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Abstract

High-bandwidth, semi-private optical lambda networks
carry growing volumes of data on behalf of large data cen-
ters, both in cloud computing environments and for scien-
tific, financial, defense, and other enterprises. This paper
undertakes a careful examination of the end-to-end charac-
teristics of an uncongested lambda network running at high
speeds over long distances, identifying scenarios associated
with loss, latency variations, and degraded throughput at
attached end-hosts. We use identical fast commodity source
and destination platforms, hence expect the destination to
receive more or less what we send. We observe otherwise:
degraded performance is common and easily provoked. In
particular, the receiver loses packets even when the sender
employs relatively low data rates. Data rates of future op-
tical network components are projected to outpace clock
speeds of commodity end-host processors, hence more and
more end-to-end applications will confront the same issue
we encounter. Our work thus poses a new challenge for
those hoping to achieve dependable performance in higher-
end networked settings.

1 Introduction

Optical lambda networks play an increasingly central
role in the infrastructure supporting globally distributed,
high-performance systems and applications. Scientific, fi-
nancial, defense, and other enterprise communities are de-
ploying lambda networks for high-bandwidth, semi-private
data transport over dedicated fiber optic spans between
geographically dispersed data centers. Astrophysicists at
Cornell University in New York receive high-volume data
streams from the Arecibo Observatory in Puerto Rico or the
Large Hadron Collider in Switzerland, process the data at
the San Diego Supercomputer Center in California, and re-
trieve the results for future reference and storage at Cornell.
Enterprise technology firms, such as Google and Microsoft,
have begun to build proprietary networks to interconnect

their data centers; this architecture balances the economics
of consolidation against the benefits of end-user proximity,
while increasing fault-tolerance through redundancy.

This trend will only accelerate. We are seeing a new
wave of ambitious commercial networking initiatives. For
example, Google recently announced a fiber-to-the-home
test network [7] in the United States to deliver bidirectional
bandwidth of 1 Gigabit per second (Gbps), while major In-
ternet providers such as Verizon and Time Warner are pro-
jecting significant future improvements in consumer band-
width. In contrast, as illustrated in Figure 1, the sending and
receiving end-hosts themselves are approaching a (single-
core) performance barrier. Thus, the future may bring high-
speed networks connected to commodity machines powered
by an ensemble of slow cores.

One consequence is that, while lambda networks typi-
cally have greater bandwidth than required, dedicate their
transport for specific use, and operate with virtually no con-
gestion [5] (in fact, the networks are routinely idle), end-
hosts and applications increasingly find it hard to derive the
full performance they might expect [24, 8]. This can be es-
pecially frustrating because, unlike the public Internet, traf-
fic across these semi-private lambda networks encounters
seemingly ideal conditions; for example, since they operate
far from the congestion threshold and employ high quality
optical fiber, lambda networks should not drop any pack-
ets at all, and one might reasonably believe that, if traffic is
sent at some regular rate well below the actual capacity of
the lambda network, it will arrive intact and more or less at
the same rate. In particular, if end-host Network Interface
Controllers (NICs) can reliably communicate at their maxi-
mum data rates in the lab, they should similarly do so over
an uncongested and lossless lambda network.

In this paper, we show that loss occurs in precisely such
situations. Our study reveals that, in most cases, the prob-
lem is not due to loss within the optical network span it-
self but instead arises from the interaction of lower-speed
commodity end-hosts with such a high-bandwidth optical
network: a kind of impedance mismatch. This mismatch is
further aggravated in situations where the bottlenecks prove
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Figure 1. Network to processor speed ratio.

to be end-host memory buses, which are generally even
slower than processors. And the situation may soon worsen:
end-host performance increase is expected to be achieved
mostly through multicore parallelism, yet it can be a real
challenge to share a network interface among multiple pro-
cessor cores. One issue is contention [17], and a second is
that the performance-enhancing features of modern multi-
queue NICs (like Receive Side Scaling) work best only for
a large number of distinct, lower bandwidth, flows.

Our goal here is not to solve this problem, but rather to
shed more light on it, with the hope of informing future sys-
tems architecture research. Accordingly, we have designed
a careful empirical measurement of the end-to-end behav-
ior of a state-of-the-art high-speed optical lambda network
interconnecting commodity 10 Gigabit Ethernet (10GbE)
end-host servers. Our community has a long history of
performing systematic measurements on many prominent
networks as they have emerged, including ARPANET, its
successor NSFNET [16, 20], and subsequently the early
Internet [31]. However, few studies have looked at semi-
dedicated lambda networks, and none consider the inter-
actions between the high-bandwidth optical core [26] of a
lambda network and 10GbE commodity end-hosts [32].

This study uses a new experimental networking infras-
tructure testbed—the Cornell National LambdaRail (NLR)
Rings—consisting of a set of four all-optical end-to-end
10GbE paths, of different lengths (up to 15 000 km) and
number of routing elements (up to 13), with ingress and
egress points at Cornell University. On this testbed, the core
of the network is indeed uncongested, and loss is very rare;
accounting for all loss associated with sending over 20 bil-
lion packets during a 48-hour period, we observed only one
brief instance of loss in the network core, in contrast to sig-
nificant packet loss observed on the end-hosts themselves.

Our key findings pertain to the relation between end-to-
end behavior and fine-grained configuration of the end-host:

• The size of the socket buffer and of the Direct Mem-
ory Access (DMA) ring determines the loss rate expe-
rienced by the end-host. Similarly, the interrupt affin-
ity policy of the network adapter, that maps interrupts
to individual processor cores upon receipt of network
traffic, also affects the end-host loss distribution.

• The throughput of the ubiquitous Transmission Con-
trol Protocol (TCP) decreases as packet loss increases,
and this phenomenon grows in severity as a function of
both the path length and the window size. The conges-
tion control algorithm turns out to have only a marginal
role in determining the achievable throughput.

• Batching of packets, through both kernel and NIC
techniques, increases overall throughput, at the cost of
disturbing any latency-sensitive measurements, such
as packet inter-arrival times.

This paper first introduces two examples of uncongested
lambda networks—the TeraGrid [6] and our own Cornell
NLR Rings testbed. In Section 3, we present and discuss
our experimental results. Section 4 places this study within
the context of past work, and Section 5 concludes.

2 Uncongested Lambda Networks

Lambda networking, as defined by the telecommunica-
tions industry, is the technology and set of services directly
surrounding the use of multiple optical wavelengths to pro-
vide independent communication channels along a strand
of fiber optic cable [34]. In this section, we present two ex-
amples of lambda networks, namely TeraGrid [6] and the
Cornell NLR Rings testbed. Both networks consist of semi-
private, uncongested 10Gbps optical Dense Wavelength Di-
vision Multiplexing (DWDM) or OC-192 Synchronous Op-
tical Networking (SONET) links.

2.1 TeraGrid

TeraGrid [6] is an optical network interconnecting ten
major supercomputing sites throughout the United States.
The backbone provides 30Gbps or 40Gbps aggregated
throughput over 10GbE and SONET OC-192 links [26].
End-hosts, however, connect to the backbone via 1Gbps
links, hence the link capacity between each pair of end-host
sites is 1Gbps.

Of particular interest is the TeraGrid monitoring frame-
work [8]; each of the ten sites reports measurements of
throughput and loss rates of User Datagram Protocol (UDP)
packets performed with Iperf [33]. Every site issues a 60-
second probe to every other site once an hour, resulting in a
total of 90 overall measurements collected every hour. Fig-
ure 2 shows a histogram of percentage packet loss (on a
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Figure 2. Observed loss on TeraGrid.

logscale) between November 1st, 2007, and January 25th,
2008, where 24% of the measured loss rates had 0.01%
loss and a surprising 14% of them had 0.10% loss. Though
not shown in the Figure, after eliminating a single TeraGrid
site (Indiana University) that dropped incoming packets at
a steady 0.44% rate, 14% of the remainder of the measure-
ments showed 0.01% loss, while 3% showed 0.10% loss.
Dialogue with TeraGrid operators revealed that the steady
loss rate experienced by the Indiana University site was due
to a faulty commodity network card at the end-host.

Although small, such numbers are sufficient to severely
reduce the throughput of TCP on these high-latency, high-
bandwidth paths [10, 27]. Conventional wisdom suggests
that optical links do not drop packets. Indeed, carrier-grade
optical equipment is often configured to shut down beyond
bit error rates of 10−12 (one out of a trillion bits). However,
the reliability of the lambda network is far less than the sum
of its optical parts—in fact, it can be less reliable by or-
ders of magnitude. Consequently, applications depending
on protocols like TCP, which require high reliability from
high-speed networks, may be subject to unexpectedly high
loss rates, and hence low throughput.

Figure 2 shows the loss rate experienced during UDP
traffic on end-to-end paths (care should be taken in gen-
eralizing these rates to TCP). Furthermore, it is unclear if
packets were dropped along the optical path, at intermedi-
ate devices (e.g. optical or electrical switches), or at the
end-hosts. Finally, loss occurred on paths where levels of
optical link utilization (determined by 20-second moving
averages) were consistently lower than 20%, making con-
gestion highly unlikely, a conclusion supported by the net-
work administrators [36].

Lacking more detailed information about the specific
events that trigger loss in TeraGrid, we can only speculate
about the sources of the high observed loss rates. Several
hypotheses suggest themselves:

Device clutter: The critical communication path between
any two end-hosts consists of many electronic devices,
each of which represents a potential point of failure.

End-host loss: Conventional wisdom maintains that the
majority of packets are dropped when incoming traf-
fic overruns the receiving end-host. With the NewAPI
(NAPI) [3] enabled, the Linux kernel software network
stack may drop packets in either of two places: when
there is insufficient capacity on the receive (rx) DMA
ring, and when enqueueing packets for socket delivery
would breach the socket buffer limit. In both, the re-
ceiver is overwhelmed and loss is observed, but they
differ in the precise conditions that induce loss.

Cost-benefit of service: It may be the case that loss rates
are typical of any large-scale networks, where the cost
of immediately detecting and fixing failures is pro-
hibitively high. For example, the measurements per-
formed with the faulty network card at Indiana Uni-
versity persisted over at least a three month period.

2.2 Cornell NLR Rings

Clearly, greater control is necessary to better determine
the trigger mechanisms of loss in such uncongested lambda
networks. Rather than probing further into the characteris-
tics of the TeraGrid network, we chose instead to create our
own network measurement testbed centered at Cornell Uni-
versity and extending across the United States; this is the
Cornell National LambdaRail (NLR) Rings testbed. In or-
der to understand the properties of the Cornell NLR Rings,
we first provide a fairly detailed description of our measure-
ment infrastructure in this section.

Depicted in Figure 3, our Cornell NLR Rings testbed
takes advantage of the existing National LambdaRail [4]
backbone infrastructure. Two commodity servers are con-
nected to the backbone router in Ithaca, New York, and
function as Ingress and Egress end-hosts; these are four-
way 2.4 GHz Xeon E7330 quad-core Dell PowerEdge R900
servers with 32GB RAM, each equipped with an Intel
10GbE LR PCIe x8 adapters (EXPX9501AFXLR). They
run a preemptive 64-bit Linux 2.6.24 kernel, with the In-
tel ixgbe driver version 1.3.47. The generic segmentation
offload (GSO) was disabled since it is incompatible with the
Linux kernel packet forwarding subsystem.

Through a combination of IEEE 802.1Q virtual Local
Area Network (VLAN) tagging and source-, policy-, and
destination-based routing, we have established four static
10GbE full duplex routes that begin and end at Cornell,
but transit various physical lengths: a tiny ring to New
York City and back, a small ring via Chicago, Atlanta,
Washington D.C., and New York City, a medium ring via
Chicago, Denver, Houston, Atlanta, Washington D.C., and
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Figure 3. Topology of Cornell NLR Rings.

New York City, and a large ring across Chicago, Denver,
Seattle, Los Angeles, Houston, Atlanta, Washington D.C.,
and New York City (Figure 3). The one-way latency (one
trip around the ring) as reported by the ping utility is
8.0 ms for the tiny path, 37.3 ms for the small path, 68.9 ms
for the medium path, and 97.5 ms for the large path. All op-
tical point-to-point backbone links use 10GbE with Dense
Wavelength Division Multiplexing (DWDM), except for a
single OC-192 Synchronous Optical Networking (SONET)
link between Chicago and Atlanta.

The NLR routers are CRS-1 devices, while the Cornell
(Ithaca and NYC) backbone routers are Catalyst 6500 se-
ries hardware. These routers all have sufficient backplane
capacity to operate at their full rate of 10Gbps irrespective
of the traffic pattern; the loads generated in our experiments
thus far have provided no evidence to the contrary. The
Quality of Service (QoS) feature on these routers was dis-
abled, hence in the event of an over-run, all traffic is equally
likely to be discarded. In particular, packets are served in
the order in which they are received. If the buffer is full,
all subsequent packets are dropped, a discipline sometimes
referred to as first-in-first-out (FIFO) queueing with drop-
tail [15]. Enabling QoS requires wholesale reconfiguration
of the production NLR network by NLR engineers, and is
not currently feasible.

Figure 4 shows the topology of the large path and high-
lights the layer-3 load on the entire NLR backbone while we
performed controlled 2Gbps UDP traffic experiments over
this path. Importantly, the Figure legend also demonstrates
that the backbone (and our path) is uncongested. While our
tests were performed, the large path, exclusive of the rest of
the backbone, showed a level of link utilization of roughly
20%, corresponding directly to our test traffic.

Figure 4. Test traffic on large NLR Ring, as
observed by NLR Realtime Atlas monitor [5].

3 Experimental Measurements

In this section, we use the Cornell NLR Rings testbed
to answer the following questions with respect to the traffic
characteristics over uncongested lambda networks:

• Under what conditions does packet loss occur, where
does packet loss take place, and how is packet loss af-
fected by NIC interrupt affinity? (Section 3.2)

• What is the impact of packet loss, path length, window
size, and congestion control variant on TCP through-
put? (Section 3.3)

• How does packet batching affect overall throughput
and latency measurements? (Section 3.4)

3.1 Experimental Setup

Our experiments generate UDP and TCP Iperf [33] traf-
fic between the two commodity end-hosts over all paths, i.e.
between the Ingress and Egress end-hosts depicted in Fig-
ure 3. We modified Iperf to report (for UDP traffic) pre-
cisely which packets were lost and which were received
out of order. Before and after every experimental run, we
read kernel counters on both sender and receiver that ac-
count for packets being dropped at the end-host in the DMA
ring, socket buffer, or TCP window. The default size of
each receive (rx) and transmit (tx) DMA ring is 1024 slots,
while the MTU (Maximum Transfer Unit) is set to the de-
fault 1500 bytes (we did not use jumbo frames). Unless
specified otherwise (Section 3.4), both NAPI and interrupt
coalescence packet batching techniques are enabled.

Throughout our experiments, all NLR network segments
were uncongested—as a matter of fact, the background traf-
fic over each link never exceeded 5% utilization (computed
by the monitoring system [5] every 1-5 seconds). All values
are averaged over multiple independent runs, and the error
bars denote standard error—they are always present, most
of the time sufficiently small to be invisible.



3.2 Packet Loss

To measure packet loss over the Cornell NLR Rings
testbed, we performed many sequences of 60-second UDP
Iperf runs over a period of 48 hours. We consecutively ex-
plored all paths (tiny, short, medium, and large) for data
rates between 400Mbps to 2400Mbps, with 400Mbps in-
tervals. We examined the following six different configu-
rations of sender and receiver end-hosts (both identical in
all cases): socket buffers sized at 1, 2, or 4MB; and use
of either the irqbalance [1] daemon or static assign-
ment of interrupts issued by the NICs to specific CPUs. The
irqbalance daemon uses the kernel CPU affinity inter-
face (through /proc/irq/IRQ#/smp affinity) and
periodically re-assigns hardware interrupts across proces-
sors in order to increase performance.

Figure 5 shows our measurements of UDP packet loss,
with subfigures corresponding to different combinations of
socket buffer size and bound versus balanced interrupts.
Each subfigure plots packet loss observed by Iperf on the
receiver end-host, as a percentage of transmitted packets,
for various sender data rates across each of the Cornell NLR
Ring; insets provide rescaled y-axes to better view trends.
Packet loss is subdivided into three components denoting
the precise location where loss can occur. In particular,
loss may be a consequence of over-running the socket buffer
(sockbuf loss), over-running the receive (rx) DMA ring
(rx ring loss), or numerous factors within the network
core (network loss). Since NAPI is enabled, there is
no backlog queue (to over-run) between the DMA ring and
the socket buffer. Moreover, we dismiss the remaining pos-
sibilities for end-host loss for the following reasons: i) the
sender socket buffer is never over-run during the entire 48-
hour duration of the experiment—in accordance with the
blocking nature of the socket API; ii) the sender transmit
(tx) DMA ring is never over-run during the entire experi-
ment; iii) neither the sender nor receiver NIC report any er-
rors (e.g. corruption) or internal (on board) buffer over-runs
throughout the experiment; iv) the receiver does not trans-
mit any packets (since we used Iperf with UDP traffic).

Interrupts via Irqbalance Figure 5(a) considers the
scenario with the irqbalance daemon running and the
socket buffer size set to 1MB. We observe zero loss in the
network core; all loss occurs within the receiver’s socket
buffer. At rates beyond 2000 Mbps, irqbalance spreads the
interrupts to many CPUs and the loss decreases. (Of note,
omitted for space constraints, irqbalance with 2 and 4MB
buffers result in zero loss for all tested data rates.)

Interrupts Bound to a Single CPU Figures 5(b)
and 5(c) consider the more interesting scenario when we
assign all interrupts from the NIC to a single core, with 1
and 4MB socket buffers, respectively. (The results for 2MB
buffer, not shown, are identical to those of 4MB, but with
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Figure 5. UDP loss as a function of data
rate across Cornell NLR Rings: subfigures
show various socket buffer sizes and inter-
rupt options for balancing across or binding
to cores; insets rescale y-axis, with x-axis un-
changed, to emphasize fine features of loss.



∼ 12% packet loss for a sender data rate of 2400Mbps.)
There are three key points of interest. First, at 2400Mbps

there is an abrupt increase in observed loss. Taking a closer
look, we noticed that the receiver was experiencing receive
livelock [25]. On a Linux 2.6 kernel, receive livelock can
easily be observed as the network bottom half cannot fin-
ish in a timely manner, and it is forced to start the the cor-
responding ksoftirqd/CPU# kernel thread. The thread
runs exclusively on the same CPU, and picks up the remain-
ing work the softirq did not finish, acting as a rate limiter.
As a result, the receive livelock occurs given that all inter-
rupts (rx, tx, rxnobuff, etc.) were serviced by a single over-
whelmed CPU—the same CPU that runs the correspond-
ing ksoftirqd/CPU# and the user-mode Iperf task. The
Iperf task is placed on the same CPU since the scheduler’s
default behavior is to minimize cache thrashing. Conse-
quently, there is not enough CPU time remaining to con-
sume the packets pending in the socket buffer in a timely
fashion. Hence, the bigger the socket buffer, the more sig-
nificant the loss, precisely as Figures 5(b) and (c) show.

Second, end-host packet loss increases with sender data
rate, as visible in the Figure insets. Figure 5(b) corresponds
to a relatively small buffer, 1MB, so the effect is clear. Fig-
ure 5(c) corresponds to a larger buffer (4MB) for which,
with the exception of data rates of 2400Mbps, there is a sin-
gle negligible packet loss event along the tiny path at a data
rate of 2000Mbps (almost unobservable on scale of Figure).
Similarly, this trend is evident in Figure 5(a) (irqbalance
on); however, at higher data rates, irqbalance spreads the
interrupts to many different CPUs and the loss decreases.

Third, Figure 5(c) shows a particular event—the only
loss in the core network we experienced during the entire
48-hour period, occurring on the medium path (one way la-
tency is 68.9 ms) for a sender data rate of 400Mbps. During
the course of the experiments, this was a single outlier that
occurred during a single 60-second run. We believe it could
have been caused by events such as NLR maintenance—we
have experienced path blackouts due to various path seg-
ments being serviced, replaced, or upgraded.

To summarize, the experiments show virtually no loss
in the network core. Instead, loss occurs at the end-hosts,
notably at the receiver. End-host loss is typically the re-
sult of a buffer over-run in the socket, backlog queue, or
DMA ring. Unless the receiver is overloaded, a sufficiently
large socket buffer prevents loss. NIC interrupt affinity to
CPUs affects loss, and is pivotal in determining the end-
host’s ability to handle load graciously. Our experiments
show that, at higher data rates, irqbalance works well (it
decreases loss), whereas, at lower data rates, binding NIC
interrupts to the same CPU reduces loss more than irqbal-
ance. One benefit of binding all NIC interrupts to the same
CPU stems from the fact that the driver (code and data), the
kernel network stack, and the user-mode application incur

less CPU cache pollution overhead.

3.3 Throughput

Although UDP is well suited for measuring packet loss
rates and indicating where loss occurs, TCP [21] is the de-
facto reliable communication protocol; it is embedded in
virtually every operating system’s network stack. Many
TCP congestion control algorithms have been proposed—
Fast TCP, High Speed TCP, H-TCP, BIC, CUBIC, Hy-
bla, TCP-Illinois, Westwood, Compound TCP, Scalable
TCP, YeAH-TCP—and almost all have features intended
to improve performance over high-bandwidth, high-latency
links. The existence of so many variants indicate there is as
yet no clearly superior algorithm.

To measure the achievable throughput, we used 60-
second Iperf bursts to conduct a set of 24-hour bulk TCP
transfer tests over all the Cornell NLR Rings; we examined
all TCP variants available in the Linux kernel (except for
TCP-LP and TCP Veno).

Figure 6(a) shows TCP throughput results for a single
flow with window sizes configured, with respect to each
path round-trip time (RTT), to allow for a 1Gbps data rate.
A higher window translates into larger amount of in-flight
(not yet acknowledged) data, which is necessary but not suf-
ficient to yield high throughput on such high-latency, high-
bandwidth links. In particular, a single TCP flow of 1Gbps
requires a window of at least 2MB on the tiny path, 9.4MB
on the short, 17.3MB on the medium, and 24.4MB on the
large. Almost all TCP variants yield roughly the same
throughput, with the exception of TCP Vegas that under-
performs. No packet loss occurs for any of the single-flow
TCP variants, yet throughput decreases for longer paths,
even though the end-hosts have sufficient window size.

Since TCP window size is a kernel configuration param-
eter that requires superuser privileges for adjustment, typi-
cal user-mode applications like GridFTP [9] strive to max-
imize throughput by issuing multiple TCP flows in parallel
to fetch / send data. To experiment with multiple flows,
we issued four TCP Iperf flows in parallel in order to satu-
rate each end-host’s capacity and yield maximum through-
put. Figure 6(b) depicts the throughput results. Although
the window sizes should be sufficient, the overall through-
put decreases as the path length increases. Importantly, loss
at the end-host does occur for multiple TCP flows. More-
over, some TCP variants yield marginally better aggregate
throughput than others when competing with flows of the
same type. Note that the TCP throughput over the tiny
path is identical to the maximum throughput achieved dur-
ing control experiments (performed by directly linking end-
hosts with an optical patch cable).

Even though TCP is a reliable transport protocol, packet
loss, albeit at the end-host, does affect performance [27].
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Figure 6. TCP throughput and loss across
Cornell NLR Rings: (a) throughput for sin-
gle flow, (b) throughput for four concurrent
flows, (c) loss associated with those four
concurrent flows; TCP congestion control
windows configured for each path round-trip
time to allow 1Gbps of data rate per flow.

Figure 6(c) shows the percentage of packet loss correspond-
ing to the TCP throughput in Figure 6(b). Unlike UDP loss,
any analysis of TCP loss must account for retransmissions,
selective and cumulative acknowledgments, different size
of acknowledgments, and timeouts. Figure 6(c) shows per-
centage of loss in bytes, unlike UDP, for which packet count
suffices since all UDP packets have identical size. Loss is
reported both at the sender (denoted by snd ) and receiver
(rcv ), within the DMA rings ( txloss and rxloss),
inferred by TCP itself (with tcploss), and due to the in-
ability of the user-mode process owning the socket to read
the data in a timely fashion ( tcppruning).

Loss occurs solely in one of the following locations:
the receiver’s receive (rx) DMA ring (rcv rxloss), loss
that is then largely inferred by the sender’s TCP stack
(snd tcploss), and finally, within the sender’s receive
(rx) DMA ring (snd rxloss). The sender sends MTU-
size (1500-byte) TCP data packets and receives TCP empty
(52-byte) payload acknowledgments (ACKs), as 20-byte IP
header + 20-byte TCP header + 12-byte TCP options.

There are two key observations. First, loss occurs at the
end-host in the rx DMA rings—the receiver will drop in-
bound payload packets, while the sender will drop inbound
ACK packets. Recall that the NIC is configured to a de-
fault value of 1024 slots per DMA ring. The socket buffer
is essentially the TCP window; hence, it is adjusted to a
large value in this experiment. Second, there are far more
ACK packets (snd rxloss) being lost than payload pack-
ets (rcv rxloss). However, since ACKs are cumulative,
TCP can afford to lose a significant portion of a window
worth of ACKs on the rx DMA ring, provided that a sin-
gle ACK with an appropriate (subsequent) sequence num-
ber is delivered to the TCP stack. Note that there is no loss
observed by TCP Vegas since its low throughput is insuffi-
cient to induce end-host loss, a scenario identical to the one
already described in Figure 6(a).

Our experiments show that as path length increases,
more data and, importantly, more ACKs are lost since the
TCP windows are enlarged to match the bandwidth delay
product of the longer paths. This affects performance, and
throughput decreases as the path length increases.

3.4 Packet Batching

In this section, we look closely at the impact of packet
batching techniques on the measurements reported above.

A CPU is notified of the arrival and departure of packets
at a NIC by interrupts. The typical interrupt-driven com-
modity kernel, however, can find itself driven into a state in
which the CPU expends all available cycles processing in-
terrupts, instead of consuming received data. If the interrupt
processing overhead is larger than the rate at which packets
arrive, receive livelock [25] will occur (the interrupt over-
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Figure 7. Packet inter-arrival time as a func-
tion of packet number; NAPI disabled.

head consists of two context switches plus executing the top
half of the interrupt service routine). The typical solution
is to batch packets by parameterizing the NIC to generate
a single interrupt for a group of packets that arrive during
some specified time interval. For example, Intel NICs offer
an Interrupt Throttling configuration parameter that limits
the maximum number of interrupts issued per second. If
the device supports it, the kernel can take it one step further
by functioning in NAPI [3] mode. Instead of being exclu-
sively interrupt-driven, a NAPI kernel is interrupt-driven at
low data rates, but switches to polling at high data rates.

Packet batching techniques provide the benefit of an in-
crease in maximum achievable bandwidth for a particular
commodity architecture. For example, with NAPI and In-
terrupt Throttling disabled, the maximum achievable TCP
throughput on our setup is approximately 1.9Gbps, in con-
trol experiments with end-hosts directly connected to each
other. With NAPI enabled and Interrupt Throttling set to de-
fault parameter values, we achieved around 3Gbps through-
put, as shown in Figure 6(b). By default, the NICs in our
experiments implement Interrupt Throttling by limiting in-
terrupts to a rate of 8000 per second.

However, this does not mean that packet batching is
ideal in all scenarios, even though vanilla kernels and
drivers enable batching by default. To illustrate this, con-
sider a standard metric provided by high-end Ethernet test
products [2]—the packet inter-arrival time, also known as
packet dispersion. To perform this type of measurements,
we patched the Linux kernel to time-stamp every received
packet as early as possible (in the driver’s interrupt service
routine) with the CPU time stamp counter (TSC) that counts
clock cycles instead of the monotonic wall-clock, thereby
achieving cycle (i.e. nanosecond) resolution. Our imple-
mentation overwrites the SO TIMESTAMPNS socket option
to return the 64-bit value of the TSC register. For the TSC
time-stamp values to be monotonic (a validity requirement),

they must originate from the same CPU. This means that all
NIC interrupts notifying a packet arrival must be handled
by the same CPU, since received packets are time-stamped
in the interrupt service routine.

Figure 7 shows the packet inter-arrival time for a UDP
Iperf experiment consisting of a sequence of 300 packets
at a data rate of 100Mbps (about one packet every 120 µs)
with and without Interrupt Throttling enabled and NAPI dis-
abled. We see that the interrupt batching superimposes an
artificial structure on top of the inter-arrival times, thereby
yielding spurious measurement results. This phenomenon
may have significant consequences. For example, tools that
rely on accurate packet inter-arrival measurements to esti-
mate capacity or available bandwidth yield meaningless re-
sults when employed in conjunction with packet batching.

3.5 Summary of Results

Our experiments answer two general questions with re-
spect to uncongested lambda network traffic. First, we show
that loss occurs almost exclusively at the end-hosts as op-
posed to within the network core, typically a result of the re-
ceiver being over-run. Second, we show that measurements
are extremely sensitive to the configuration of the commod-
ity end-hosts. In particular, we show that:

• UDP loss is dependent upon both the size of socket
buffers and DMA rings as well as the specifics of in-
terrupt affinity in the end-host network adapters.

• TCP throughput decreases with an increase in packet
(data and acknowledgment) loss, with an increase in
path length, and an increase in window size. The con-
gestion control algorithm is only marginally important
in determining the achievable throughput, as most TCP
variants are similar.

• Built-in kernel NAPI and NIC Interrupt Throttling im-
prove throughput, although they are detrimental for la-
tency sensitive measurements. This reinforces the con-
ventional wisdom that there is no “one-size-fits-all” set
of parameters, and careful parameter selection is nec-
essary for the task at hand.

Although this paper limits itself to measurement, we
should note that in a previous paper [10], we proposed a
practical way to overcome poor end-to-end performance.
In that work, we showed that using a perimeter middlebox
(or a performance enhancement proxy) can significantly
improve end-to-end throughput in the face of packet loss.
We achieved this through a combination of Forward Error
Correction (FEC) at line speed and TCP segment caching
which transparently stores and re-transmits dropped TCP
segments without requiring a sender retransmission to travel



across the entire network to reach the destination. In fact,
we greatly increased both the performance and reliability of
wide-area storage using such a technique [35].

4 Related Work

There has been a tremendous amount of work aimed
at characterizing the Internet at large by analytical mod-
eling, simulation, and empirical measurements. Measure-
ments, in particular, have covered a broad range of met-
rics, from end-to-end packet delay and packet loss behav-
ior [11, 14], to packet dispersion (spacing) experienced by
back-to-back packets [13], packet inter-arrival time [20],
per-hop and end-to-end capacity, end-to-end available band-
width, bulk transfer capacity, achievable TCP throughput,
and other general traffic characteristics [16]. However, there
has been little work aimed at characterizing uncongested
semi-private or dedicated networks [32], like modern opti-
cal lambda networks.

The need for instruments with which to perform such
measurements has led to the development of a myriad of
tools [13, 23, 18, 19, 22, 30]. These tools are typically de-
ployed in an end-to-end fashion for convenience and often
embody a tradeoff between intrusiveness and accuracy [29].
For example, some tools rely on self-induced congestion,
while others rely on relatively small probes consisting of
packet pairs or packet trains. Tools like these have become
essential and provide a solid foundation for measurements;
for example, we have saved significant time by working
with (and extending) the existing Iperf [33].

Internet measurements provide a snapshot of the char-
acteristics of the network at the time the measurements are
performed. For example, in its early days, the Internet was
prone to erratic packet loss, duplication, reordering, and the
round-trip time delays were observed to vary over a wide
range of values [31]. Today, none of these issues remain,
although other challenges have emerged.

Historically, networks have been characterized as they
became available—ARPANET, its successor, NSFNET [16,
20], and the early Internet [31] have all been the focus of
systematic measurements. Murray et al. [26] compared
end-to-end bandwidth measurement tools on the 10GbE
TeraGrid backbone, while Bullot et al. [12] evaluated the
throughput of various TCP variants by means of the stan-
dard Iperf, over high-speed, long-distance production net-
works of the time (from Stanford to Caltech, to University
of Florida, and to University of Manchester over OC-12
links of maximum throughput of 622Mbps)—similar to the
experiments in Section 3.3.

However, unlike our experiments, Bullot et al. [12] fo-
cused on throughput and related metrics, like the stabil-
ity (in terms of throughput oscillations), and TCP behav-
ior while competing against a sinusoidal UDP stream. Al-

though disregarding loss patterns and end-host behavior, the
authors did provide insight into how the txqueuelen pa-
rameter (i.e. the length of the backlog queue between the
IP layer and the DMA rx ring—made obsolete by NAPI)
affects throughput stability. In particular, larger values
of the txqueuelen are correlated with more instabil-
ity. An equally interesting observation was that reverse-
cross-traffic affects some TCP variants more than others,
since they alter ACK delivery patterns (e.g. ACK compres-
sion due to queueing or loss). It is also worth noting that
the authors performed a set of tentative TCP performance
measurements on 10Gbps links, using jumbo (9000-byte)
frames.

By contrast, relatively few works have investigated the
effect of traffic patterns on end-hosts and the their ability
to handle such traffic, especially when connected to uncon-
gested lambda networks. Mogul et al. [25] investigated the
effect of high data rate traffic on the end-host, noting that
a machine would live-lock and spend all available cycles
while handling the interrupt service routine as a result of
packets being received, only to drop these packets at the
subsequent layer, and hence fail to make forward progress.
Consequently, NAPI [3] and on-board NIC Interrupt Throt-
tling have been widely adopted, to the point where they are
enabled by default in vanilla kernels. On the other hand,
an interesting study looked at how “interrupt coalescence”
(produced by NAPI possibly in conjunction with Interrupt
Throttling) hinders active measurement tools that rely on
accurately estimating packet dispersion to measure capac-
ity and available bandwidth [28]. Since the packets were
time-stamped in user-space, context switches at the receiver
cause similar behavior as packet batching.

5 Conclusion

Optical lambda networks provide high-bandwidth, semi-
private transit interconnecting data centers throughout the
world and transporting massive quantities of data. They
serve critical roles in the infrastructure both of cloud-
computing architectures and of traditional scientific, finan-
cial, defense, and other enterprise users. In this work, we
use our Cornell National LambdaRail Ring testbed to me-
thodically probe the end-to-end behavior of such 10GbE
networks, connected to powerful commodity end-hosts to
send and receive traffic.

Surprisingly, we observed significant penalties in end-
host performance and end-to-end dependability in this sce-
nario, consistently measuring packet loss at the receiving
end-host even when traffic was sent at relatively low data
rates. Moreover, such effects were readily instigated by
subtle (and often default) configuration issues of these end-
hosts—socket buffer size, TCP window size, NIC interrupt
affinity, and status of various packet batching techniques,



with no single configuration alleviating observed problems
for all scenarios.

As optical networking data rates continue to outpace
clock speeds of commodity end-hosts, more end-to-end ap-
plications will invariably face similar issues. This empirical
study confronts the difficulty of reliably and consistently
maximizing the performance of such networks.
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