency is relatively high under low
load since processes have to await the token before they can
send. A hybrid protocol formed by switching at the cross-
over point has the potential of achieving the best of both
worlds. However, some care needs to be taken in practice,
as the overhead of switching depends on the latency of the
current protocol. Experiments have shown that adding a
small hysteresis leads to the best practical results [15].

5. Conclusion

We have designed a generic switching protocol for the
construction of adaptive network systems and formally
proved it correct with theNUPRL Logical Programming En-
vironment. In the process we have developed an abstract
characterization of communication properties that can be
preserved by switching and an abstract characterization of
invariants that an implementation of the switching protocol

106

must satisfy in order to work correctly.
Our characterization gives sufficient conditions for a

switching protocol to work correctly. However, some of
the conditions on switchable properties may be stricter than
necessary. Reliability, for instance, is not a safety property,
but we are confident that it is preserved by protocol layer-
ing and thus by our hybrid protocol. We intend to refine our
characterization of switchable predicates and demonstrate
that larger class of protocols can be supported as well.

Our verification efforts revealed a variety of implicit
assumptions that are usually made when reasoning about
communication systems and uncovered minor design errors
that would have otherwise made their way into the imple-
mentation. This demonstrates that formal reasoning about
group communication in an expressive theorem proving en-
vironment such as theNUPRL Logical Programming Envi-
ronment can contribute to the design and implementation of
hybrid protocols.

Because our team consisted of both systems experts and
experts in formal methods the protocol construction and im-
plementation could proceed at the same pace as designs that
are not formally assisted while providing a formal guarantee
for the correctness of the resulting protocol.

Our experiment shows that formal methods are moving
into the design and implementation phases of software con-
struction as well as into the testing and debugging phases.
The impact of formal methods is larger, the more they are
engaged at the earliest stages of design and implementation.
We believe that the early use can add value to all subsequent
stages, including the creation of informative documentation
needed for maintenance and evolution of software.

Acknowledgements

Part of this work was supported by DARPA grants
F 30620-98-2-0198 (An Open Logical Programming Envi-
ronment) and F 30602-99-1-0532 (Spinglass).

References

[1] S. Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo.
The NUPRL open logical environment. In D. McAllester,
editor, 17th Conference on Automated Deduction, Lec-
ture Notes in Artificial Intelligence1831, pages 170–176.
Springer, 2000.

[2] B. Alpern and F. B. Schneider. Recognizing safety and live-
ness.Distributed Computing, 2(3):117–126, 1987.

[3] M. Bickford and J. Hickey. Predicate transformers for
infinite-state automata inNUPRL type theory. InIrish For-
mal Methods Workshop, 1999.

[4] M. Bickford, C. Kreitz, and R. van Renesse. Formally ver-
ifying hybrid protocols with theNUPRL logical program-
ming environment. Technical report, Cornell University. De-
partment of Computer Science, 2001.

[5] K. Birman and R. van Renesse.Reliable Distributed Com-
puting with the Isis Toolkit. IEEE Computer Society Press,
1994.

[6] K. P. Birman.Building Secure and Reliable Network Appli-
cations. Manning Publishing Co. & Prentice Hall, 1997.

[7] J. Chang and N. Maxemchuk. Reliable broadcast proto-
cols. ACM Transactions on Computer Systems, 2(3):251–
273, 1984.

[8] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, D. J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and
S. F. Smith. Implementing Mathematics with theNUPRL

proof development system. Prentice Hall, 1986.
[9] M. Hayden. The Ensemble System. PhD thesis, Cornell

University. Department of Computer Science, 1998.
[10] J. Hickey, N. Lynch, and R. van Renesse. Specifications

and proofs for Ensemble layers. In R. Cleaveland, editor,
5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in
Computer Science1579, pages 119–133. Springer, 1999.

[11] V. Jacobson. Congestion avoidance and control. InSympo-
sium on Communications Architectures & Protocols, Stan-
ford, CA, 1988. ACM SIGCOMM.

[12] M. F. Kaashoek, A. S. Tanenbaum, S. Flynn-Hummel, and
H. E. Bal. An efficient reliable broadcast protocol.Operat-
ing Systems Review, 23(4):5–19, 1989.

[13] C. Kreitz, M. Hayden, and J. Hickey. A proof environ-
ment for the development of group communication systems.
In C. Kirchner and H. Kirchner, editors,15th Conference
on Automated Deduction, Lecture Notes in Artificial Intelli-
gence1421, pages 317–332. Springer, 1998.

[14] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hay-
den, K. Birman, and R. Constable. Building reliable, high-
performance communication systems from components. In
17th ACM Symposium on Operating Systems Principles
(SOSP’99), Operating Systems Review, 34(5):80–92, 1999.

[15] X. Liu, R. van Renesse, M. Bickford, C. Kreitz, and R. Con-
stable. Protocol switching: Exploiting meta-properties. In
L. Rodrigues and M. Raynal, editors,International Work-
shop on Applied Reliable Group Communication (WARGC
2001). IEEE Computer Society Press, 2001.

[16] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[17] P. K. McKinley, R. T. Rao, and R. F. Wright. H-RMC: A
hybrid reliable multicast protocol for the Linux kernel. In
Conference on Supercomputing ’99, 1999.

[18] L. Rodrigues, H. Fonseca, and P. Verı́ssimo. Totally ordered
multicast in large-scale systems. In16th International Con-
ference on Distributed Computing Systems. IEEE CS Press,
1996.

[19] R. van Renesse, K. Birman, and S. Maffeis. Horus: A flex-
ible group communication system.Communications of the
ACM, 39(4):76–83, 1996.

[20] R. van Renesse, K. P. Birman, R. Friedman, M. Hayden, and
D. A. Karr. A Framework for Protocol Composition in Ho-
rus. In14th ACM Symposium on Principles of Distributed
Computing, pages 80–89, 1995. ACM SIGOPS-SIGACT.

[21] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd,
and D. A. Karr. Building adaptive systems using Ensemble.
Software—Practice and Experience, 1998.

107

