
simple to use, while being compatible with existing popular
MBone tools. Degas is also scalable in the number of gate-
ways, and robust in the face of gateway and client crashes.

Another contribution of this paper is the Degas program-
ming model for writing media processing specification. We
use a declarative style, event-driven, scripting-based syn-
tax to achieve simplicity, while powerful enough to specify
many commonly used operations. We presented a simple
model of execution, in which high-level APIs are dynami-
cally bound to optimized low-level routines, without requir-
ing a full-fledged compiler or optimizer.

9. REFERENCES

[1] The Third ACM International Multimedia Conference
and Exhibition (MULTIMEDIA ’95), San Francisco,
CA, USA, November 1995. ACM Press.

[2] E. Amir, S. McCanne, and Z. Hui. An application
level video gateway. In Proceedings of the 3rd ACM
International Multimedia Conference and Exhibition
(MULTIMEDIA ’95) [1], pages 255–266.

[3] E. Amir, S. McCanne, and R. Katz. An Active Service
framework and its application to real-time multimedia
transcoding. In Proc. of ACM SIGCOMM, Vancouver,
Canada, August 1998.

[4] C. C. I. T. T. Recommendation X.509. The Directory-
Authentication Framework, 1988.

[5] C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing multiple protection do-
mains in java. In Proc. of the 1998 USENIX Annual
Technical Conf, pages 259–270, New Orleans, LA,
1998.

[6] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir,
Y. Chawathe, A. Coopersmith, K. Mayer-Patel, S. Ra-
man, A. Schuett, D. Simpson, A. Swan, T. L. Tung,
D. Wu, and B Smith. Toward a common infrastucture
for multimedia-networking middleware. In Proceed-
ings of 7th. Intl. Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSS-
DAV’97), St. Louis, Missouri, May 1997.

[7] S. McCanne and V. Jacobson. vic: A flexible frame-
work for packet video. In Proceedings of the 3rd ACM
International Multimedia Conference and Exhibition
(MULTIMEDIA ’95) [1].

[8] D. L. Mills. RFC 1305: Network time protocol (ver-
sion 3) specification, implementation, March 1992.

[9] W. T. Ooi and B. Smith. Dali : A multimedia software
library. In Proceedings of Multimedia Computing and
Networking, San Jose, CA, January 1998.

[10] W. T. Ooi and R. van Rennese. An adaptive proto-
col for locating media gateways. Technical Report
submitted to ACMMM2000, Department of Computer
Science, Cornell University, 2000.

[11] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, Reading, MA, USA, 1994.

[12] J. K. Ousterhout, J. Levy, and B. Welch. The Safe-
Tcl security model. Technical Report TR-97-60, Sun
Microsystems Laboratories, March 1997.

[13] J. C. Pasquale, G. C. Polyzos, E. W. Anderson, and
V. P. Kompella. Filter propagation in dissemination
trees: Trading off bandwidth and processing in con-
tinuous media networks. Lecture Notes in Computer
Science, 846:259–269, 1994.

[14] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall,
and G. Minden. A survey of active network research.
IEEE Communications Magazine, pages 80–86, Jan-
uary 1997.

[15] T. Turletti. The INRIA videoconferencing system.
ConneXions - The Interoperability Report Journal,
8(10):20–24, October 1994.

[16] T. Turletti and J. Bolot. Issues with multicast video
distribution in heterogeneous packet networks. In
Packet Video Workshop, pages F3.1–3.4, Portland,
Oregon, September 1994.

[17] M. Yarvis, A. A. Wang, A. Rudenko, P. Reiher, ,
and G. J. Popek. Conductor: Distributed adaptation
for complex networks. Technical Report CSD-TR-
990042, University of California, Los Angeles, Los
Angeles, CA, August 1999.

[18] N. Yeadon, A. Mauthe, D. Hutchison, and F. Garcia.
QoS filters: Addressing the heterogeneity gap. Lecture
Notes in Computer Science, 1045:227–244, 1996.

Operation Input 1 Input 2 Output % CPU Time

1 Shrinking H261 352�288 at 10 fps H261 176�144 at 10 fps 14% 9.76 ms
2 Shrinking JPEG 320�240 at 6 fps JPEG 160�120 at 6 fps 18% 27.5 ms
3 Picture-in-picture H261 352�288 at 10 fps H261 176�144 at 10 fps H261 176�144 at 20 fps 40% 20.4 ms
4 Picture-in-picture H261 352�288 at 10 fps H261 176�144 at 10 fps JPEG 176�144 at 20 fps 60% 32.4 ms

Table 4: Latencies introduced by the decode-process-encode pipeline and the CPU load incurred for different deglets.

0

20

40

60

80

100

120

140

0 1002003004005006007008009001000

L
a
t
e
n
c
y

(
m
s
)

Frame Number

degasclient vic

Figure 6: End-to-end Delay between the sender and the re-
ceiver.

0

50

100

150

200

0 1002003004005006007008009001000

D
e
l
a
y

(
m
s
)

Frame Number
(a)

0

50

100

150

200

0 1002003004005006007008009001000

D
e
l
a
y

(
m
s
)

Frame Number
(b)

Figure 7: (a) Inter-frame rendering delay using Degas. (b)
Inter-frame rendering delay without Degas.

sue is how a gateway can revoke resources from a running
deglet when the gateway reallocates its resources. Revok-
ing CPU time and bandwidth can affect the QoS received
by the client. Revoking allocated memory blocks may re-
quire changing the behaviour of the deglet itself.

Security is another common concern in extensible archi-
tectures. We believe that these concerns can be easily ad-
dressed. As in Safe-Tcl [12], we can restrict the set of func-
tions available to a deglet. This set can depend on the client
that submitted the deglet. In this case, the client would have
to sign the deglet, and include its digital certificate (e.g.,
X.509 [4]).

7. RELATED WORK

The idea of running media processing within the network
was first described by Turletti and Bolot in [16] and by
Pasquale et al in [13]. Turletti and Bolot suggested video
gateways as a solution for solving the network heterogeneity
problem. Pasquale et al proposed a filter propagation mech-
anism in multicast dissemination trees. By propagating fil-
ters up and down the multicast trees network efficiency may
be improved. In [18], Yeadon describes a set of QoS filters
that implements the idea in [13]. Unfortunately, the sys-
tem is not designed to be compatible with the MBone tools,
and is therefore not widely deployed. Closer to our work,
MeGa [2] is an application-level media gateway that per-
forms transcoding on RTP media streams. An advantage of
Degas over previous work is that Degas allows user-defined
processing on the streams, while MeGa and Yeadon’s QoS
filters only support a fixed set of operations.

Active Service [3] provides clusters, which are sets of
nodes that provide certain services. User can request in-
stantiation of an application-level service agent, such as the
MeGa video gateway, on a cluster. If not available already,
the agent can be uploaded. In contrast, Degas provides ex-
tensibility at a finer granularity by allowing users to extend
an existing service, rather than requiring an entire new ser-
vice agent to be uploaded.

8. SUMMARY

This paper describes a flexible and extensible media gate-
way system called Degas, which allows users to request cus-
tomized processing on media streams. Degas is efficient and

We have developed a control protocol called the Adap-
tive Gateway Location Protocol (AGLP) [10] for locating an
appropriate gateway. AGLP optimizes network bandwidth
utilization by strategically placing deglets on gateways. A
deglet that transcodes to a lower bandwidth format reduces
bandwidth and is best run near the source. On the other
hand, if a deglet increases bandwidth consumption, it should
be run close to the client. AGLP adapts to a changing envi-
ronment: senders may join and leave sessions, and gateways
may be added or removed. AGLP periodically evaluates the
set of eligible gateways, and migrates deglets to better gate-
ways when necessary. AGLP handles gateway and client
crashes gracefully by only maintaining soft state.

5. PERFORMANCE

To better understand the overhead introduced by a Degas
gateway, we ran some experiments to measure the delay
caused by various components in Degas. In our experi-
ments, we ran a Degas gateway on a Pentium II 266 MHz
PC. Video streams were sent using vic from hosts connected
to the gateway using an 100 MB Ethernet. Receivers, run-
ning either vic or degasclient, were located on the same
LAN. We ran NTP [8] on all hosts to get a reasonably accu-
rate measurement of end-to-end delay.

To verify that our execution model is efficient, we ran an
experiment to measure the overhead introduced by our op-
timizer and the savings caused by the optimization. In the
first experiment, the sender sent a 352 � 288 H261 video
stream at 8 frames per second. The client requested the
gateway to transcode the stream into a Motion JPEG video
stream of size 176 � 144. We measured the time spent in
the Dali interpreter for each frame received.

In the first scenario, we let the optimizer decide how
to scale the frames. The optimizer detects that the output
size is half the input size, and calls a specialized subrou-
tine that shrinks the frame by half. The average time spent
in scaling a frame was 2.84 ms. In the second scenario,
we bypassed the optimizer, and called the optimized scal-
ing routing ourselves. The average time spent in scaling
is 2.31 ms. Finally, we turned the optimizer off, and used
a general purpose scaling routine to scale the frames. The
average time spent in scaling a frame increase significantly
to 43.8 ms. This experiment confirmed our belief that the
overhead in optimizing is small (< 1 ms), while the savings
are significant (about 150%).

We also measured the total delay introduced by the de-
coder, encoder and the Dali interpreter when running dif-
ferent deglets. While these measurements were performed
on specific deglets only, they give some intuition about the
latency introduced by Degas’s processing pipeline. A sum-
mary of our measurements is listed in Table 4. The ta-
ble shows that the delay introduced by the decode-process-

encode pipeline is reasonably small.
Our next two experiments measured the total end-to-end

delay between the source and the receiver. This is a mea-
surement between the time a frame is captured at the source
and the time the frame is rendered at the receiver. In the
first experiment, we collected the data using a degasclient.
The gateway was running a deglet that shrinks the size of
an incoming Motion JPEG video stream by half at 6 frames
per second (deglet 2 in Table 4). For comparison, we col-
lected the same data using vic, which received the origi-
nal stream. The end-to-end delays for both experiments are
shown in Figure 6. The difference between the two mea-
surements is small, and is about the same as the total time
spent in the decode-process-encode pipeline (27.5 ms). We
also measured the inter-frame rendering delays in the same
experiments. Figure 7(a) and Figure 7(b) show that Degas
gateway introduces some jitter, but are within a tolerable
level (within 20 ms).

All our performance measurements shown above are done
with a single client. When the gateway serves multiple clients,
the jitter increases significantly to as much as 200 ms. There
is also a difference between the QoS received by the clients.
The reason is that we have not implemented any resource
management in Degas yet. We discuss the current imple-
mentation status and developments that we plan to do in the
next section.

6. IMPLEMENTATION AND FUTURE WORK

Degas is implemented using C++ and the Mash toolkit [6].
Although still under heavy development, a preliminary pro-
totype is available. Simple frame processing API and op-
timization scheme is implemented as a ”proof-of-concept”.
We plan to release Degas into the MBone community in
near future. Several interesting problems remain to be solved.
We outline some of these problems below.

We are looking into how a client can submit multiple
deglets that can be composed to perform interesting oper-
ations. A deglet that scales down two video sources and
merge them into a new video streams is best separated into
two stages. The first stage scales the video, and should be
run near to the individual sources. The second stage com-
bines the video, and should be run near the receiver. By us-
ing three deglets (two for scaling and one for merging), we
can achieve better bandwidth efficiency than a single deglet
could have achieved.

We plan to look into how Degas can control the re-
sources of the gateways and allow deglets to be executed
fairly. We want to prevent a malicious deglet from hogging
a gateway. Currently, one can write a deglet that performs
frame copy 100 times for each frame received. Some
form of scheduling has to be added so that a gateway can
distribute its resources fairly. A particularly interesting is-

sources The sources this deglet is interested in.

num of sources Maximum number of sources this deglet can process.

input video session, input audio session Specify the input video and audio session respectively.

output format, output size, output fps, output bps Specify the format, dimension, frame rate and bit rate of the output
stream.

precondition The conditions that a gateway must satisfy before it can serve this deglet.

description Textual description of what this deglet does.

controlling clients Clients that are allowed to control and modify this deglet.

Table 1: A summary of available keys in deglet specification.

init callback(outf) Executed when the deglet starts. outf is the output frame.

destroy callback Executed when the deglet stops.

new source callback(src id, inf) Executed when a new source is detected. src id is the the source identifier. inf is the
input frame.

del source callback(src id) Executed when a source identified by src id leaves the session.

recv frame callback(src id, inf, outf) Executed when a frame from source src id is received. inf is the received frame.
outf is the output frame.

mouse click callback(x, y) Executed when a mouse click is detected at coordinate (x,y) on the output window of the client.

input resize callback(src id, inf) Executed when input dimension of source src id is changed.

talk start callback(src id) Executed when a talk spurt is detected from source src id.

talk stop callback(src id) Executed when the beginning of a silence period is detected from source src id.

Table 2: A summary of available callbacks in deglet specification.

frame new w h Return a new frame of width w and height h.

frame copy src dest Copy the content of frame src into frame dest, scale if necessary.

frame clip f x y w h Create a ”virtual” frame from frame f, at offset (x, y) and with dimension w � h.

frame free f Deallocate frame f.

frame get width f Return the width of frame f.

frame get height f Return the height of frame f.

frame set color f r g b Set the color of the frame f to (r, g, b).

Table 3: A summary of available frame operations in deglet specification.

one callback is accessible from other callbacks. In line 19
to 25, recv frame callback checks if the input frame
is from source curr or prev. If it is from either of these,
we copy the frame into the left half or the right half of the
output frame. Finally, line 26 to 28 define the function to
call when the deglet exits. We free the memory allocated
for lf and rf here.

We summarize the lists of available keys, callbacks and
frame operations in Table 1, 2, 3 respectively. This list is by
no means complete, as we plan to add more operations to
Degas. In particular, it would be interesting to add vision-
related routines such as face detection and object tracking.

As illustrated in the two examples above, a deglet is a
high-level, declarative style specification. They are short
and simple to write. Our most complicated deglet so far, is
one that creates a ”task bar” of incoming video streams, and
let user maximizes or minimizes a video stream by click-
ing on the task bar. This is written in under 100 lines of
code. Our examples also illustrate how a user can con-
struct the output stream using ”frame” as an abstraction,
without knowing what the input formats are. The Degas
execution module is responsible for translating these spec-
ifications into optimized low-level code. We describe the
execution of deglets next.

3. EXECUTION OF DEGLETS

The Degas execution module is responsible for parsing the
deglet specification and for efficient execution of the call-
backs. The execution module must recognize optimizations
and translate the high-level API into appropriate low-level
code. For instance, in Figure 3, if the input video stream
is also in M-JPEG format, then we can employ compressed
domain processing techniques to scale and copy the input
frames to output frames efficiently. Furthermore, if the in-
put video streams are already in the format requested by the
user, the execution module should simply copy the streams
without decoding it.

We used our low-level, high performance media pro-
cessing library called Dali [9] as our target for the translator.
The executing module is just a Tcl interpreter extended with
Dali commands. Dali consists of a small set of abstractions
suitable for representing commonly used video and audio
formats. Dali is designed with high-performance in mind,
often sacrificing ease of use for efficiency. It exposes inter-
mediate structures of video and audio objects, such as DCT
blocks, giving programmers (or in our case, the translator)
the flexibility of writing highly optimized programs. Dali is
also designed with predictability in mind—memory alloca-
tions and I/O operations are separated from the processing—
so that the programmers have full control over memory us-
age and I/O. These features make Dali ideal for forming the
basis of our execution module.

The optimizations and executions are carried out as fol-
lows. We defined a set of optimized versions of Dali sub-
routines for each high-level APIs. These high-level APIs are
then bound, at run-time, to one of the subroutines based on
input and output formats, dimensions and color decimation.
Each call to a high-level function will cause the optimized
version of the function to be executed. The high-level func-
tions are re-bound whenever a change in input video prop-
erties is detected.

4. SELECTING GATEWAYS

Besides the key-values pairs described above, a deglet may
contain a set of preconditions. The purpose of preconditions
is to allow the user to restrict their deglets to be run on gate-
ways that meet certain criteria. The user might impose some
restrictions to improve quality of the output, or for security
concerns. For example, a user might want to run his deglet
on a low-load, high-capacity gateway in the same domain.
The currently supported preconditions are as follows:

� address test: a regular expression that matches
the host addresses or IP addresses of the gateways el-
igible to run the deglet.

� latency test: the maximum latency between the
client and the gateway. This can prevent an “out-of-
the-way” gateway to be assigned to the client.

� load test: the maximum acceptable CPU load on
a gateway.

An example of using preconditions is shown in Figure 5.
This test restricts gateways to those in domain *.cornell.edu,
or gateways that are within 500 ms away. Many other tests
are possible in the future. For instance, the user might want
to select gateways with sufficient memory, or gateways with
special hardware for media processing. If the user has to
pay for services on a gateway, the user may want to select
gateways below a certain price.

precondition {
[address_test *cornell.edu] ||
[latency_test] < 500

}

Figure 5: An example of using preconditions.

When a client requests for service, the preconditions are
sent along with the request. A gateway that receives a re-
quest first performs the test, and offers its service only if the
test succeeds.

Figure 2: The left window shows the output from a deglet that creates a picture-in-picture effect. The right windows show
the input streams.

of sources. input video session indicates the mul-
ticast address and port number of the input video session.
output format specifies the format of the processed video
stream. In this example, we want to receive a 176� 144 M-
JPEG stream with quality 40.

The remainder of the deglet specifies the operation to
perform when an event happens. Line 5 to 7 define a call-
back function to be called whenever a frame is received.
The function body is defined using Tcl. We use a prede-
fined API frame copy to copy the input frame inf into
the output frame outf. frame copy performs the neces-
sary scaling and transcoding operations to convert the out-
put frames into the format specified above. The argument
src id identifies the source of the input stream. Since we
have only one source in this case, it is not used. We show
how src id is used in our next example.

1 sources {seminar.cs.cornell.edu}
2 num_of_sources {1}
3 input_video_session {224.4.4.4/4444}
4 output_format {JPEG 40 QCIF}

5 recv_frame_callback { src_id inf outf } {
6 frame_copy $inf $outf
7 }

Figure 3: A simple deglet.

Our second example reads video streams from multiple
sources, and outputs a ”split” video stream that consists of
video from the current speaker and previous speaker. Video
from other sources are filtered. For simplicity, we assumes
that the number of sources is always larger than two. We
explain this deglet below.

Line 1 - 5 specify the input and output parameters. The
function init callback in line 6 to 12 is called at the
beginning of the deglet execution. Here, we split the output
frame into the left half and the right half, denoted by vari-
ables lf and rf respectively. We also initialize the vari-

1 sources {*}
2 num_of_sources {*}
3 input_video_session {224.4.4.4/4444}
4 input_audio_session {224.4.4.5/4444}
5 output_format {H261}

6 init_callback { outf } {
7 set w2 [expr [frame_get_width $outf]/2]
8 set lf [frame_clip $outf 0 0 $w2

[frame_get_height $outf]]
9 set rf [frame_clip $outf 0 $w2 $w2

[frame_get_height $outf]]
10 set prev 0
11 set curr -1
12 }

13 talk_start_callback {src_id} {
14 if {$src_id != $curr} {
15 set prev $curr
16 set curr $src_id
17 }
18 }

19 recv_frame_callback { src_id inf outf } {
20 if {$src_id == $curr} {
21 frame_copy $inf $rf
22 } else if {$src_id == $prev} {
23 frame_copy $inf $lf
24 }
25 }

26 destroy_callback {} {
27 frame_free lf
28 frame_free rf
29 }

Figure 4: A more elaborate deglet example.

ables curr and prev that denote the source id the cur-
rent speaker and the previous speaker. The function on line
13 to 18 (talk start callback) is called whenever a
talk spurt is detected. The parameter src id indicates the
source of the talk spurt. In this function, we simply update
the variables curr and prev. Note that variables set in

(called degasclient), is a modified version of vic, extended
with abilities to talk to the gateways and a user interface to
select and use a deglet. The client first requests a service
from Degas. Degas selects a gateway with enough capac-
ity. The client then uploads its deglet into this gateway. The
gateway joins the session requested by the client and runs
the deglet. The processed video stream is sent to a new
multicast session, which the client is listening to. A reliable
control channel is also established between the client and
the gateway. This control channel allows user to interact
with the deglet and the gateway, such as to reconfigure de-
glet, send user interface events (for instance, mouse click)
or migrate the deglet to another gateway. The gateway uses
the same control channel to send error messages back to the
client for debugging. Figure 2 shows an example output
stream produced by a Degas gateway.

1.1. Research Problems

In the design and implementation of Degas, several prob-
lems arose. We briefly discuss each problem below. The
first problem is related to the programming model of de-
glets. A deglet must be simple to specify, yet powerful
enough to perform useful operations on media streams. We
could allow user to write arbitrary code and submit them
to the gateway for execution (as in J-Kernel [5]), but we
think that this is unnecessarily since Degas is not meant to
perform arbitrary computation. We should restrict the pro-
grammers to a set of API for manipulating media streams.

The second problem concerns the execution of deglets.
As media processing involves large amounts of data, nor-
mally encoded in a complex format, it is crucial that the
gateway executes a deglet efficiently. The optimum way of
performing an operation is usually tied to the format of the
input streams and output streams. Since the format of input
streams may be different and can changed in the middle of
a session, we must optimize the deglets differently for dif-
ferent streams, and re-optimize when input format changes.

The third problem is deciding where to run deglets, to
optimize load balancing and use of network resources. Run-
ning a deglet at a strategic location can reduce bandwidth
consumption significantly. The dynamics of the network
environment complicates the problem. Gateways may be
created and removed; senders and receivers may join or
leave multicast sessions; and available bandwidth of a link
changes from time to time. Hence, our solution for locating
a gateway must be an adaptive one.

Finally, we need to ensure that the system is robust in
the face of crashes and badly-behaved deglets, such as one
that enters an infinite loop or allocates a huge amount of
memory. Resources, including CPU, memory and network
bandwidth, must be shared fairly among different deglets.
Furthermore, the effect of resource controls on QoS must
be minimized.

As Degas is still a work in progress, it is not our inten-
tion to solve all these problems in this paper. This paper
focuses on the programming model and execution model of
deglets. We briefly describe our solution for the gateway
location problem and refer interested readers to [10] for de-
tails. We are still looking at a solution for the resource man-
agement problem.

1.2. Organization

The rest of this paper is organized as follows. The program-
ming model is described in Section 2. The optimization and
execution of deglets are described in Section 3. The mech-
anism for selecting a gateway to run a deglet is presented in
Section 4. We provide some performance data in Section 5.
Ongoing and future work is described in Section 6. Finally,
we provide an overview of related work in Section 7 and
conclude in Section 8.

2. PROGRAMMING MODEL

The main consideration in selecting a programming model
for deglets is simplicity while retaining flexibility and power.
We want to make deglet easy to write, so that a user can
specify one in a few minutes. This consideration favors the
use of scripting languages. For Degas, we chose Tcl [11].
We also chose to use a declarative model for programming
deglets. A declarative model lets the user specify what to
do, but not how to do it. The user should not be concern
with how the deglet is going to be executed. The optimal
way to perform the video operations depends heavily on the
properties of the input streams, such as the encoding format
and sizes. By decoupling the properties of the source media
streams from the deglet specification, the same specifica-
tion can be used on sources with different properties. Fur-
thermore, the users do not have to worry about cases where
sources change their transmission properties in the middle
of a session. The underlying execution engine determines
the best way to perform a task.

2.1. Examples

To better understand how a deglet is written, we present two
examples in Figure 3 and Figure 4. We explain these two
examples in detail in the rest of this section.

Figure 3 shows a simple deglet that transcodes a video
stream from host seminar.cs.cornell.edu into a M-
JPEG video stream of quality 40. A deglet is a text file
that starts with a list of key-value pairs. The key sources
specifies a list of sources we are interested in (line 1) us-
ing multiple host addresses or a regular expression such as
*.cornell.edu. In this case, we are only interested in one
source. num of sources indicates the maximum number

DESIGN AND IMPLEMENTATION OF
PROGRAMMABLE MEDIA GATEWAYS

Wei Tsang Ooi �, Robbert van Renesse and Brian Smith

Department of Computer Science, Cornell University
Ithaca NY 14853

ABSTRACT

Treating the network as a processor that can perform
computation has several benefits. Processing at strategic lo-
cations in the network may reduce bandwidth requirements.
Low-powered devices that are connected to the Internet can
be off-loaded as well. In this paper we present Degas, a pro-
grammable media gateway system. Degas allows users to
upload small programs, called deglets, into a Degas gateway
to filter, transform or mix video streams from a multicast
session. We describe a declarative, event-driven program-
ming model for writing deglets. We also discuss a simple
mechanism used by gateways to optimize and execute the
operations specified in the deglets. Finally, a method for
selecting a suitable gateway to run deglets is outlined.

1. INTRODUCTION

In the traditional model of distributed computing, nodes on
the edges of a network perform computation, and nodes in-
side the network move data around. Recently, researchers
have been studying how computation can be moved into the
network itself. This shift is motivated in part by the increas-
ing number of low-powered devices connected to the In-
ternet. Computationally intensive operations can be moved
from these devices to nodes within the network. Performing
operations on packets within the network can also improves
network efficiency, (e.g. by compressing and decompress-
ing data streams across a bottleneck link [17], or transcod-
ing a video into a lower bandwidth within a heterogeneous
network [2]). Active Networking [14] takes the idea fur-
ther by making the nodes with the network programmable.
Programmability allows users to extend the network with
customized operations, such as application-specific retrans-
mission scheme, or new routing protocols.

In this paper, we present the design and implementation
of a programmable, application-level media gateway called
Degas.1 Degas allows users to “inject” user-defined pro-

�This research was supported by DARPA/ONR (contract N00014-95-
1-0799), and grants from the National Science Foundation, Kodak, Intel,
Xerox, and Microsoft.

1Named after French impressionist Edgar Degas.

grams, called deglets, into a gateway to perform customized
transcoding, filtering and mixing of video and audio streams
of a multicast session. Transcoding allows transformation
of the media streams into a different format or bit rate, thus
allowing heterogeneous hosts to participate in the same ses-
sion over connections with different bandwidths. Filtering
allows hosts to block streams from certain sources. Mix-
ing provides processing on multiple streams. For example,
a gateway can merge incoming video streams into a single
video stream by creating a ”picture-in-picture” or a ”quad-
splitter” view, or a gateway can switch between different
streams in a tele-conference based on who is currently talk-
ing.

The most significant difference between Degas and pre-
vious work is the programmability that Degas provides. In-
stead of providing a fixed set of services, Degas allows users
to upload new functionality into gateways. This simpli-
fies deployment of new services, promoting user innovation.
Also, it allows users to customize existing services.

video sources

gateways

client

Figure 1: An example of a Degas system

Figure 1 shows an example of a Degas system. Multi-
ple Degas gateways are distributed across the Internet. The
existence of these gateways is transparent to the various
senders that multicast video streams onto their respective
sessions. Such transparency allows current MBone appli-
cations such as vic [7] and ivs [15] to be used with Degas
without modification.

A user who is interested in receiving videos from a ses-
sion through Degas runs a Degas client. The client program

