
Derecho: Group Communication at the Speed of Light

Jonathan Behrens1, Ken Birman, Sagar Jha, Matthew Milano, Edward Tremel
Eugene Bagdasaryan, Theo Gkountouvas, Weijia Song, Robbert van Renesse

Cornell University; 1MIT

Abstract
Today’s platforms provide surprisingly little help to de-
velopers of high-performance scalable services. To ad-
dress this, Derecho automates the creation of complex
application structures in which each member plays a dis-
tinct role. Derecho’s data plane runs a novel RDMA-
based multicast protocol that scales exceptionally well.
The Derecho control plane introduces an asynchronous
monotonic logic programming model, which is used to
implement strong guarantees while providing a substan-
tial performance improvement over today’s fastest mul-
ticast and Paxos platforms. A novel subgrouping feature
allows any single group to be structured into a set of sub-
groups, or sharded in a regular pattern. These features
yield a highly flexible and expressive new programming
option for the cloud.

1 Introduction

We often conceive of the cloud primarily in terms of
applications that involve enormous numbers of external
endpoints that make requests, triggering individual re-
sponses. Typically, some event on a browser or mobile
device causes a small stateless task to run on a cloud
platform. The task responds, if possible using cached
data. Where an update occurs, it will often be initiated
asynchronously as well, with the response to the external
client sent before the update to persistent state.

But this style of cloud computing runs into limita-
tions for applications that need stronger consistency or
high availability, and in any case is feasible only because
the cloud incorporates prebuilt and often rather elaborate
supporting services to manage caches and support back-
end storage, and that automatically repair themselves in
the event of failures whiling maintaining needed forms
of distributed consistency.

The developer of a new infrastructure service, or of an
application that needs stronger guarantees than is usual

in the cloud, faces a hard problem: the tasks just sum-
marized are poorly supported by development tools, and
often must be solved ground-up. With the emergence of
real-time applications that require high availability and
strong consistency, more and more cloud developers are
encountering this challenge. The style of service just
described arises in systems that stream Internet videos,
infrastructure services that update VMs and containers,
IoT systems, and online analytics (to list just a few).

Our system, Derecho, is addressed to this need. We
focus on use cases within a single data center equipped
with RDMA unicast (future work will tackle georepli-
cation). Derecho’s programming model is focused on
process groups with dynamic membership: members can
join, leave, or be ejected because of failure. State trans-
fer is used to initialize a joining process. Beyond these
basics, Derecho innovates by automating the creation of
subgroups of a group, or patterns of subgroups such as a
sharding pattern. A subgroup or a shard is just another
form of group, but membership consistency between a
group and its subgroups is automatic. Derecho’s exe-
cution model enables high-speed, scalable state-machine
replication [1], with optional persistence, allowing the
developer to make a per-group choice between atomic
multicast, Paxos, or a raw data transport protocol.

Derecho would often be used side by side with (or in-
tegrated directly into) middleware layers such as such as
transactional systems [2–4], file systems with strong se-
mantics [5], or publish-subscribe [6, 7]. Even machine-
learning systems could benefit: exchange of data often
limits the shuffle-exchange step at the core of iterative
solvers, and there is growing interest coupling machine
learning systems to real-world inputs, where distributing
incoming sensory data to the solvers and getting the re-
sults back to actuators is a demanding, time-critical need.

For raw data movement, Derecho implements a pro-
tocol we call RDMC; it provides a bare-bones reliable
RDMA multicast. RDMC constructs a logical overlay
out of unicast RDMA connections, sending data in a pat-

1

tern that can leverage the full bidirectional process-to-
node bandwidth of the hardware, yielding an exception-
ally fast protocol that also scales well. Derecho can make
one copy at the speed of the RDMA hardware, but creat-
ing 64 replicas can be as little as 10% slower. Using its
small-message protocol, Derecho can move 1 KB mes-
sages in an all-to-all pattern at rates exceeding 2M/sec-
ond, with end-to-end latencies as low as 2µs.

Derecho is by far the fastest technology of this kind
yet created. Configured as Paxos, Derecho is twice as
fast as Corfu, the prior record holder [8], and ten times
as fast as the Windows Azure replication framework [9].
Derecho can scale to huge deployments with no loss of
speed, whereas Corfu and Azure are limited to small
replication factors. Derecho is nearly 100 times faster
than Zookeeper [5] and LibPaxos [10], all running on
the identical hardware. Latency is just 20µs for Derecho
atomic multicast (and as low as 2µs for small messages in
our raw mode), and throughput is roughly 15,000 times
that of the Vsync atomic multicast system [11].

At these data rates, the challenge is to to turn the raw
multicast protocol, which provides ordering and integrity
but lacks strong semantics, into a more sophisticated
primitive that can retain the same performance. For this
purpose, we designed a novel control framework based
on monotonic logic. The key insight is this: if data is
moving far too fast for the control plane to keep up with
it on an event-by-event basis, protocol actions must run
out of band. A monotonic protocol is one in which obser-
vations are never invalidated by subsequent events. For
example, suppose that a protocol determines that every
message up to k can safely be delivered in some agreed-
upon order. If the protocol is monotonic, no matter what
happens next, this delivery rule remains safe.

We discovered that a wide variety of distributed con-
trol protocols such as 2-phase commit, K1 knowledge
and consensus can be reformulated monotonically. This
enabled us to design a new atomic multicast protocol and
a new implementation of Paxos. Not only are these pro-
tocols surprisingly elegant, they turn out to be easily ex-
tended: once we had our basic protocol working for top-
level groups, only minor extensions were needed to sup-
port subgroups with strong consistency.

Derecho automates many of the hard tasks alluded
to earlier: managing a group name space, bootstrap-
ping when a system is first launched, creating group and
subgroup structures, coordinating between components
when reconfigurations occur, reporting failures and joins,
state transfer, and reloading Paxos state from logs. The
developer’s task is hugely simplified. A companion pa-
per [12] focuses on API design choices. Here, we drill
down on the Derecho protocols.

2 Design Considerations

Control plane / Data Plane separation. The overar-
ching trend that motivates our work involves a shifting
balance that many recent researchers have highlighted:
RDMA networking is so fast that to utilize its full poten-
tial developers must separate data from control, program-
ming in a pipelined, asynchronous style [13, 14]. Tra-
ditional protocols for virtually synchronous group com-
munication, atomic broadcast or Paxos have stood in the
data plane: the logic that decides on ordering and safety
also moves bytes. RDMA requires a restructuring in
which the control logic runs side by side with data move-
ment, so that if the application has data to send continu-
ously, the data plane will only be delayed if the control
plane is doing something unusually costly.

Strong programming models. Classic data replica-
tion protocols offer strong consistency guarantees [15,
16], but are structured in a way that makes it hard to
leverage RDMA communication. Our insight is that we
can adopt these models but implement the protocols in a
new way, and in particular, that the way we reason about
protocols can limit their performance.

To appreciate this point, we should give more context.
Paxos [16] is the gold standard for protocols supporting
state machine replication [17,18], bringing clarity to pro-
tocol correctness goals and opening the door to rigorous
proofs [16,19]. In fact, there are actually many versions
of Paxos, each optimized for different target settings.
The version most relevent to our is virtually synchronous
Paxos, originally proposed by Malkhi and Lamport and
ultimately formalized in Chapter 22 of [20].

Malkhi and Lamport suggested this Paxos variant to
address some issues with the classic Paxos protocol. That
protocol performs reads and writes using a multi-stage
protocol that requires a quorum within a set of N ac-
ceptors; subsequent work extended the model to distin-
guish read and write quorum sizes. For example, to tol-
erate 1 failure in a group of 3 acceptors, Paxos could
commit updates on any 2 acceptors, but a learner (the
“client”) would then have to read and merge 2 logs:
Qw = N− 1,Qr = 2. This was reasonable in 1990, but
at modern data rates the extra reads and log-merge slash
peak performance. In particular, the need to read two or
more logs could halve the achievable throughput: a big
concern at RDMA rates.

The key insight is that Paxos doesn’t necessarily have
to be implemented as a multi-phase quorum commit. The
Paxos specification requires non-triviality, total order-
ing and persistence for data logged by a set of accep-
tors (to this one adds further requirements covering log
compaction and reconfiguration of the acceptor set). Any
protocol that implements the specification is a Paxos pro-
tocol. In particular, one can modify Paxos to use the vir-

2

tually synchronous group membership model first intro-
duced in the Isis Toolkit [11, 20]. By doing so, we pre-
serve the Paxos guarantees, yet every group member can
fully replicate the group state (Qw = N), and can safely
read from any single replica (Qr = 1). To make progress
after a failure, we reconfigure the group.

Virtually Synchronous Paxos. In the new model,
Paxos runs in a dynamically defined group of processes.
Each group evolves through a series of epochs. An epoch
starts when a new membership for the group is reported
(a new view event). The multicast protocol is available
while the epoch is active, sending and delivering totally
ordered, persistent multicasts that are also persisted into
SSD logs. An epoch ends when a member joins, leaves
or fails. Because a failure may end an epoch while a
multicast is underway, at the end of the epoch all active
multicasts are either finalized and delivered, or reissued
in the next epoch, or aborted if the sender is not part of
the new epoch. In all cases, sender ordering is preserved.

The model requires that any multicast be delivered to
all members of the group in the same epoch. Thus, on
receiving a multicast an application can make use of the
membership (for example, the ranking). For example,
the member ranked 0 in the view could take on a leader
role. In a group with N members, a task could be divided
into N subtasks, each handled by a distinct member.

Derecho’s Implementation of Persisted State. In
Derecho, we represent a Paxos log as a checkpoint that
includes epoch membership information, followed by a
series of updates in the proper order and a counter of how
many updates have committed. For the top-level group,
we also log the view of the top-level group itself and of
its subgroups; this is useful when recovering from fail-
ure. To compact a log, a member just replaces its log
with its current checkpoint. We require that the logic for
updating the state associated with a group be determin-
istic, hence compaction can be done at any time. Notice
that this does not preclude members from having differ-
ent responsibilities: they merely need identical states.

No Split Brain Behavior. Dynamic membership
management creates the risk of logical partitioning (split-
brain behaviors), hence a the protocol must ensure that
any group has a single sequence of membership views,
which we refer to as the primary partition. Processes
that have dropped from the primary partition cannot form
new views or send messages (multicast or point-to-point)
to processes that remain in the primary partition, and are
quickly forced to shut down. Thus, once a view reports
that some process has failed, it will not be heard from
again, and it is safe to take remedial actions on its behalf.

If a Derecho group has subgroups, the same guaran-
tees extend to the subgroups themselves. Importantly,
because the top-level group cannot experience logical
partitioning, no subgroup can become logically parti-

tioned. Additionally, all members see the full member-
ship of the top-level group and of all of its subgroups (in-
cluding their shards or subgroups). Although a process
that does not belong to a group cannot multicast to it, we
do permit point-to-point messages; if such a message is
sent in view k, will be delivered in view k′ ≥ k.

Monotonic Protocols. To create Derecho, we imple-
mented virtually synchronous Paxos as a monotonic pro-
tocol. The resulting formulations of virtual synchrony,
atomic multicast and Paxos are interesting in and of
themselves. Although these monotonic protocols cer-
tainly don’t look like the classic versions, they turn out
to be exceptionally efficient. In fact, the Derecho con-
trol plane delivers messages after the minimum number
of rounds of distributed communication required for our
fault model.

3 Building Blocks

Derecho is comprised of two subsystems: one that we
refer to as RDMC, which provides our reliable RDMA
multicast, and a second that we call SST, which supports
the monotonic logic framework within which our new
protocols are coded. In this section we provide overviews
of each and then focus on how Derecho maps Paxos onto
these simpler elements. RDMC details can be found in
[21], and SST in [22]. Figure 1 illustrates the structure.

RDMA. RDMC and SST both run over RDMA,
which offers reliable zero-copy unicast communication
(RDMA also offers several unreliable modes, but we
don’t use them). For hosts A and B to communicate, they
establish RDMA endpoints (queue pairs), and then have
a few options: (1) The first is like TCP: the endpoints
are bound, after which point if A wishes to send to B,
it enqueues a send request with a pointer into a pinned
memory region. The RDMA hardware will perform a
zero-copy transfer into pinned memory designated by B,
along with an optional 32-bit immediate value which, for
instance, can be used to indicate the total size of a multi-
block transfer. Sender ordering is respected, and as each
transfer finishes, a completion record becomes available
on both ends. (2) A second option is called “one-sided”
RDMA. In this mode, B grants A permission to remotely
read or write to pre-agreed upon regions of its memory,
without B’s active participation; A will see a completion,
but B will not be explicitly informed. (3) A third option
is new, and we are just looking closely at it: applications
using bound queue pairs can enqueue complex sequences
of transfers, using a feature that tells the NIC to initiate
operation X, and then when X completes, to enable Y.

RDMA is reliable and its completion records can be
trusted. Should an endpoint crash, or in the extremely
unlikely event of data corruption, the hardware will sense
and report this.

3

Suspected Proposal nCommit Acked nReceived Wedged

A F T F 4: -B 3 4 5 3 0 T

B F F F 3 3 3 4 4 0 F

C F F F 3 3 3 5 4 0 F

A CB

BA C BA C
mA:1
mA:2
mA:3
mA:4
mA:5

mB:1

mB:2

mB:3
mB:4

Derecho group with members {A, B, C}
in which C is receive-only

RDMC groups for senders A and B. If B fails, the group
wedges along the ragged blue line, disrupting mA:5 and mB:4.

The leader (A)’s SST after sensing B’s failure. A is proposing that B be
removed. Once healthy members have wedged, A will use nReceived to
compute and propose a final trim resolving the status of mA:5 and mB:4.

V3 = { A, B, C }

DNS: myGroup.somewhere.org | 123.45.67.123:6543 (Leader: A)

DNS record and current view, showing senders

B fails, resulting in an
uncertain state

Figure 1: Each Derecho group has one RDMC subgroup per sender (in this example, members A and B) and an
associated SST. In normal operation the SST is used to detect multi-ordering, a property defined to also include data
persistence. During membership changes, the SST is used to select a leader. It then uses the SST to decide which of
the disrupted RDMC messages should be delivered and in what order; if the leader fails, the procedure repeats.

The RDMA standard is supported over both RoCE
(Ethernet) and IB (InfiniBand), and there is also a soft-
ware emulation over standard TCP (SoftRoCE); the lat-
ter is slow and interesting mostly for portability. We have
both hardware options and in our small testbed, they be-
have similarly. There is extensive experience with IB at
very large scale, but the industry is just starting to ex-
periment with RoCE and we do not yet have access to a
genuinely large RoCE deployment. For consistency, the
experiments reported here all were done on IB.

To achieve the lowest possible latency, RDMA re-
quires continuously polling for completion events. Un-
fortunately, this can result in excessive CPU usage even
if no RDMA transfers are taking place. As a compro-
mise we chose to dedicate a thread to polling comple-
tions while Derecho is active, but after a short period of
inactivity we have it switch to sleeping on interupts.

3.1 RDMC

RDMC implements a zero-copy reliable multicast ab-
straction which guarantees that messages will be deliv-
ered in sender order without corruption, gaps or dupli-
cation. A single RDMC session allows a just one des-
ignated sender to transmit messages, so each Derecho
group actually coresponds to a collection of RDMC ses-
sions, one for each active in a sender in the current epoch
(thus an N member group could have no RDMC sessions,
or as many as N).

Small messages. Small messages (1KB or less) are
sent using a specialized protocol that employs one-sided
writes. When configured to use it, each member allocates
a round-robin buffer for each sender. A sender waits un-
til there is a free slot, then writes the message and incre-
ments a count. A receiver waits for an incoming mes-
sage, consumes it, then increments a free-slots counter.

Large messages. RDMC supports arbitrarily large
messages which it breaks into chunks, then routes on an
overlay network (the actual network is fully connected,
so this purely an abstraction). A number of protocols are
supported, all of which are designed so that the receiver
will know what chunk to expect so it can ensure that in-
coming data lands in the proper memory region. Once all
chunks are received, the message is delivered via upcall
either to a higher-level Derecho protocol (for a group in
Paxos or atomic multicast mode), or directly to the appli-
cation (for a group in raw mode).

Binomial pipeline. For most cases evaluated here,
RDMC uses a binomial pipeline, which we adapted
from a method originally proposed for synchronous set-
tings [23]. Individual chunks disseminate down one of
several overlaid binomial trees such that the number of
replicas with a given chunk doubles at each step. This
pattern of transfers achieves very high bandwidth utiliza-
tion, and optimal latency: if the number of processes is
a power of 2, all receivers deliver simultaneously; if not,
they deliver in adjacent protocol steps.

Hybrid RDMC protocols. Although not used in the
experiments reported here, RDMC includes additional

4

protocols, and a datacenter owner can compose them
to create hybrids. One obviously interesting possibility
would be to use the Binomial Pipeline twice: once at the
top-of-rack (TOR) level, then again at within each rack.
Another option would be to use the chain pipeline pro-
tocol, which forms a bucket brigade: each message is
chunked and then sent down a chain, so that in general
each TOR process would be concurrently receiving one
chunk while forwarding a prior one. This would mini-
mize the TOR load, but have higher worst-case latency
than a TOR instance of the binomial pipeline.

Failures. When RDMC senses a failure, it informs
the higher level using upcalls. Because RDMC forwards
data asynchronously in chunks over a routing topology,
a failure state could involve pending multicasts that have
been delivered to some destinations but not to others: a
condition we refer to here as a wedged RDMC session.
The wedge state can also be requested by application
logic. Once wedged, RDMC ceases to report newly re-
ceived messages, and new multicasts cannot be initiated.

Recall that RDMC sessions are associated with a spe-
cific sender in a particular epoch of a designated group.
A process could have many active RDMC sessions at
the same time; one could wedge while others are totally
unaffected. Because RDMC has no data retransmission
logic, it will be important for Derecho will be to clean up
the ragged edge left after such a failure, garbage collect
the wedged session, and then start the new epoch after
the old one has fully terminated.

3.2 Shared State Table

The Derecho SST is a programming framework for
monotonic logic, used to encode our protocols. The
SST is not directly exposed to Derecho users, who see
a simple API (the one discussed in the companion paper
mentioned earlier [12]) supporting group join, strongly
typed and polymorphic point-to-point and multicast op-
erations, and queries. We’ll be fairly detailed because our
monotonic protocols are expressed in SST’s formalism.

SST is built over an all-to-all shared memory table
structure. Each group member will have a read-only
copy of the SST row for every other member in the
group, and a read/write instance of its own SST row.
The format of the row (the number of columns and their
meaning) is determined by the algorithm using the SST.
In Derecho we will instantiate the SST once for each
epoch of each active group, so in an application that uses
many groups, there may be many SSTs active at the same
time.

To share data using the SST, a process updates its local
copy of its own row, then pushes it to all other group
members by enqueuing a set of RDMA requests. A push
thus creates a 1-to-N pattern communication pattern, like

sending messages, but in fact using RDMA hardware to
directly write into remote memories within interrupts or
any kind of process-to-process synchronization. While
this does impose N2 load on the RDMA routers, those
have full bisection bandwidth and can handle it. One
might expect SST to slow down linearly in system size,
yet we have never observed such an effect: the time for
a process to update its own row is negligible no matter
how big the SST since the SST rows are so short (rarely
more than 1KB) and the network so fast.

The SST is lock-free, but cache-line atomic: if an ob-
ject fits within a cache line, applications can safely read
it even while writes are occurring. Additionally, when a
row is pushed, the RDMA write is done from low to high
memory addresses: columns within a row are updated
from left to right. For example, if an application had a
column X, and then to its right a column Y and updated
first X, then Y, then a remote reader that sees Y change
will also see the updated value of X: in effect, Y guards
X.

The SST framework provides high-level tools for logic
programming. The simplest of these is the RowFunc-
tion, a wrapper type for associating functions of type
Row→ T with a definition-independent name. A Row-
Function is performed by some single process, and typi-
cally just retrieves some field within some row, although
doing so can involve more complex reasoning (for exam-
ple, a RowFunction could index into a vector).

On first impression, it may seem as though RowFunc-
tions will do little to ease the programming burden of
reasoning about consistency, beyond offering a conve-
nient place to implement any needed memory barriers.
The true power of RowFunctions becomes clear when
combined with reducer functions, SST’s primary mech-
anism for resolving shared state. A reducer function’s
purpose is to produce a summary of a certain RowFunc-
tion’s view of the entire SST, not just a single Row. One
can think of these functions as serving a similar role to
“merge” functions often found in eventual consistency
literature; they take a set of divergent views of the state
of some datum and produce a single summary of those
views. Aggregates such as min, max, and sum are all
examples of reducer functions.

By combining reducer functions with RowFunctions,
users can construct complex predicates over the state
of the entire SST without reasoning directly about the
underlying consistency. The functionality of a reducer
function is simple; it takes a RowFunction f : Row→ T,
allocates a new cell in the SST’s row to store a T, pro-
duces a summary of f over the SST, and stores the result
of that summary in the cell. In this way, the reducer func-
tion actually has type RowFunction → RowFunction,
allowing reducer functions to be arbitrarily combined,
somewhat like formulas over a spreadsheet.

5

Let’s look at an example.

struct SimpleRow {int i;};

int row_function(const volatile SimpleRow& s){

return s.i;

}

bool rp(){

return (Min(as_rf(row_function)) > 7) ||

(Max(as_rf(row_function)) < 2);

}

Here, function rp converts the function
row_function into a RowFunction, calls the re-
ducers Min and Max on this RowFunction, and then uses
the boolean operator reducers to further refine the result.
The natural next question is: now that we have defined a
RowFunction, how do we take advantage of it? The first
step is to assign a name to our new RowFunction so that
we may reference it later. We can also register a trigger
to fire when the RowFunction has attained a specific
value. Extending our example:

enum class Names {Simple};

SST<T> build_sst(){

auto predicate =

associate_name(Names::Simple, rp());

SST<T> sst = make_SST<T>(predicate);

std::function<void (volatile SST<T>&)>

act = [](...){...};

sst->registerTrigger(Names::Simple, act);

return sst;

}

Here we have associated the name Simple chosen
from an enum class Name, allowing us to register the
trigger act to fire whenever rp becomes true. As we see
here, a trigger is simply a function of type volatile

SST<T>& -> void which can make arbitrary modifi-
cations to the SST or carry out effectful computation.
In practice, triggers will often share one important re-
striction: they must ensure monotonicity of registered
predicates. If the result of a trigger can never cause a
previously-true predicate to turn false, reasoning about
the correctness of one’s SST program becomes easy. Us-
ing this combination of RowFunctions, predicates and
triggers, one can effectively program against the SST at a
nearly-declarative high level, proving an excellent fit for
protocols whose descriptions often have the flavor “when
everyone has seen event X, then start the next round.”

2-Phase Commit in SST. Consider a 2-phase commit
protocol in a failure-free run. A leader can initiate such
a protocol by placing a request into a designated SST
field, indicating that the protocol has been started by in-
crementing an instance counter and pushing the row. If
other members have a predicate that monitors this field,

the triggered event would allow each to vote on the re-
quest using a value field. When the value is ready (sig-
naled by the value becoming non-zero, or by setting a
guard bit), the participant would push its row.

The leader then waits until all the values are ready.
Once that condition is achieved, it aggregates the votes
and can report the outcome, again with an associated
outcome-ready bit. We’ve accomplished a 2-phase com-
mit, yet expressed the protocol in terms of data shared in
the SST and monotonic predicates. The benefit is that
SST is very fast: in our experimental cluster, 16 pro-
cesses can easily share (and witness) 2M updates per sec-
ond: 125,000/s each. In 4-node groups we reached rates
of 275,000/s, with latencies of 1-2us: a factor at least
10,000x faster than could ever be achieved with 2PC over
UDP. After every participant has seen the outcome, for
example by acknowledging the commit through an SST
column dedicated for this purpose, we can start a new
protocol instance using the same fields of the SST.

2PC is required to abort in the event of failures. To
encode this with the SST, if a failure occurs, the member
that senses the event sets the suspicion bit in its row, as
is seen in Figure 1, where process A suspects process B.
This can then be integrated with our protocol: the leader
could for example abort if any member fails prior to vot-
ing, or could iterate, repeating the protocol until every
non-failed member has voted successfully. If the leader
itself fails, the next-ranked process can take over the role.
Derecho uses this style of commit protocol to implement
consensus on changes to the group membership.

3.3 Encoding monotonic protocols in SST

SST predicates have a natural match to the logic of
knowledge [24], in which we design systems to exchange
knowledge in a way that steadily increases the joint
“knowledge state.’. If pred is true at process A, then A
knows pred, denoted KA(pred). Now suppose that all
members report when they know pred using a bit in the
SST. By aggregating this field, process A can discover
that everyone knows pred. We repeat that pattern to learn
K1(pred): every group member knows that every other
member knows pred. Obviously, this form of reason-
ing would be unstable if the predicates weren’t mono-
tonic. However, Derecho uses monotonic values and
predicates, hence knowledge programming has a clear
fit.

How does a monotonic knowledge protocol differ
from a traditional exchange of messages? While the pat-
tern of data exchange is similar, RDMA is very inex-
pensive. Moreover data might be overwritten while the
knowledge-exchange is taking place. The main insight is
that in a monotonic protocol, the deductions remain valid
even when this kind of concurrency is present.

6

The handling of failures in knowledge protocols now
arises. Our approach is motivated by monotonicity. The
basic danger introduced by failure is an outcome in
which some process discovers that everyone knows pred,
but then crashes: if it may have acted upon its knowledge
before failing, other processes may no longer be able to
discover whether or not everyone knows pred, and hence
would be blocked. But suppose that when a process dis-
covers that the everyone knows pred, it first reports this
via its SST row, pushing its row to all other members be-
fore acting on the information. With this approach, there
are two ways of learning that K1 was achieved: process
B can directly deduce that K1(pred) has been achieved,
but could also learn K1(pred) indirectly by noticing that
A has done so. This is not merely an optimization: if
further failures have occurred, it may be possible to learn
K1(pred) indirectly even though K1(pred) is no longer
directly discoverable! With monotonic predicates, indi-
rect discovery of K1(pred) is as safe as direct evaluation.

Moreover, because A and B push their updates before
acting upon the K1(pred) knowledge, and because SST
reports failure suspicions discovered during a push op-
eration before that operation completes, a further guar-
antee holds: for each group member M, either M knows
K1(pred), or M has failed (and is already suspected by
all other non-failed members). Derecho uses this pattern
when stabilizing the ragged edge of an epoch.

3.4 Paxos and Atomic Multicast

Given these tools, we can now turn to our primary objec-
tive: a monotonic and asynchronous implementation of
atomic multicast and Paxos.

Single sender case. Think first about a single sender
in an n member group. By associating an SST with the
RDMC session, it is easy to track multicasts through the
system without disrupting their flow. Recall that RDMC
preserves the sender ordering. So, we can have each pro-
cess acknowledge receipt in an SST column, using one
SST field (one column) for purpose. Now, if our pro-
cesses track the minimum on this column, they can learn
which messages have been acknowledged by all desti-
nations: a monotonically increasing value. Building on
this idea, we can support the two basic Derecho modes of
receipt for a single-sender group: volatile mode, which
receives data into a pinned region in DRAM, and per-
sistent mode, where we additionally write to NVRAM
(SSD) disk. A message is said to be locally stable as
soon as it is received if in the volatile mode, or when the
SSD write finishes if in the persistent mode. We can de-
liver a message once every group member has reported it
as locally stable: first, if in the Paxos mode, we update
the log to show that the message committed and force the
data to SSD (this is easy because we need just a single

monotonically increasing commit counter per log, and
can overwrite it each time the value increments). And
then we simply do an upcall to the application.

Multiple senders. Given a group with multiple ac-
tive senders, we can run several single-sender RDMC
sessions side by side, one per sender, and dedicate one
SST column to each RDMC session. But agreement on
the delivery order is needed. Derecho employs a simple
round-robin rule. For example, in the figure, A and B are
senders; the rule would thus dictate that we deliver A:1,
then B:1, then A:2, etc. Each sender will get one slot
per round, but can send a null message if there is no ac-
tual data to send. If a round consists entirely of senders
transmitting nulls, sending pauses briefly to avoid wast-
ing resources.

To implement this rule, we end up with a simple mono-
tonic logic barrier, expressed inductively: the first mes-
sage in a view is multi-stable and multi-ordered if it is
locally stable at all receivers. It can be delivered, in the
same manner as for the single-sender case (e.g. first up-
dating the log, if we are running persistently, and then
doing an upcall).

The second message can be delivered when it is multi-
stable and the first message has been delivered, and the
third message after the second one, and so forth. This
already defines the failure-free behavior of Derecho. No-
tice that we’ve achieved our goal: the control plane
(namely, this delivery rule!) runs parallel to the data
plane (namely, the RDMC multicast stream).

Terminating an Epoch. When a group view changes,
Derecho must terminate any pending multicasts. With-
out failures, this is trivial: we wedge the RDMC, so that
no new multicasts can be initiated, wait until all pend-
ing ones have been delivered, and then we can switch to
the new view and start a new epoch, transferring state to
whatever member is joining.

With failures, the challenge is to clean up what may be
a messy situation, as illustrated in Figure 1 for a crash of
process B. RDMC has wedged, and some processes have
copies of message A:5, but we don’t know whether A:5
reached B before it crashed. A lacks a copy of B:4 and
since Derecho does not retransmit missing messages, B:4
is not deliverable.

The epoch termination protocol will start when some
member, perhaps A, times out and suspects that B failed.
A sets suspected[B] and the wedged bit in its SST row,
wedges the RDMC and freezes its copy of B’s SST row
(thus, A will no longer accept new messages from B
and B will no longer be able to issue one-sided writes
to A’s copy of B’s SST row). If the group is a top-level
group and this causes the number of suspected failures to
exceed b(N − 1)/2c, A throws an exception and termi-
nates, avoiding a split brain scenario if a network failure
has isolated A from the primary partition. Otherwise, A

7

pushes its updated row (that is, A forces an SST update
and waits for it to complete).

Other processes (C in our example) will notice the new
suspicion. Each mimics A: wedging the RDMC, freezing
B’s SST row, setting the wedged and suspected bits, and
pushing the update. Suspicions thus propagate in a viral
manner. As noted above, no member of a group acts on
a suspicion until after it has informed every non-failed
member in the group.

Next, a leader is selected. Each process computes the
lowest-ranked group member that it does not suspect: A
in our example. The leader has the role of waiting until
all non-failed group members are wedged, then aggre-
gating the minimum for the receive counts in its copy of
the SST, ignoring SST rows for suspected processes. We
will call this a trim of the ragged edge.

We assert that it is safe to deliver all messages included
in the trim, and necessary to do so. It is safe to deliver
these messages, because every process in the group other
than B has received them, and B has failed (or will shut
itself down momentarily). It is necessary to deliver all
messages included in the trim because B, although in-
accessible to us, may actually have delivered these mes-
sages itself: after all, all the available evidence suggests
that these messages have reached all their destinations. If
they did, B might have detected that they were globally
stable and could have delivered them. Conversely, any
message not included in the trim cannot have been deliv-
ered by B or any other process. To be delivered in the
normal mode of operation, a message must be globally
stable and globally ordered, hence any minimum would
have included it. A message not included in A’s compu-
tation of the minimum must not yet be stable at at least
one process in the group, and hence B didn’t deliver that
message prior to crashing.

However, there is one more case to consider. Suppose
that A is the sole group member lacking a copy of mes-
sage B:4, as in Figure 1. If A is the leader, A’s trim com-
putation will obviously omit B:4. But if A were to fail
too, and C computed the trim, it would ignore A’s SST
row, and hence could compute a trim that includes B:4.
This situation is precisely analogous to the one we dis-
cussed when considering the monotonicity of K1 knowl-
edge predicates, and we can solve the problem by using
precisely the same idea as was given earlier: the leader
computes the trim, but doesn’t act upon it. Instead, it first
pushes the trim via the SST. Every other process that sees
A’s trim echoes the trim in its own SST row, pushing it.
Thus A’s trim will propagate virally and no process ever
acts on the trim until it has echoed it to every non-failed
group member.

Once the trim has been pushed, it can be used to termi-
nate delivery for the epoch. This is done by using the trim
to extend the standard round-robin order for messages

that are multi-ordered: we continue the round-robin de-
livery order, except that if the trim omits a message, we
skip that message (for example, A’s trim will omit B:4,
hence C, despite having a copy of B:4, will nullify the
message in its log and then skip that slot, like the others
do, at that point in the round-robin ordering).

Our last concern is that a leader could fail, perhaps
even in the act of propagating its trim. So, suppose that
C is now the leader in our group (A and B having failed),
and further, assume that the group has more members
and that C has not lost the primary partition. We need
to convince ourselves that either no process could have
used A’s trim to finalize delivery, or that if any process
could have done so, then C will use A’s trim as its own.
But recall that when C took over, it did so because (1) A
and B were suspected, and (2) every other non-suspected
process has pushed an SST row showing that A is sus-
pected. Further, recall that any process that observes a
trim echoes it and pushes it before acting upon it. Thus,
if A published a trim and any process could have acted
upon it, C finds that trim echoed in at least one row of
the SST. Accordingly, our final worry can easily be ad-
dressed: When a new leader takes over, it waits until ev-
ery non-suspected process’s row shows that the previous
leader is suspected. At this point, it scans the SST. Ei-
ther it finds a prior leader’s trim, in which case it reuses
it, or it is safe to carry out a new trim computation. We
obtain an iterative consensus protocol that uses the SST
to exchange information between processes.

Derecho also uses this protocol to handle agreement
on the succession of group views. We dedicate a set of
columns in the SST to allow the leader to list a series
of one or more proposed changes to the view: “add pro-
cess P,” “remove process Q,” etc. So, for example, when
A suspected B, the leader would have included “remove
B” in this list of changes. Non-leaders echo and ac-
knowledge these changes, and the leader can commit a
change once all the non-leaders who are not themselves
suspected have acknowledge it. But notice that this pat-
tern is exactly the one used to propagate the trim. Thus
without extra SST pushes, we accomplish two things at
once: we finalize the current epoch and also reach agree-
ment on the initial view of the next one. Just as we did
for the trim, a new leader taking over from a prior leader
would also take over the prior proposed list of changes,
then extend it (presumably, with “remove A”, where A is
the identity of the prior leader).

Starting the new epoch is now a simple matter: we
compute a new view for the group by applying the next
change, report it to the members, and to support joins,
the leader sends the joining member a state transfer with
the new view. All members set up RDMC sessions for
the senders in the new view, and a single SST for the
new epoch, and progress resumes. Not surprisingly, the

8

protocol is quite similar to the classic Paxos Synod pro-
tocol, or the Isis Toolkit group membership protocol.
But notice how this Derecho implementation uses mono-
tonicity: the knowledge-exchange pattern converts indi-
vidually monotonic data, namely the trim or the list of
view changes, into globally monotonic data. Once the
protocol has finished, any future run will build on the
same data. Further, the protocol waits until that condition
holds before taking any action dependent on the basis of
that data. Moreover, the protocol is very easy to extend.
For example, as sketched here, it would seem that each
single change to the membership would trigger a new
view. But we can batch changes by having the leader
commit a set of changes all at the same time, wait for
the members to echo the commit count, and then repeat
with the next batch. No extra code is needed, but sud-
denly our solution will permit a view to change by any
number of added or removed members (of course,for a
top-level view, the number of removed members can still
never drop by more than a minority of the current view).

Total failures. One final task remains to be addressed.
In the persistent mode, we need a way to handle fail-
ures in which all processes crash, or in which some pro-
cesses crash while others remained alive. When a pro-
cess restarts it first checks to see if the group is currently
active. If so, it learns whether any of its locally persisted
messages became deliverable after it failed, and in what
order. Then it joins, and the leader uses an RDMA uni-
cast transfer to send it any other updates that occurred
while it was crashed. If the entire group failed but a ma-
jority of the last view are ready to restart, recovery in-
volves two steps. First, we need to find the last view of
the group (or subgroup) that we are restarting. Recall that
in this case the top-level group will be logging each com-
mitted view. Accordingly, we can learn the final view
of the subgroup that we are restarting. Next, we locate
the logs of the subgroup members: they have identical
prefixes, but may show differing numbers of committed
multicasts, because recording the commit state is a con-
current action. We restart from the log with the highest
value for the commit sequence number. Notice that no
rollback could ever occur: once a message is committed
as deliverable, that status is permanent.

Subgroups. Derecho also automates management of
subgroups and shards. Given a top-level group, Dere-
cho offers a simple way to define subgroups of that top-
level group, to shard the subgroups in regular ways, and
indeed, these mechanisms can be used recursively. Al-
though membership of a subgroup is slaved to that of its
parent group, in all other ways a subgroup is no differ-
ent from any other group, and in particular, subgroups
and shards offer atomic multicast and Paxos. Because
logical partitioning is prevented in the top-level group,
subgroups and shards are immune to split brain problems

even if membership suddenly drops to a minority (for ex-
ample, from 3 members to 1). Further, unlike many prior
subgroup solutions, our approach sends bytes only be-
tween the subgroup members (with no indirect forward-
ing or filtering). For lack of space, details have been
moved to Appendix A.

4 Evaluation

RDMC can scale to very large numbers of replicas: in
work that we will report elsewhere, we’ve used RDMC
to create hundreds of replicas, and in its optimal config-
uration were able to create 256 or 512 replicas in just
several times as long as was needed to create just 1 or
2. However, one wouldn’t really need Paxos or virtu-
ally synchronous multicast at such extreme scale, and
our 100Gbps hardware is deployed in a smaller 16-node
cluster. Accordingly, we evaluate rack-scale scenarios
with 2-16 group members. We ran our experiments on a
Dell R720 cluster, each with dual 8-core Intel Xeon E5-
2600 processors with 2.5GHz clock speeds, supporting
2 threads per core, with 96GB DRAM memory and two
storage options: 4x900GB rotational disk with RAID 0,
and an OCZ Technology RevoDrive 3 X2 240G SSD.

These processes are linked by a full-bisection RDMA
network. The data reported here is for a 100Gb
RoCE Ethernet switch (Mellanox SN2700) and Mel-
lanox MCX456AECAT Connect X-4 VPI dual port
NICs. Our cluster is also equipped with a Mellanox
100Gb IB switch; we repeated the experiments with it,
but obtained nearly identical results. Although Ethernet
is typically measured in bits per second, our bandwidth
graphs use units of GB/s simply because one typically
thinks of objects such as web pages, photos and video
streams in terms of bytes (100Gb/s = 12.5GB/s).

Figures 2 and 3 measure performance of RDMC in
our cluster. Figure 2 shows the attained rate for Dere-
cho’s small message protocol in groups of various sizes

Figure 2: Raw small messages.

9

100 MB/sender
1 MB/sender
10 KB/sender

Ba
nd

w
id

th
 (G

B/
s)

0

2

4

6

8

10

12

14

Group Size
4 6 8 10 12 14 16

Figure 3: Raw RDMC.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

18

Group Size

B
a

n
d

w
id

th
 (

G
B

/s
)

100MB

10KB

1MB

All send

Half send

1 sends

Figure 4: Derecho atomic multicast.

where all members send (green), half send (orange) and
one sends (blue). Our peak rate of approximately 2M
messages delivered per member, per second, occurs in
the 16-member case with all sending. We also measured
latency, which varied from 2µs from send to delivery for
4-member groups to 6µs for 16-member groups. In Fig-
ure 3, we look at bandwidth for larger messages. At each
message size, we again show the case for all sending, half
sending and one sending. For this range of group sizes,
RDMC performance is fairly steady. We see the highest
bandwidth for large messages. Even with just one sender,
RDMC substantially exceeds the performence of single
threaded memcpy which runs at less than 4 GB/s on our
cluster (total memory bandwidth is much higher, but is
split over many cores).

Figure 4 shows Derecho’s performance in the atomic
multicast mode. We observe that Derecho’s performance
is higher for larger messages; the performance is close
to the line rate for 100 MB messages when all nodes in
the group are senders. It is clear that Derecho scales well
with the group size, as the degradation in performance is
negligible with increase in group size.

Not shown is the delivery batch size; at peak rates,
multicasts are delivered in small batches, usually the

Data type Local SSD Derecho
Movie (mp4) 67.7645 63.2405
Random bits 72.1108 67.6758
Facebook page 126.451 112.909
Alphabetic strings 457.55 300.398
Zeros 471.104 292.986

Table 1: Derecho with persistence (MB/s).

same size as the number of active senders, although now
and then a slightly smaller or larger batch arises. Since
we use a round-robin delivery order, the delay until the
last sender’s message arrives will gate delivery, as we
will show momentarily, when explaining Figure 5b.

Table 1 evaluates Derecho’s persistent mode (Paxos).
Here we run into the complication that our SSD perfor-
mance depends on the type of data being written: the
device is apparently doing data compression. The table
gives the data type, the local write speed for 4MB ob-
jects (without Derecho in use at all), and then Derecho
in a 4-node configuration where all members send. Note
that although Derecho has the same properties as Corfu,
direct comparison isn’t possible because the SSD tech-
nologies differ (our peak rate is about twice that reported
for Corfu, on an older SSD technology).

In Figure 5a we see the bandwidth of Derecho multi-
casts in an active group as a join or leave occurs. The
three accompanying figures break down the actual se-
quence of events that occurs in such cases, based on de-
tailed logs of Derecho’s execution. Figure 5b traces a
single multicast in an active group with multiple senders.
All red arrows except the first set represent some process
putting information into its SST row (arrow source) that
some other process reads (arrow head); the first group of
red arrows, and the background green arrows, represent
RDMC multicasts. At 1 process 0 sends a 200MB mes-
sage: message (0,100). RDMC delivers it about 100ms
later at 2 , however, Derecho must buffer it until it is
multi-ordered. Then process 3’s message (3,98) arrives
(3 - 4) and the SST is updated (4 , 6), which enables
delivery of a batch of messages at 7 . These happen to
be messages (2,98)...(1,99). At 8 process 3’s message
(3,99) arrives, causing an SST update that allows mes-
sage 100 from process 0 to finally be delivered (9 - 10)
as part of a small batch that covers (2,99) to (1,100). Note
that this happens to illustrate the small degree of delivery
batching predicted earlier.

In Figure 6a we see a process joining: 1 it requests to
join, 2 - 6 are the steps whereby the leader proposes the
join, members complete pending multicasts, and finally
wedge. In steps 7 - 9 the leader computes and shares
the trim; all processes trim the ragged edge at 9 and the
leader sends the client the initial view (10). At 11 we

10

(a) Derecho multicast bandwidth with 200MB messages.
A new member joins at 10s, then leaves at 20s.

2

0

1

2

3

4

50 500

1

100

Time (milliseconds)

N
o

d
e

 ID

2

3

550 700 800

6 7

Wait for message
98 from node 3

0 150 450 750

4

850

2

2

4

4

7

6

4

7

6

7

6

76

Wait for message 99
from node 3

8

8

8

8

109

5 109

109

109

109

(b) Tracking the events during the multicast of a 200MB
message in a heavily-loaded 5-member group.

Figure 5: Multicast bandwidth (left), and a detailed event timeline (right).

83

0

1

2

3

4

0.5 16.5

5

17

6

98

1

2

3 4

1011

11

11

119

11 12

12

12

12

12

3

4

1 83

Finalize in-progress
multicasts

Setup new SST and
RDMC sending groups

Time (milliseconds)

N
o

d
e

 ID

4

4 6

6

6

17.5 18 28.5 29

7 9

8

9

Wait for slowest
node to wedge

0

(a) Timeline for joining an active group.

7

6

3

0

1

2

3

4

50.5

2

51

3

96

1

3

4

8 11

11

11

119 12

12

12

12

3

109

Wait for timeout
to elapse

Setup new SST and
RDMC sending groups

Time (milliseconds)

N
o

d
e

ID

51.5 52 72.5 73

5

6

9

Finalize outstanding
multicasts

49.5 500

4

4

4 10

10

10

10

(b) Crash triggers exclusion from an active group.

Figure 6: Timeline diagrams for Derecho.

can create the new RDMC and SST sessions, and the new
view becomes active at 12 . Figure 6b shows handling
of a crash; numbering is similar except that here, 4 is
the point at which each member wedges.

For small groups sending large messages, the
performance-limiting factor involves terminating pend-
ing multicasts and setting up the new SST and RDMC
sessions, which cannot occur until the new view is de-
termined. This also explains why in Figure 5a the dis-
ruptive impact of a join or leave grows as a function of
the number of active senders: the number of active sends
and hence the number of bytes of data in flight depends
on the number of active senders. Since we are running at
the peak data rate RDMA can sustain, the time to termi-
nate them is dominated by the amount of data in flight.
In experiments with 20MB messages the join and leave
disruptions are both much shorter. Compared to Figure
3, we see that Derecho keeps up with RDMC. Its per-
formance for 1 MB and 100 MB messages quite closely
matches that of RDMC. However, for smaller sized mes-
sages, performance overhead due to SST operations is

significant and Derecho performs noticeably worse. Its
performance for 10 KB messages is an order of magni-
tude slower as a result. We conclude that to send high
rates of small messages, batching is strongly advisable.

Notice that for 2 nodes at the 100MB message size,
Derecho’s peak performance exceeds 12.5 GB/s. This is
because the network is 12.5 GB/s bidirectional, hence
could theoretically reach a data rate of 25GB/s when
sending and receiving data simultaneously. In fact, the
NIC can’t reach this full speed because its attainable
bandwidth to the memory unit is slower than the max-
imum bidirectional RDMA rate.

5 Prior work

Paxos. Prior work on Paxos is obviously relevant to our
paper. The most widely cited Paxos paper is the classic
Synod protocol [16], but the version closest to ours is the
virtually synchronous Paxos described in Chapter 22 of
[20] and the Corfu file system [8]. Corfu offers a persis-
tent log, using RDMA for transport and Paxos to man-

11

age the end-of-log pointer. Microsoft’s Azure storage
fabric uses a version of Paxos [9]. Round-robin deliv-
ery ordering dates to early replication protocols such as
[25]. Ring Paxos is implemented in libPaxos [10], and
Quema has proved a different ring Paxos protocol opti-
mal [26], but Derecho substantially outperforms both.
The key innovation is that by reexpressing Paxos us-
ing asynchronously evaluated predicates, we can send all
data out-of-band. Appendix B compares performance of
libPaxos with Derecho.

Paxos Proofs. The focus of our paper has been prac-
tical, and we intend to publish a formal treatment of
our protocol and proofs elsewhere. But prior work on
Paxos proofs is clearly relevant. The earliest such work
of which we are aware was Lamport’s own formalization
and proofs for Paxos [16], and the first machine-checked
proof seems to be Lamport’s proof using TLA+ [27]
and Lynch’s Larch-based simulation result [28]. Kei-
dar did early work on asynchronous protocols for dis-
tributed commit and virtually synchronous view manage-
ment [29,30], Malkhi explored reconfiguring a state ma-
chine [1], and the NuPRL system was used to carry out
provably correct transformations of Ensemble’s virtual
synchrony replication protocols [31,32]. Crane [33] and
IronFleet [34] are notable for methodology advances,
and IronFleet has even been proved live in partially-
synchronous networks.

Idit Keidar has proved lower bounds, in message ex-
changes, for consensus protocols [35]. Through dialog
with Gregory Chockler, we’ve determined that Derecho
matches these bounds (Chockler assisted us in counting
exchanges of “knowledge” that occur through the SST,
and mapping these to Keidar’s notion of synchronous
rounds of messages). This justifies our claim that Dere-
cho achieves a constructive lower bound in the failure-
free case. With failures, FLP applies to all systems strong
enough to solve consensus. Chandra and Toueg showed
♦W [36] to be the weakest failure detector for which
progress can occur. Derecho guarantees progress with
slightly stronger failure detector, ♦P. Whether or not it
could be modified to use ♦W, which can “unsuspect” a
fault, is an open question.

Atomic multicast. The virtual synchrony model was
introduced in the Isis Toolkit in 1985 [37], and its gb-
cast protocol is similar to Paxos [38]. Modern virtual
synchrony multicast systems include JGroups [39] and
Vsync [11], but none maps communication to RDMA,
and all are far slower than Derecho. At these network
rates, batching multiple messages into each send can be
highly advantageous, as noted in [40]. The management
of a set of subgroups by treating them as properties as-
sociated with the current view in an enclosing group was
first explored in [41].

DHTs. We noted early in the paper that Derecho is in

some sense complementary to key-value stores: Derecho
focuses on application structure, replicated state within
groups, consistency, coordination and high-availability
within application logic. Key-value systems often have
this guarantees themselves, but do not offer ways to en-
dow the applications that use them with any special struc-
ture or guarantees. On the other hand, any table can be
considered as a key-value object by thinking of each row
as a value, keyed by the owner, hence the SST has some
similarity to RDMA key-value stores such as FaRM [2],
HERD [42] and Pilaf [43]. To us, this is a superficial
similarity: key-value stores are outstanding tools in sup-
port of today’s prevailing cloud model, whereas Derecho
innovates by creating a new cloud computing model and
supporting infrastructure.

A recent trend is for DHTs to support transactions.
FaRM offers a key-value API, but one in which multi-
ple fields can be updated atomically; if a reader glimpses
data while an update is underway, it reissues the request.
DrTM [44] is similar in design, using RDMA to build
transactional server. Our feeling is that transactions can
and should be layered over Derecho, but that the atom-
icity properties of the core system will be adequate for
many purposes, and that a full transactional infrastruc-
ture brings overheads that some applications would not
wish to incur. Accordingly we view DHTs, pub-sub
APIs, file system APIs, and transactions as higher level
services to be offered in the future, using Derecho as
a core layer and then extending it with domain-specific
logic.

6 Conclusions

The control plane / data plane separation dictated by
RDMA motivated us to refactor reliable multicast and
Paxos into modules: one providing reliable data trans-
port (RDMC) and the other, asynchronously-evaluated
monotonic properties (SST). Derecho sends data via
RDMC and encodes protocol properties as sets of SST
predicates. The system sets performance records while
achieving the full Paxos guarantees when data is per-
sisted to NVRAM, or virtually synchronous multicast
when data is simply captured into DRAM. Derecho is
coded in C++ 17 and available under 3-clause free BSD
licensing.

7 Acknowledgments

Supported, in part, by grants from the NSF, DARPA,
DOE/ARPAe, Mellanox, and the UT Stampede com-
puting center. Gregory Chockler, Matei Zaharia, Chris
Hobbs, Miguel Castro, David Cohen, Ant Rowstron and
Kurt Rosenfeld all provided helpful comments.

12

Appendix A: Subgroups

As noted earlier, a companion paper discusses the Dere-
cho API [12], which extends the usual notion of a sin-
gle group to allow any group to be fragmented. A sub-
group is just a normal group, but with its membership
defined as a subset of the view of some parent group, and
a sharded subgroup additionally has a rule that computes
the correct number of shards and a policy for assigning
the subgroup members to shards (various methods are
possible; we favor an approach that minimizes churn on
membership changes).

It turns out that the Derecho single-group protocol can
easily be extended to support subgroups and sharding.
This came as a surprise: past group communication sys-
tems have struggled to offer subgroups, and without ex-
ception have been forced to do so inefficiently (for exam-
ple multicasting in the full group and filtering out unde-
sired incoming messages) or with weak semantics. Nei-
ther limitation applies in our work.

We chose to report this work in an appendix both be-
cause we lacked space in the body of the paper, but also
because the implementation is still underway. In con-
trast, all features of Derecho reported in the body of the
paper are complete and can be downloaded from Dere-
cho.codeplex.com.

We define a subgroup to be a group (hence with
the normal communication options: atomic multicast,
Paxos, or raw reliable RDMA multicast), but with mem-
bership computed as a subset of the top-level member-
ship using a function that computes on the top-level
group view together with data consistently replicated
within the top-level group. Subgroups can have sub-
groups, hence sharding is just another form of subgroup
creation, with a very regular pattern.

Thus any top-level group membership change induces
atomic changes in the membership of its subgroups, the
shards of those subgroups, etc. Our protocol is highly
efficient: no additional communication is required, and
any multicast sent in a subgroup will be handled purely
by the subgroup’s members: there is no need for indirec-
tion or filtering, as was common in some past subgroup
solutions. Further, we allow one member to belong to
multiple subgroups, hence any desired pattern of groups
and subgroups can be created (see Figure 7).

We start by associating a set of deterministic functions
with our main group, which compute the subgroup and
shard memberships. These can use the group view or any
form of consistently replicated top-level group state as
input. Thus when a new view is reported, every top-level
group member will know the full membership of all asso-
ciated subgroups and shards. Next, we modify our sta-
bility and ordering policies to instantiate them not merely
for the top-level group, but also once for each subgroup

Cache Layer

Back-end Store

Multicasts
used for cache
invalidations, updates

Load balancer

External clients use standard RESTful
RPC through a load balancer

Figure 7: Derecho offers efficient support for creating
subgroups of a group, or shards, and these patterns can
be applied recursively. This permits developers to create
elaborate data center services, such as the one illustrated
here. State transfer, atomic multicast or Paxos and mem-
bership consistency guarantees extend to the subgroups,
greating simplifying the task of the application designer.

and each shard. Thus, if some process is a sender in more
than one role, receivers will have separate columns for
receive counts from it, one for each of its roles. We cre-
ate one RDMC session for each role, and one SST for
each subgroup (fortunately, RDMC sessions and SSTs
are quite inexpensive). For example, with shards of size
3 we would have small RDMC sessions, one per sender,
per shard.

One of these functions is called by the Derecho new-
view event handler. Given a view in a parent group, it
simply selects the members that will belong to the sub-
group. For the case of sharding, there is also a shard-
generating function that will repeatedly call the shard
membership function, supplying the shard number as an
extra argument.

Next we consider the Derecho delivery rule. Suppose
that we now run this rule once per subgroup. The policy
discussed in the main body of the paper generalizes in
the obvious way: we simply restrict the rule to the mem-
bership of the subgroup in question. For example, in a
3-member shard, an atomic multicast becomes deliver-
able when it is locally stable at all 3 members and the
prior multicasts in the 3-member round robin ordering
have all been delivered, and similarly for Paxos.

Tracking the stability information can be highly ef-
ficient as well, but for this we need to do something
slightly tricky. Recall from the Derecho delivery algo-
rithm that each subgroup will require a set of columns,
which its members will use for tracking nReceived
within the subgroup. However, since non-members do

13

not receive subgroup messages, the values would be 0 for
non-members. Meanwhile, those non-members are very
likely to be members of other shards or subgroups. This
leads to the insight that columns can usefully be shared.

For example, in a group sharded into disjoint shards
of size 3, we only need 3 columns to represent all the
nReceived values. If pairs of shards overlap, we would
need 6 columns; if each member belongs to 3 shards, we
would need 9 columns, etc. Updates to nReceived need
only be pushed to the other shard members, hence in the
normal mode of operation would have small and constant
cost: Only the top-level view protocol needs to push SST
rows to the full set of top-level group members.

To carry out this behavior, we associate a column-
mapping function with each shard. Given the shard iden-
tifier and sender identifier, the function returns the col-
umn to use for the nReceived counters.

In this approach there is no distinct concept of a view
change that occurs just in a subgroup or shard: only the
top-level view changes, and when that happens, we only
need to run the top-level view protocol once, extended
to cover subgroups in the “obvious” way: The ragged
cleanup only occurs once, run by a single top-level leader
on behalf of the top-level group and all its subgroups.

At first glance it may seem that propagating the trim
will require one column for each potential sender in each
subgroup, which would defeat our column-packing idea,
it turns out that we can do better. The “trick” is to com-
pute the trim for each subgroup, one subgroup at a time,
and again to reuse columns, but this time we reuse the
columns associated with the trim report. Specifically, we
have the leader send different trims: when pushing the
leader’s SST row to a member of subgroup S, the leader
uses a version of the row that reports the trim relevent to
that member on the basis of the column mapping used
by that member. Thus, members of shard S will be told
about stability in shard S using columns that also report
stability in shard Q to members of shard Q, etc.

We thus can build very elaborate structures of groups
and subgroups, allow each group or subgroup to se-
lect the desired level of persistence (atomic multicast or
Paxos). If any subgroup uses Paxos mode, we always
log views in the the top-level group even if it does not
use Paxos mode, for reasons that will be clear in a mo-
ment. Now Derecho will automate construction of the
subgroups, state transfer, multicast ordering and epoch
termination. Moreover, it does all of this through out
of band logic, disrupting the RDMC message flow only
when membership changes occur (and only briefly: we
saw earlier that switching to a new group view takes just
150ms or so).

Appendix B: Comparisons

Space limitations precluded us from including all our ex-
perimental data in the body of the paper. We decided
to report the experiments comparing Derecho with prior
systems in this appendix.

Using the same cluster on which we evaluated Dere-
cho, over the same networking layer (but now in
100Gbps Ethernet mode), we instrumented libPaxos,
Zookeeper and attempted to evaluate Vsync. The pat-
terns of communication we used are intended to match
the scenarios evaluated for Derecho. None of these pre-
existing packages has been ported to use RDMA explic-
itly, hence an issue of fairness arises: it was important
to us that the comparisons be apples-to-apples, but on
the other hand, the prior systems are not generally used
in the same manner as we intend for Derecho. As we
now explain, this led to a decision to not report data for
Vsync.

The Vsync system seems like an obvious one to com-
pare with Derecho: it offers an OrderedSend primitive
with semantics similar, although not identical to the Or-
deredSend in Derecho. However, the details rendered
this less reasonable that we had hoped. First, in Vsync,
OrderedSend is optimistic, meaning that the system de-
livers messages on arrival, before they are fully stable.
Such an action is optimistic because if a failure were
to occur precisely as a message is delivered, all copies
could be lost, and yet some member might have received
that lost message. To prevent such outcomes from having
externally visible consequences, Vsync uses a barrier: a
separate flush primitive should be invoked prior to taking
an externally visible action.

In analogous terminology, a Derecho atomic multicast
is pessimistic, as if Vsync’s flush were called on every
operation. Our first thought was to try this, but Vsync
is not intended to be used this way and it caused a sharp
performance degradation.

A further difference is that Vsync runs on IP multicast
using its own flow control and acknowledgment scheme,

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1 3 5 7 9 11 13
 0

 20000

 40000

 60000

 80000

 100000

 120000

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

A
to

m
ic

 m
u

lt
ic

a
s
ts

/s

Quorum Size

8B
1K

100K
10M

Figure 8: Performance of libPaxos configured to run
purely in-memory (an atomic multicast)

14

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1 3 5 7
 0

 200

 400

 600

 800

 1000

 1200
T

h
ro

u
g

h
p

u
t

(G
B

/s
)

A
to

m
ic

 m
u

lt
ic

a
s
ts

/s

Quorum Size

8B
1K

100K
10M

100M

Figure 9: Performance of libPaxos in persistent mode,
using SSD disks (true Paxos)

and was explicitly designed for small messages. Forcing
it to send even moderately large ones involves changing
system configuration parameters in untested ways.

Accordingly, we decided not to include graphs com-
paring Vsync with Derecho. Even so, our limited exper-
iments make it clear that as messages get larger Vsync
lags and becomes orders of magnitude slower than Dere-
cho atomic multicast, and for the upper size limits Vsync
can handle the performance difference is already a fac-
tor of at least 15,000x: not surprising when one consid-
ers that we are comparing a UDP-based multicast that
sends 8KB packets to a zero-copy RDMA transfer. For
small messages, Vsync is roughly 25-100 times slower
than Derecho’s small-message protocol, depending on
the traffic pattern.

A more direct comparison was possible with
Zookeeper and libPaxos, both of which are optimized
for fast Ethernet. (We have no idea how hard it would
be to extend them to directly use RDMA). Derecho’s
persistent mode has identical semantics to libPaxos or
Zookeeper, meaning that one could safely port an ap-
plication from either system to Derecho. Interestingly,
many users run libPaxos directly from memory rather
than on files. We evaluated this case too, since it is se-
mantically identical to Derecho atomic multicast.

The results are seen in Figures 8, 9 and 10, and un-
derscore the point made in our abstract and introduction:
Derecho is two to four orders of magnitude faster, scales
far more efficiently, and has dramatically lower latencies.

References

[1] L. Lamport, D. Malkhi, and L. Zhou, “Reconfig-
uring a State Machine,” SIGACT News, vol. 41,
pp. 63–73, Mar. 2010.

[2] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro, “Farm: Fast remote memory,” in
Proceedings of the 11th USENIX Conference on

 0

 0.05

 0.1

 0.15

 0.2

1 3 5 7
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

A
to

m
ic

 m
u

lt
ic

a
s
ts

/s

Quorum Size

8B
1K

100K
1M

Figure 10: Performance of Zookeeper

Networked Systems Design and Implementation,
NSDI’14, (Berkeley, CA, USA), pp. 401–414,
USENIX Association, 2014.

[3] B. M. Oki and B. H. Liskov, “Viewstamped repli-
cation: A new primary copy method to support
highly-available distributed systems,” in Proceed-
ings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing, PODC ’88,
(New York, NY, USA), pp. 8–17, ACM, 1988.

[4] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis, “Sinfonia: A new paradigm
for building scalable distributed systems,” ACM
Trans. Comput. Syst., vol. 27, pp. 5:1–5:48, Nov.
2009.

[5] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“Zookeeper: Wait-free coordination for internet-
scale systems,” in Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Con-
ference, USENIXATC’10, (Berkeley, CA, USA),
pp. 11–11, USENIX Association, 2010.

[6] P. T. Eugster, R. Guerraoui, and C. H. Damm, “On
objects and events,” in Proceedings of the 16th
ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Appli-
cations, OOPSLA ’01, (New York, NY, USA),
pp. 254–269, ACM, 2001.

[7] P. Eugster, “Type-based publish/subscribe: Con-
cepts and experiences,” ACM Trans. Program.
Lang. Syst., vol. 29, Jan. 2007.

[8] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prab-
hakaran, M. Wei, and T. Wobber, “CORFU: A Dis-
tributed Shared Log,” ACM Trans. Comput. Syst.,
vol. 31, pp. 10:1–10:24, Dec. 2013.

[9] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Kha-
tri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,

15

A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhard-
waj, S. Dayanand, A. Adusumilli, M. McNett,
S. Sankaran, K. Manivannan, and L. Rigas, “Win-
dows Azure Storage: A Highly Available Cloud
Storage Service with Strong Consistency,” in Pro-
ceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, (New
York, NY, USA), pp. 143–157, ACM, 2011.

[10] “LibPaxos: Open-source Paxos.” http:

//libpaxos.sourceforge.net/.

[11] “Vsync reliable multicast library.” http:

//vsync.codeplex.com/, Nov. 2011.

[12] K. Birman, J. Behrens, S. Jha, M. Milano,
E. Tremel, and R. van Renesse, “Groups, Sub-
groups and Auto-Sharding in Derecho: A Cus-
tomizable RDMA Framework for Highly Available
Cloud Services,” Submitted to NSDI ‘17., 2016.

[13] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “IX: A Protected
Dataplane Operating System for High Through-
put and Low Latency,” in Proceedings of the 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), (Broomfield, CO),
pp. 49–65, USENIX Association, Oct. 2014.

[14] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe,
“Arrakis: The Operating System is the Control
Plane,” in Proceedings of the 11th USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI 14), (Broomfield, CO), pp. 1–16,
USENIX Association, Oct. 2014.

[15] K. Birman and T. Joseph, “Exploiting Virtual Syn-
chrony in Distributed Systems,” in Proceedings of
the Eleventh ACM Symposium on Operating Sys-
tems Principles, SOSP ’87, (New York, NY, USA),
pp. 123–138, ACM, 1987.

[16] L. Lamport, “The Part-time Parliament,” ACM
Trans. Comput. Syst., vol. 16, pp. 133–169, May
1998.

[17] L. Lamport, “Using Time Instead of Timeout for
Fault-Tolerant Distributed Systems,” ACM Trans.
Program. Lang. Syst., vol. 6, pp. 254–280, Apr.
1984.

[18] F. B. Schneider, “Implementing Fault-tolerant Ser-
vices Using the State Machine Approach: A Tu-
torial,” ACM Comput. Surv., vol. 22, pp. 299–319,
Dec. 1990.

[19] R. Van Renesse and D. Altinbuken, “Paxos made
moderately complex,” ACM Comput. Surv., vol. 47,
pp. 42:1–42:36, Feb. 2015.

[20] K. P. Birman, Guide to Reliable Distributed Sys-
tems: Building High-Assurance Applications and
Cloud-Hosted Services. New York, NY, USA:
Springer Verlag Texts in Computer Science, 2012.

[21] J. Behrens, K. Birman, S. Jha, and E. Tremel,
“RDMC: A Reliable RDMA Multicast Protocol,”
Under review., 2016.

[22] S. Jha, J. Behrens, K. Birman, and E. Tremel, “Dis-
tributed State Sharing and Predicate Detection over
RDMA,” Under review., 2016.

[23] P. Ganesan and M. Seshadri, “On Cooperative
Content Distribution and the Price of Barter,” in
25th IEEE International Conference on Distributed
Computing Systems, 2005. ICDCS 2005. Proceed-
ings, pp. 81–90, June 2005.

[24] J. Y. Halpern and Y. Moses, “Knowledge and com-
mon knowledge in a distributed environment,” J.
ACM, vol. 37, pp. 549–587, July 1990.

[25] J.-M. Chang and N. F. Maxemchuk, “Reliable
broadcast protocols,” ACM Trans. Comput. Syst.,
vol. 2, pp. 251–273, Aug. 1984.

[26] R. Guerraoui, R. R. Levy, B. Pochon, and
V. Quéma, “Throughput Optimal Total Order
Broadcast for Cluster Environments,” ACM Trans.
Comput. Syst., vol. 28, pp. 5:1–5:32, July 2010.

[27] L. Lamport, J. Matthews, M. Tuttle, and Y. Yu,
“Specifying and Verifying Systems with TLA+,”
in Proceedings of the 10th Workshop on ACM
SIGOPS European Workshop, EW 10, (New York,
NY, USA), pp. 45–48, ACM, 2002.

[28] T. N. Win, M. D. Ernst, S. J. Garland, D. K. Kaynar,
and N. Lynch, “Using simulated execution in veri-
fying distributed algorithms,” in 4th Intl. Conf. on
Verification, Model Checking, and Abstract Inter-
pretation (VMCAI 2003), vol. 2575, pp. 283–297,
Springer Verlag Lecture Notes in Computer Sci-
ence, 2003.

[29] I. Keidar and D. Dolev, “Increasing the resilience of
atomic commit, at no additional cost,” in Proceed-
ings of the Fourteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems, PODS ’95, (New York, NY, USA), pp. 245–
254, ACM, 1995.

16

http://libpaxos.sourceforge.net/
http://libpaxos.sourceforge.net/
http://vsync.codeplex.com/
http://vsync.codeplex.com/

[30] I. Keidar and R. Khazan, “A Virtually Synchronous
Group Multicast Algorithm for WANs: Formal Ap-
proach,” SIAM Journal on Computing (SICOMP),
vol. 32, pp. 78–130, Nov. 2002.

[31] V. Rahli, N. Schiper, M. Bickford, R. Constable,
and R. van Renesse, “Developing correctly repli-
cated databases using formal tools,” in The 44th An-
nual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN 2014), (At-
lanta, GA), June 2014.

[32] X. Liu, C. Kreitz, R. van Renesse, J. Hickey,
M. Hayden, K. Birman, and R. Constable, “Build-
ing reliable, high-performance communication sys-
tems from components,” SIGOPS Oper. Syst. Rev.,
vol. 34, pp. 16–17, Apr. 2000.

[33] H. Cui, R. Gu, C. Liu, T. Chen, and J. Yang,
“Paxos Made Transparent,” in Proceedings of the
25th Symposium on Operating Systems Principles,
SOSP ’15, (New York, NY, USA), pp. 105–120,
ACM, 2015.

[34] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill, “Iron-
Fleet: Proving Practical Distributed Systems Cor-
rect,” in Proceedings of the 25th Symposium on Op-
erating Systems Principles, SOSP ’15, (New York,
NY, USA), pp. 1–17, ACM, 2015.

[35] I. Keider and S. Rajsbaum, “Information process-
ing letters,” pp. 47–52, December 2002.

[36] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The
weakest failure detector for solving consensus,”
tech. rep., Ithaca, NY, USA, 1994.

[37] K. P. Birman, “Replication and Fault-tolerance in
the ISIS System,” in Proceedings of the Tenth
ACM Symposium on Operating Systems Princi-
ples, SOSP ’85, (New York, NY, USA), pp. 79–86,
ACM, 1985.

[38] “Gbcast protocol.” https://en.wikipedia.

org/wiki/Gbcast, July 2012.

[39] B. Ban, “JGroups reliable multicast library.” http:
//jgroups.org/, Nov. 2002.

[40] R. Friedman and R. van Renesse, “Packing Mes-
sages as a Tool for Boosting the Performance of To-
tal Ordering Protocols,” in Sixth IEEE International
Symposium on High Performance Distributed Com-
puting (HPDC ’97). Also available as Technical
Report 95-1527, Department of Computer Science,
Cornell University. , 1997.

[41] K. Birman, R. Friedman, and M. Hayden, “The
maestro group manager: A structuring tool for ap-
plications with multiple quality of service require-
ments,” tech. rep., Ithaca, NY, USA, 1997.

[42] A. Kalia, M. Kaminsky, and D. G. Andersen, “Us-
ing RDMA Efficiently for Key-value Services,” in
Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, (New York, NY, USA),
pp. 295–306, ACM, 2014.

[43] C. Mitchell, Y. Geng, and J. Li, “Using One-
sided RDMA Reads to Build a Fast, CPU-efficient
Key-value Store,” in Proceedings of the 2013
USENIX Conference on Annual Technical Con-
ference, USENIX ATC’13, (Berkeley, CA, USA),
pp. 103–114, USENIX Association, 2013.

[44] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen,
“Fast In-memory Transaction Processing Using
RDMA and HTM,” in Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP
’15, (New York, NY, USA), pp. 87–104, ACM,
2015.

17

https://en.wikipedia.org/wiki/Gbcast
https://en.wikipedia.org/wiki/Gbcast
http://jgroups.org/
http://jgroups.org/

	Introduction
	Design Considerations
	Building Blocks
	RDMC
	Shared State Table
	Encoding monotonic protocols in SST
	Paxos and Atomic Multicast

	Evaluation
	Prior work
	Conclusions
	Acknowledgments

