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ABSTRACT
Network bottlenecks, firewalls, restrictions on IP Multicast
availability and administrative policies have long prevented
the use of multicast even where the fit seems obvious. The
confusion around multicast poses a problem for large-scale
pub/sub-based applications that need blazing speed even
across WAN networks. There are a number of multicast
protocols, but none is universally available. Thus relatively
few applications are able to exploit multicast technology.
Here, we present Quilt, a system that automatically weaves
a patchwork of multicast regions each running different pro-
tocols, creating an efficient and scalable wide-area overlay.
By dynamically exploring the environment at and between
end-hosts, Quilt clusters nodes into patches, selecting the
best multicast protocol from a developer-provided set on a
patch-by-patch basis and adapting as needed. Quilt orches-
trates inter-patch forwarding to maximize reliability while
minimizing duplication. This paper discusses and then eval-
uates the system. We find that Quilt is an effective, back-
wards compatible option for supporting multicast wide-area
networks.

1. INTRODUCTION
Publish/subscribe [14] has been a popular paradigm for

building event-driven dissemination services and has found
applications in diverse areas such as web management [39],
social networks [15] and massively multiplayer online games
(MMOGs) [5]. A natural transport mechanism for pub-
lish/subscribe communication is multicast, providing one-
to-many message dissemination both efficiently and scal-
ably. A standard wide-area multicast service has been on
the wish-list for decades – a universal service that can dis-
tribute content over the increasingly complicated network
while minimizing latency and network overhead. But, as
we will explain below, no existing technology addresses the
full range of issues confronted in real deployments. Among
the culprits are restrictions on network-level multicast (IP
multicast) [35], heterogeneity of Internet hosts, or problems
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with the specific approach such as large overhead or high la-
tency outside of local area networks. With users at the edge
of the cloud eager to adopt IP radio and IPTV [33, 36] and
to experience network-enabled games and social platforms,
and with cloud providers scaling out and providing global
services between geographically distributed data centers, a
multicast protocol that could be used safely throughout the
Internet is an appealing goal.

To formalize the issues, consider an application that dis-
seminates information from a single source to a set of peers.
From the application perspective, a multicast service should
satisfy several objectives:

1. It should minimize redundant network traffic on bot-
tleneck links, routers and end-hosts.

2. It should minimize the mean latency of delivery while
achieving the required throughput.

3. It should require limited per-node storage.
4. It should be robust to node churn/failure1.
5. It should automatically adapt to the runtime environ-

ment.

There are a tremendous variety of multicast protocols [13,
16, 2, 9, 11], each specialized to different needs and opti-
mized for different runtime conditions and technology op-
tions [35]. Nonetheless, each of these options has problems
when evaluated against our goals.

Network-layer multicast, specifically IP Multicast (IP-
MC) [13], is widely supported in hardware and software.
IPMC-enabled routers automatically build spanning trees
for content distribution multicast groups and include mech-
anisms for robustness [16, 27], satisfying the first four goals.
The abstraction for end-hosts is simple: any node can join,
leave or send packets to a multicast group by using a dedi-
cated IP address assigned to the group. But IPMC is rarely
enabled across global providers in the Internet WAN, and
only sometimes available within data centers or enterprises
[35]. Reasons include concerns that the technology could be
costly or disruptive, as well as economic and security issues
that are unlikely to be solved anytime soon.

Application-layer multicast. At the other end of the
spectrum one finds a plethora of application-level multicast
(ALM) protocols, in which multicast is handled as an end-
to-end mechanism running in the application itself. The
simplest ALMs do the obvious, connecting senders directly
to receivers, and then implementing multicast as a series of

1We do not assume multicast reliability or flow con-
trol, but do expect the multicast infrastructure to handle
joins/leaves/crashes.
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Figure 1: Quilt automates the construction of complex mul-
ticast overlays. In this example, the system sews together
a collection of regional multicast overlays to create a sin-
gle virtual meta-overlay, separating the multicast interface
from the implementation. Quilt permits the simultaneous
use of various multicast solutions, each specialized for dif-
ferent runtime conditions.

point-to-point unicasts. While easy to build, such schemes
fall short of the first three goals in our list.
More sophisticated ALMs, such as NICE [2], SCRIBE [9]

and ESM [11] organize end-hosts into dissemination over-
lays composed of unicast connections between pairs of nodes,
again using TCP or UDP. However, few ALMs shape them-
selves to match the underlying network topology. As a re-
sult, information may traverse bottleneck links or long WAN
paths multiple times, wasting bandwidth and increasing la-
tency. Additionally, ALMs rarely leverage IPMC. If IPMC
is available, it can be a good option within data centers. In-
deed, failing to leverage IPMC results in unnecessary traffic
that burdens switches and routers, increases sender load,
and may increase latency.
Many ALMs, such as the ones listed above, have an un-

derlying peer-to-peer (P2P) structure. Studies have shown
that P2P overlays are vulnerable to node failures and churn:
the neighbor sets can become ineffective due to unreachable
or dead peers [23, 24]. The presence of inaccessible neigh-
bors can disconnect a multicast tree, hence some P2P ALMs
(e.g., DONet [41], Bullet [25] and Chainsaw [32]) organize
end-hosts into a mesh-structure, increasing robustness, but
at the cost of increased latency and overhead.
Combined protocols. Because the conditions for mul-

ticast are different inside and outside of a data center, one
could also just deploy multiple solutions, side by side. In
this approach, which Quilt adopts and generalizes, an appli-
cation spanning data centers and WAN will need to combine
two or more multicast infrastructures. At each participating
node, this entails selecting the option best matched to local
conditions. To combine the resulting disjoint overlays into
a single overarching structure, certain nodes would then be
selected to forward between the overlays where they overlap.
The concept of combining protocols has been explored in

some prior work, but never in a realistically complex net-
work. For example, WiMA [22] reduces streaming band-
width consumption in wireless environments by deploying
regional IPMC agents. Plumtree [26] and mTreebone [38]
connect hosts to both tree and mesh overlays to acceler-
ate content delivery while resisting churn, but the solution
brings significant system overhead and latency. In Split-
Stream [10], nodes are organized into multiple tree overlays
to create disjoint data paths for robustness. The resulting
structure, however, is ultimately equivalent to the mesh sug-
gested by [29] and neither is ideal. Here, we seek a solution
that satisfies all the requirements listed earlier.

2. QUILT
Quilt weaves a collection of multicast regions into a“patch-

work overlay”, routing messages between overlays to opti-
mize various objectives (Figure 1). The system operates as a
library. The developer of an application registers the multi-
cast options and provides a collection of executable selection
rules that embody preferences and other logic. Network ad-
ministrators impose policy, for example by enabling IPMC
only on certain subnets. Quilt can then discover the context
in which each end-host is running using automated tests,
put the end-host in contact with regional peers, and finally
optimize to create a patchwork and a forwarding graph that
will achieve efficiency and robustness with minimal packet
duplication.

Quilt innovates in several ways. The system incorporates
a tool that runs on each node to discover its connectivity op-
tions, network topology and performance characteristics of
upstream and local network links. This information is gath-
ered using the kinds of user-level mechanisms employed in
network tomography solutions. Quilt then runs a decentral-
ized protocol that forms patches from nodes that are close
with respect to latency and have similar network properties.
For example, nodes residing in an IPMC-enabled data center
are likely to belong to the same patch.

Within each patch, Quilt runs the “inner” protocol best
matched to the properties of the environment. To sew patch-
es together, Quilt builds a spanning global patch. It then
identifies overlap regions, and selects forwarding nodes in a
bottleneck-aware manner, but with sufficient redundancy to
avoid disconnection in the event of churn. The global patch
runs a protocol structured around latency-aware OMNI trees
[3], which are regional spanning trees constructed to mini-
mize average root-to-node latency, but with constrained out-
degree for interior nodes (see Section 3.2.3). The following
two use cases motivate these choices, and will also form the
basis of our evaluation:

Real-time event dissemination. As mentioned before,
data center hosted pub/sub services like Facebook, Twit-
ter or IBM WebSphere need to disseminate messages, such
as status updates of a web application or a human user,
to groups of subscribers in real-time. All these systems use
client-server structures: end-user messages or actions are re-
layed into data centers, where processing is performed, and
then messages are disseminated both within the data center
itself and to group members who should see the resulting
updates. The data center itself may be broken into mul-
tiple geographically distributed regions. In this set-up, we
see three kinds of regions: within a single data center, be-
tween centers, and from data centers to listening end-hosts.
Quilt could use IPMC (or a fast ALM overlay) within each
data center where the protocol is enabled, and a low-latency
OMNI tree for message dissemination between data centers
and to the end-users.

Internet broadcast. Consider an edge-oriented pub/sub
style multicast application, such as the broadcast of a phys-
ical event or a MMOG with players situated on a university
campus or in dorms. To the extent that data center hosts
participate, there may not be much value in treating them
differently from other kinds of high-capacity end-hosts. This
perspective favors purely peer-to-peer protocols like the Bit-
Torrent [20] family of content distribution overlays. Yet even
here one may wish to treat the system as heterogeneous. In
particular, Quilt can leverage efficient intra-patch protocols



within campus networks, regional cable networks or an au-
tonomous system (AS) where multiple interested users re-
side. However, rather than treating all users as endpoints in
a single wide-area overlay, Quilt automatically groups users
within a single region. This allows the broadcast source or
the MMOG to avoid redundant transmission over the expen-
sive or congested links that traverse firewalls or bottlenecks
and are used to interconnect different domains. The patches
are then linked with a wide-area OMNI tree.
Roadmap. The remainder of this paper elaborates on

the environment-detection capabilities (Section 3) and over-
all design of Quilt (Section 4). We then explore the perfor-
mance of the system under a variety of conditions running
the real code on a simulated network (Section 5). The test
scenarios are inspired by the event dissemination and In-
ternet broadcast examples above. All network topologies
used are from real platforms, and our code can be used,
unchanged, in diverse environments.

3. ENVIRONMENT METHODOLOGY
In Quilt, the formation of multicast patches is driven by

an environmental sensing mechanism. The mechanism runs
in three stages. First, each Quilt end-host generates a tu-
ple of environment information that represents the setting
in which it was launched. An extensible set of tests are used
to detect this information, and we describe the main ones
below. Next, the environmental tuples are collected and ag-
gregated to decide which patches will be created and which
nodes belong to each. One of these will be Quilt’s span-
ning “global” patch: just another patch in the terms of our
framework, but designed to function as an overlay optimized
for low delivery latency that also provides redundancy and
low duplication rates. Finally, Quilt configures the end-host
nodes to relay multicasts from patch to patch in accordance
with the computed routing structure.

3.1 Environment Information
We use the term Environment Unique Identifier (EUID)

to denote the data structure representing environmental in-
formation discovered by Quilt. Quilt’s EUID is flexible, and
can represent both individual end-hosts or entire multicast
patches. In the former case, the EUID is associated with a
particular host’s unique identifier (UID) and the values in
the tuple are the ones measured by the Quilt library when
the host was launched, and then updated as it ran. If a
single host has multiple network interfaces with different IP
addresses, each NIC will have its own EUID2, since different
networks often have different properties. In the latter case,
the EUID is associated with a UID designating the multicast
region, and the associated values summarize the collection
of end-hosts that Quilt aggregated into that region.

D T Rm Router stackRConnectivity Options OLocal Topology
Measured PerformanceRange setN

Figure 2: Components of the Environment Unique Identi-
fier (EUID).

2Here we assume only one IP address per NIC, and therefore
associate EUIDs with NICs.

As shown in Figure 2, each EUID includes three categories
of information: connectivity options, local topology and mea-
sured performance.

Connectivity Options capture host accessibility by tra-
nsport protocols such as TCP and UDP. Several research
measurements [8, 4, 18] have found that over 74% of Internet
hosts run behind NAT boxes and firewalls, and that connec-
tivity barriers are important concerns for the ALM overlay
construction [18]. For example, hosts isolated behind a NAT
or a firewall may be limited to a leaf role, downstream from
some other host running in a less constrained environment.
As the name suggests, a connectivity options tuple (D: Di-
rection, T : Transport protocol) indicates whether a given
host or NIC can be reached using TCP or UDP, and also
whether or not a NAT or firewall barrier is present on the
path. Some hosts have multiple NICs and there are cases in
which a single host has a mixture of bidirectional and uni-
directional capabilities even on a single NIC. Such cases are
handled using multiple tuples; Quilt will favor the “better”
tuple entry in any set under a developer-controlled priori-
tization policy, as discussed further in Section 4 when we
describe the ALM components and the roles of the Quilt
bootstrap service.

As we will see below, the Quilt EUID plays a role that gen-
eralizes “system membership” information in standard set-
tings. Whenever a Quilt component learns about some pair
of end-hosts, it also learns about the connectivity tuples ad-
vertised by each, and hence will also be able to make a sen-
sible estimate about the feasibility of linking them. EUIDs
are used both in the (centralized) Quilt bootstrap service
and in its ALM components, which run directly the end-
host platforms. Our approach assumes that if a node adver-
tises connectivity (and hasn’t crashed), other nodes will be
able to establish connections in the manner indicated. The
scheme is tolerant of some level of mistakes, but errors can
harm the quality of protocols that depend on connectivity
estimation. Accordingly, Quilt employs conservative tests to
create these constraint tuples.

Local Topology is a data structure characterizing the
routing path from an end node to the Internet WAN. Be-
cause the Internet structure is tree-like [34], physically nearby
hosts have a high likelihood of sharing routers on the path
to the Internet core. Enterprise load balancing technology
and “fat-tree” designs [31] can result in network topologies
that violate this assumption. However, those mechanisms
have limited impact near the edge. Our experiments show
that it suffices for Quilt to interrogate four hops towards the
Internet core.

Our main objective is to detect shared paths, for several
reasons. First, this helps Quilt form locality-aware patches
that optimize with respect to per-patch performance objec-
tives. Additionally, local topology captures IPMC availabil-
ity within regions by detecting the routers along the path. If
Quilt reports that two hosts reside behind the same firewall
or NAT, it can be deduced that those hosts should be able
to communicate with one-another in a bidirectional manner,
using the protocol specified in the EUID.

Quilt creates the EUID by traversing the first few net-
work hops in the direction of the Internet core, using the
local DNS server as its target (see Section 4.4). It then
forms a “router stack” describing the path, consisting of the
distance in hops to each router R or IPMC enabled router
Rm. Techniques to discover local DNS servers and interme-



Table 1: Multicast rule interface (A is a sample multicast protocol)

Procedure Usage
bool IsPermitted(n) True iff node n with EUID n.e is permitted to run protocol A
bool CanJoin(n, p) True iff node n with EUID n.e can join a patch p with EUID p.e using protocol A
void Join(n, p) Add member n with EUID n.e to patch p with EUID p.e
EUID CreatePatch(n) Create a new patch p consisting of node n, returning the EUID p.e

diate routers have been used in systems used for Internet
geolocation [40], but additional overlays are required to cal-
ibrate the geographic position in those cases. Although we
believe our specific technique is novel, it was motivated by a
2002 AT&T study [30], which determined that 64% of Inter-
net hosts and their local DNS server belong to the same AS,
and 75% of these DNS-host associations are within 5 hops of
a common router on the traceroute path. This means that
with at least 85% probability, hosts that share the same tar-
get DNS server or an intermediate router within 5 hops will
share the same AS number. Based on later measurements
[8], the probability is at least 80%.
Measured Performance estimates network performance.

For a single host, we simply measure bandwidth and latency,
then re-measure these values periodically. Performance met-
rics for a multicast region are computed as an aggregate over
the individual values, including additional data representa-
tive of peer-to-peer performance. Because bandwidth and
latency fluctuate, Quilt represents these metrics as ranges.
Performance testing can be expensive and isn’t always neces-
sary, hence Quilt offers this service but will only employ it as
requested by the ALM protocols that the developer selected.
The performance testing component of Quilt is designed to
be extensible, and we expect that down the road, individ-
ual ALMs might come with their own performance testing
suites. The O bit signals the presence of an vector N of
performance measurements in the EUID, each represented
as a triple: (type, lower bound, upper bound).

3.2 Multicast Environment Rule
All Quilt entities (end-hosts using Quilt, as well as the

bootstrap service) share a library of ALM protocols pro-
vided by the application designer. However, only some of
these ALMs will be suitable in any given setting. Quilt’s job
is to only activate those protocols for which the runtime en-
vironment is appropriate. Accordingly, each protocol comes
with an executable “rule” that Quilt can apply to a set of
EUIDs to determine which ALMs are capable of running
on the corresponding hosts. Abstractly, this kind of testing
can occur anywhere; in practice, the most important use of
the multicast rule set turns out to be on Quilt’s bootstrap
service.
Rules operate on sets of EUIDs, which can describe either

individual end-hosts or entire multicast patches; in the lat-
ter case, the single EUID is understood to apply to all end-
hosts belonging to the multicast patch. The rules themselves
can embody arbitrary developer-supplied “intelligence”, al-
though the ones used in our prototype are fairly simple. A
typical rule will be described in Section 3.2.1; it has the role
of grouping end-hosts that can all communicate over a single
IPMC address into an IPMC patch.
The job of Quilt on a newly launched end-host is thus as

follows.

• First, it generates an EUID for each NIC associated
with the end-host.

• Quilt then uploads this information to the bootstrap
service, which responds with information about the
ALMs to initialize, the peers that each of those ALMs
should use as initial contacts in their multicast patches,
and the EUIDs for those peers and patches. Recall that
in Quilt, any host that learns of another host or of a
multicast patch simultaneously learns its EUID.

• The ALMs then take over, running whatever protocol
they like - perhaps peer-to-peer; perhaps using addi-
tional ALM-specific servers. The ones we use here run
in a purely peer-to-peer mode once initialized, but ac-
tively manage themselves, repair themselves, and sup-
port dynamic membership changes (joins, leaves and
failure handling).

Rules play a key role in multicast patch formation. The
construction is done by comparing each node’s EUID to the
EUID of existing patches. All operations on a specific rule
use the standard interface shown in Table 1 with which the
aforementioned developer-supplied “intelligence” can be ex-
pressed. Given a collection of candidate patch members,
each ALM-specific environment rule determines a maximal
subset (patch) on which that ALM can run. Note that the
subsets computed by different ALMs may overlap because
they are determined independently. The candidate region is
then covered with multiple multicast patches according to
administrator specified priorities on the ALM environment
rules. The administrator should define at least one rule for
inter-patch multicast to ensure that the patches may be sewn
together. Moreover, the administrator should consider en-
abling additional protocols to allow the application to con-
tinue functioning should network-level multicast suddenly
become disabled.

We now illustrate the rules employed by our prototype
ALMs: pure IP Multicast, DONet and an OMNI tree ALM
which can be used either as a regional protocol or the tun-
neling protocol. Section 4.5 then explains how distinct mul-
ticast patches are “sewn together”.

3.2.1 Rules for IP Multicast
The IPMC ALM simply creates a socket bound to a fixed

class-D IP Multicast address and implements multicast send
and receive using the standard system calls. The associated
rule needs to ensure that if two nodes activate this ALM
in the same multicast patch, they will be able to exchange
IPMC datagrams.

The rule forms patches by testing EUID pairs. Let Ei.S
denote the set of IPMC enabled routers in the router stack in
EUID Ei. Note that the cardinality of |Ei.S| equals Ei.Rm.
Given two hosts with EUID values E1 and E2, Quilt can
first check whether each of them is connected to multicast
enabled routers by verifying that E1.Rm > 0 and E2.Rm >
0. Quilt must then confirm that the hosts can connect to a
single IPMC tree, that is E1.S ∩E2.S ̸= ∅. In this case, the
hosts share a multicast enabled environment and hence can
be grouped into a single IP Multicast patch.
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Figure 3: OMNI Tree: An ALM overlay over Multicast
Service Nodes (MSN) built to minimize the average source
to client latency.

If successful, we assign the patch a new merged EUID
E12 with multicast-enabled router set E12.S = E1.S ∪E2.S
and E12.Rm = |E1.S ∪ E2.S|. In the case of a third joining
host, we create EUID E123 in the same manner, and discard
EUID E12. When the process terminates, the members of a
given multicast region will all hold a single, maximal EUID
for that region. For simplicity, the regional EUID is not
updated if an end-host departs as such a host may reappear
later, hence it changes only if new end-hosts later join. As
noted earlier, the hosts excluded from one IPMC patch may
still be able to form some other IPMC patch, for example if
there are two multicast regions separated by a router that
blocks multicasts.

3.2.2 Rules for DONet
For end-hosts running on the “edge” and lacking multicast

support, for instance DSL cable users, Quilt supports the
Data-driven Overlay Network (DONet), an ALM that con-
structs a latency-biased randomized mesh-structured over-
lay. DONet uses TCP as its link protocol and then uses a
BitTorrent-based protocol to distribute multicasts in much
the same way that content distribution networks share con-
tent. The DONet selection rule must ensure that within any
multicast region, all end-hosts can form TCP links to some
other end-hosts also in the region, but there is also an ef-
fort to ensure that peer-to-peer latencies for these links are
roughly “comparable”. Latency bias is then implemented by
grouping hosts in a locality-aware fashion. Accordingly, de-
fine CE1

E2
as the set of contacts from EUID E1 to E2. Then

we say E1 and E2 are compatible if CE1
E2

∩ CE2
E1

̸= ∅. If
EUID E1 of some host in a DONet patch P is compatible
with EUID E2 of a joining host, then the new host should
join patch P . If multiple patches are available, a host joins
the patch which minimizes the predicted link latencies.

3.2.3 Rules for OMNI trees
As shown in Figure 3, the OMNI tree is a backbone-based

ALM overlay built among Multicast Service Nodes (MSN),
which are actually service proxies for normal clients [3]. As-
suming that clients are close to their proxies and thus that
the local latency can be neglected, the OMNI tree optimizes
the average root-to-client latency based on the root-to-MSN
latency and the number of clients each MSN is serving, but
with constrained outdegree between MSNs. The protocol
can run over both TCP and UDP, and provides low la-
tency for all clients. Thus OMNI trees can be used as a
regional multicast forwarding structure in situations where
nodes need to be interconnected in a manner that minimizes
latency.
Quilt also uses the OMNI tree to sew patches together,

obtaining a reliable composite multicast solution in which

packets follow low-latency routes. In this mode, the OMNI
tree formation rule selects the subset of nodes on which to
construct the tree, picking just a few representatives from
each multicast patch for use in the tree (as MSNs). In select-
ing this subset from each patch, we try to favor well-endowed
nodes and to minimize latency, but must also avoid the risk
of disconnection: we select k end-hosts to relay messages so
as to obtain tolerance to k−1 faults, unless (of course) there
are fewer than k candidates available.

The OMNI ALM rule is that the new joining host must be
able to contact some existing host. In other words, a new
host E2 can join the OMNI tree patch P if there exists a
host E1 in P with CE2

E1
̸= ∅. Our OMNI tree construction

procedure selects k members of an overlap region to perform
relaying, picking them in the order they joined the system,
but with a further constraint: if there are more than k can-
didates, Measured Performance is used to pick the highest
capacity end-hosts.

Although the OMNI ALM can dynamically heal and re-
generate a damaged tree, fault-tolerance issues may arise
when k = 1 since patches can get disconnected from the
tree when representatives leave. To address the issue, Quilt
stays in touch with the bootstrap service, which has a big-
ger picture of the network. Should a representative leave its
patch, the service will select a new representative to replace
the lost one, and the OMNI tree will then restructure itself
“as ordered”, restoring full functionality. Moreover, when
k > 1, we run the risk that each multicast can be forwarded
k times between different patches. This is where a dupli-
cate suppression mechanism kicks in. The mechanism seeks
to reduce the frequency of multicast duplication so that it
won’t represent a significant source of overhead. Sections
4.7 and 4.8 will talk about these mechanisms.

4. SYSTEM DESIGN
We now describe the Quilt architecture in more detail

(Figure 4).

4.1 Architecture
Quilt provides a simple and standard API to the end-user

application. Applications can treat Quilt as a black-box
multicast service, and indeed our prototype applications do
so. In the future we envision more sophisticated applications
that might need to control the choice between multicast can-
didates using criteria beyond the ones supported by Quilt.

MessageBuffer
Host QuiltMulticast Plug-inMulticast ContainerMulticast Plug-in MulticastCandidates

App

NetworkTransmission Layer Detection Service
Figure 4: Quilt architecture. The application treats
Quilt as a single multicast overlay, but the internal struc-
ture of the system is more like an operating system support-
ing multiple plug-in “drivers”. In our case, these drivers
are multicast protocols, each specialized for some set of con-
ditions. Our prototype includes three such protocols: the
OMNI tree, an IPMC overlay, and an ALM called DONet.



The Quilt system itself is object-oriented, organized as a
set of components that interact through well-defined inter-
faces. The system exploits the dynamic composition features
of .NET, running “native” on Windows and under Mono on
Linux. We have implemented Quilt and the experiments in
Section 5 ran actual code on Windows. The source code
has been made publicly available as part of Live Distributed
Objects platform [12] from Cornell.

4.2 Bootstrap Service
As seen in Figure 5, Quilt’s bootstrap service runs free-

standing on an Internet-accessible platform and plays a va-
riety of roles. Our prototype is accessed using a standard
HTTP-based remote method invocation. It must have ac-
cess to the ALM-specific selection rules discussed earlier.
The bootstrap server has several roles. The first is to

maintain a database with partial membership for each patch.
The emphasis here is on partial: Rather than insisting on
accuracy at potentially high cost, we track just a few (tens)
long-lived members. The second role is to check multi-
cast rules for newly joined nodes, thus structure them into
patches. The third role is to maintain the healthiness of
“Inter-Patch”, keeping regional patches sewn together. De-
tailed processes of how bootstrap server works are described
in later sections.
Quilt’s bootstrap service design is centralized, but off the

critical path, taking actions only when nodes join or if a
patch becomes isolated as a result of node departures. The
algorithms used are cheap (linear in the number of patches).
We tested with up to 1000 nodes, and believe that far larger
numbers could be supported.
Although the current Quilt bootstrap service is a single

point of failure for the system, the code is deterministic and
could easily be replicated for fault-tolerance, for example
by replicating the servers to form a virtually synchronous
group [6]. Much as a modern data center like Amazon.com
routes requests to a set of front-end nodes, we can treat
such a group as a single entity “from the outside” even as
its members cooperate to respond to requests in a fault-
tolerant manner. The virtual synchrony model permits par-
allel processing of requests, hence the work of patch for-
mation could be load-balanced over the set. In larger set-
tings one would generalize this approach, using a hierar-
chy of bootstrap servers, much like the hierarchy of DNS
servers. Each network domain would connect to the appro-
priate server group. In this case, the failure of a regional
server would impact the portion of the network it handles,
but the remainder of the Quilt overlay would remain live.

4.3 Multicast Container
The Quilt Multicast Container can be understood as a

storage structure for active protocol “objects”. Quilt com-
patible ALM protocols implement a standard interface, which
includes methods to initialize the protocol, to join a group
(Quilt supplies an initial membership list), to send multi-
casts, and to deliver incoming messages to pre-registered
handlers. Each multicast patch will span a set of end-hosts,
and can maintain its own peer set in whatever manner the
protocol dictates.
As protocols are selected, they are dynamically instanti-

ated, a process roughly analogous to plug-in driver activa-
tion in an operating system or object creation in Java/C#.
Multicast instances share the transmission layer and mes-

Patch MembershipPatch MembershipBootstrap
PatchP1 PatchP2

1. EUID
2. Rule Check

3. Patch ID : Protocol : Membership
4. Patch Protocol

Figure 5: Patch formation. Each joining host sends
its locally produced EUID to the bootstrap server, which in
turn finds an appropriate multicast patch (P1) for the host
using various multicast rules and then returns the patch ID,
protocol name and the initial membership.

sage buffer, which includes a window of recently received
multicast messages. Use of these features is optional and
protocol-specific, but can substantially simplify protocol logic.

4.4 Detection Service
As discussed in Section 3, when Quilt is first launched on

a node it needs to construct the set of EUIDs for that node’s
NICs. Details concerning the implementation of these mech-
anisms are omitted for brevity; we refer the interested reader
to our technical report [21]. Briefly, connectivity options are
detected using a modified version of NAT Checker [17]. This
tool discovers upstream NAT boxes and tests to see if the
NAT can be traversed. We extended it to check for firewalls
by testing connectivity through a target server. The local
router stack is discovered by running traceroute3 to the lo-
cal DNS server over the relevant NIC. Performance metrics
such as latency and bandwidth are collected as part of the
traceroute operation.

4.5 Patch Formation
As seen in Figure 5, once its EUID is computed, a new

end-host sends a join message to the bootstrap server with
its EUID value. The server applies the environment rules to
check whether the new host can be added to some existing
multicast patch. Suppose that our new host matches the
patch P1. The bootstrap server returns contact information
for the patch (partial membership that the ALM can use
to peer with other P1 members), along with its patch ID
and protocol name. With this information, the joining host
checks its Multicast Candidates, finds the matching protocol
plug-in and loads it into its Multicast Container component.
The host launches the matching multicast protocol plug-in
and supplies the initial membership data.

Now the new host can contact its peers within the patch
P1, join the group and conduct operations defined inside the
specific protocol. If a joining host matches several existing
patches, the same process will be used, and multiple ALMs
will be initialized. There are also cases in which a single
ALM would be initialized more than once. For example,
a single host might overlap with two IPMC patches, each
using a distinct class-D IPMC address; it would then run
the IPMC ALM once for each patch.

4.6 Inter-Patch Formation and Maintenance
As we learned earlier, a Quilt overlay consists of an OMNI

3In cases ICMP or UDP is unable to perform the detection,
there are also other options like tcptraceroute[37].
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Figure 6: Inter-patch connectivity. New nodes are as-
signed to join a regional multicast patch by the Quilt boot-
strap service, along with an inter-patch multicast protocol
if the patch does not have enough representatives to link to
other patches.

“inter-patch” ALM tree that connects regional patches run-
ning other ALMs, overlapping at k representatives. The
bootstrap service constructs and then maintains this tree.
The bootstrap service selects inter-patch representatives,

instructs them to play the patch-to-patch tunneling role, and
then monitors their health. Should a tunnel node crash, the
bootstrap selects some other tunnel node to take over the
forwarding role. As shown in Figure 6, the OMNI inter-
patch ALM is actually treated much like any other patch,
although it uses a specialized patch construction rule, de-
signed to ensure connectivity of the Quilt overlay as a whole,
acyclic paths and robustness.
For example, suppose an application finds itself in the

patch P1, but not the patch P2. Now a multicast occurs in
the patch P2. How would it reach the new node? As seen
in Figure 6, at least some nodes in the P1 will be assigned
tunneling roles between the P1, the global OMNI tree that
connects P1 representatives to P2 representatives, and the
P2 ALM.
If our new node is selected to play this role, the bootstrap

service will tell the node to initialize its OMNI inter-patch
ALM in addition to the patch P1 ALM. The OMNI ALM
will join existing OMNI inter-patch overlay nodes, extending
the OMNI tree. Now, new P1 multicasts can be relayed into
the OMNI ALM for delivery to P2 patch members, and vice
versa. The forwarding rule can be understood as region
specific: our P1 tunnel would forward “P1 multicasts” out
via the OMNI ALM, and forward “P2 multicasts” in also
via the OMNI ALM. A “P1 multicast” refers to multicast
initiated by a source in the P1 region. The forwarding policy
described here is cycle-free.

4.7 Churn Resilience
In Quilt, each ALM must implement its own mechanisms

to handle node joins and departures. Quilt itself intervenes
only when an ALM node that was playing a patch-to-patch
tunnel role (a representative) departs. To give an extreme
example, if all the representatives of patch P suddenly leave
at the same time, A’s ALM will lose connectivity to the
OMNI tree.
Quilt has two mechanisms to resolve this issue. The first

one is proactive and consists of designating k representatives
(rather than just 1) from each patch. With k = 2 or k = 3,
Quilt is much less likely to experience a global partitioning
event, but of course larger values of k do increase the like-
lihood that a multicast will be sent more than once in the
same ALM, a form of link stress. We measure this effect in

our experiments.
Quilt’s second robustness mechanism is focused on repair

when its forwarding infrastructure is disrupted by a fail-
ure. In Quilt, each host periodically reports to the bootstrap
server, allowing the bootstrap server to maintain a relatively
“fresh” partial snapshot of membership for each patch. Rep-
resentatives are monitored and if a failure is detected, dead
representatives are removed. The bootstrap server will then
select another host from its snapshot to become representa-
tives and join the OMNI tree. With larger values of k, the
reporting frequency can be decreased to reduce overhead.
Further, normal hosts and representatives can report at dif-
ferent frequencies. Our experiments also suggest that with
large enough k, system throughput will not be influenced
by the frequency, which is currently set to tens of minutes.
Moreover, a large enough value of k can also circumvent
problems in the event that Quilt selects a failed node as a
new patch representative. Accordingly, Quilt uses a range
of values {kmin, kmax}. The bootstrap server steps in only
when the current k < kmin at which point it picks kmax − k
hosts to play patch representative roles.

4.8 Duplication Suppression
With more representatives, message duplication can hap-

pen both between patches (more contacts in remote patches)
and inside patches (multiple representatives as patch sources).
For ALM protocols, duplicate messages waste resources with-
out necessarily improving reliability. Accordingly, represen-
tatives should not blindly forward messages. To help sup-
press duplicates, each tunneling host in Quilt maintains a
Bloom filter [7]. With a few bitwise OR operations, a new
multicast can be added to the filter; with a few bit tests,
duplicates can be discovered (with some small risk of false
positives). Since Bloom filters slowly fill and become inef-
fective, a new Bloom filter is initialized periodically, at a
frequency tied to the multicast data rate4

Our experiments determined that while the Bloom filter-
ing technique works well for most ALMs, applications that
stream high data rates of multicasts into IPMC regions still
experienced substantial levels of duplication. We thus de-
veloped a second duplication suppression mechanism specif-
ically for this case. We use a gossip-based protocol to con-
struct a small overlay linking just the patch representatives
in a given region. Since k is tiny, these representatives find
each other rapidly and can maintain a full all-to-all graph.
We then run a simple 2-phase “synchronization” protocol
whereby the representatives agree on which multicast each
should forward. Our initial implementation is unsophisti-
cated and yet, as seen in the experiments, turns out to be
quite robust and imposes low overhead.

4.9 Multi-Source Support
Quilt combines multiple ALM protocols to construct a hy-

brid multicast overlay, hence support for multicast streams
depends on the properties of the underlying ALM solutions:
many scalable multicast protocols only permit a single sender.
Quilt’s DONet protocol can support multi-source messages
with trivial changes, and its IPMC protocol needs no changes
at all.

We distinguish several forms of multi-source applications.

4Each node populates a new Bloom filter with the multi-
cast messages it buffered locally to reduce the rate of false
negatives during initializing periods.
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Figure 7: Synthetic topology.

In the first, a data center hosts some large number of servers,
and each server is a distinct source of multicasts. If servers
handle disjoint sets of clients, which is common in today’s
multi-user games, one could simply construct an indepen-
dent Quilt overlay for each source.
In the second scenario, there are small numbers of mul-

ticast sources and they send to overlapping sets of clients.
Here, the primary cost for Quilt involves the growth in size
and frequency of the duplicate suppression messages used by
our protocol, and the need to create a distinct Bloom filter
for each source. If these costs are perceived as excessive (for
example, if there would be tens or hundreds of senders to
each Quilt client), the servers within any single data center
could share a single source identifier and sequencer, much
as a modern data center like Amazon.com uses network ad-
dress translation to expose a small number of IP addresses
to the outside world, despite using hundreds of thousands of
servers to handle incoming load.
The most extreme scenarios involve large numbers of sourc-

es (for example, all-to-all broadcast within the Quilt client
set). Such a pattern would be most easily handled relaying
the traffic through the Quilt bootstrap service, which could
then number events sequentially and re-multicast them, func-
tioning as a single source.

5. EVALUATION

5.1 Experiment Setup
The remainder of the paper describes our experimental

work. The goal is to show that Quilt achieves the objectives
for a multicast service set out in the introduction, specifically
that it minimizes redundant traffic, achieves low average la-
tency, adapts to the environment and tolerates churn with-
out imposing significant overhead. Although we created our
own packet-level event-based simulator to simulate a variety
of networks, accurately emulating the various topologies of
interest, the simulator runs the Quilt code unchanged – it
was implemented as a wrapper that virtualizes the system
calls used by Quilt to interact with the outside world. Thus
Quilt itself was not modified at all for experiments. For
example, when we said earlier that traceroute is used to
probe routers, that is precisely what occurs in our experi-
ments. Only the network and its routing infrastructure is
simulated. We focused on three topologies. The applica-
tions we evaluated in these networks both employ a single
multicast source.
Synthetic Topology. Our first experiments explore

multi-patch scenarios designed to exercise Quilt’s tunneling
functionality. We construct 4 domains, each with 5 hosts.
As shown in Figure 7, with the exception of the multicast
source domain, each domain gateway is a NAT. Domain 3

Table 2: Multicast mechanisms evaluated.

Mechanism Synthetic Data Center Internet
Quilt (k = 1) X X X
Quilt (k > 1) X X
OMNI Tree X
DONet X

also has a firewall which blocks incoming UDP traffic. The
gateway routers of domain 2 and 4 are IPMC enabled, while
domains 1 and 3 lack IPMC support.

Data Center Topology. Our second scenario stresses
the real-event dissemination performance of Quilt by explor-
ing an event notification (publish/subscribe) scenario among
data centers linked on the Internet WAN. We based this
topology on the published network structure of Grid5000
[19], a scientific computing infrastructure that links 25 clus-
ters deployed among 9 sites over France, with 1531 servers
in total (see figure on the right). As one would expect,
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Sophia-Antipolis

the lowest latencies are for
servers at the same site; for ex-
ample, there is one cluster at
Rennes with inter-node latency
averaging 0.3ms, and the high-
est latencies within that site
were 0.6ms. Servers at different
sites experience latencies rang-
ing from 4ms to 12ms. IP Mul-
ticast is enabled within each
site but not between different
sites.

Internet Topology. Our third scenario focuses on the
wide-area Internet behavior of Quilt. PeerWise [28] pro-
vides end-to-end latency data for 1715 hosts, 951 of which
have connectivity to one-another. We focused on those 951
hosts, and extracted the measured end-to-end latency infor-
mation. To transform this latency data into an Internet test
scenario, we then scanned some 400,000 traceroute records
from CAIDA [1] during 2003 and 2004, and located 600 hosts
that exhibited host-to-host latencies closely matched to the
values from the PeerWise topology. For each host we col-
lected the surrounding router path information. We then
padded the set out to the full 951 hosts by duplicating set-
tings for hosts that were in the same AS domain, using the
PeerWise trace to identify them. IPMC is not available in
this topology.

For each of the three topologies, we ran Quilt with a set
of three multicast candidates: IP Multicast and DONet as
intra-patch ALMs, and an OMNI tree for inter-patch com-
munication. IPMC has obvious performance advantages,
hence when more than one option is available, a host fa-
vors IPMC, then DONet, and only uses OMNI forwarding
as a last resort. We treat TCP as our primary unicast pro-
tocol, employing UDP and UDP-based NAT traversal only
if TCP is not available but UDP would work (a rare case).
Table 2 shows the different mechanisms we evaluate in the
three topologies.

5.2 Synthetic Scenario
We used the Synthetic Topology to evaluate the ability

of Quilt to adaptively partition hosts into appropriate multi-
cast patches in the manner of Sections 3 and 4. Additionally,
because our topology includes various barriers (NATs, fire-
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Figure 9: Data Center: Nodes running Quilt receive
events faster over time compared to the system-wide OMNI
tree because the system is able to leverage IPMC in regions
where that option is available.

walls, varied IP Multicast configurations), we used it to test
our detection mechanisms in realistic conditions.
As shown in Table 3, hosts inside domain 2 and 4 form

two patches, each using IPMC. Domains 1 and 3 construct
DONet overlays. In our experiment, hosts joined in host-ID
order, hence the lowest ID host in each domain tunnels for
the inter-patch OMNI tree (here, k = 1). If latency were
the sole metric, hosts 11 and 16 would be picked as children
of host 6 in the tree. But host 11 is blocked by a NAT, and
can only be connect to host 1 through a high-latency TCP
link. Quilt configures this host to use the OMNI ALM. We
conclude that Quilt correctly selects the appropriate ALM,
and correctly links the resulting patches.

5.3 Data Center Scenario
Our second suite of experiments focuses on real-time event

dissemination scenarios between a set of enterprises or data
centers. Here we simulate the Data Center topology, fo-
cusing on the quality of the overlay construction with respect
to end-to-end multicast latency. Recall that Grid5000 per-
mits the use of IPMC within (but not between) data center

Table 3: Synthetic: Message Delivery Summary.

Domain Host Protocol Method
1 1 DONet, OMNI Source

2v5 DONet TCP
2 6 IPMC, OMNI TCP

7v10 IPMC IPMC
3 11 DONet, OMNI TCP

12v15 DONet TCP
4 16 IPMC, OMNI UDP tunnel

17v20 IPMC IPMC
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Figure 10: Data Center: Average throughput while
streaming at 10Mbps (a) and 50Mbps (b). Quilt recovers
within about 10 seconds from a major disruption introduced
at time 40; the recovery is faster with more representatives
per region.

sites. We expect Quilt to discover and exploit the feature
when possible, deploying a WAN OMNI tree that switches
to IPMC within regional patches, thereby achieving a sub-
stantial performance benefit.

We compare Quilt with a simple, standard ALM: A pure
OMNI overlay spanning the full node set. Such a solution
runs entirely over TCP, with each message forwarded by tree
nodes on each of their outgoing links.

Our simulation uses a randomly selected a server as its
multicast source. This server joins the system, and then 1
second later, the other 1530 servers join simultaneously. We
measure the time and overhead of constructing the OMNI
tree and the latency in disseminating a multicast message
to all the servers. Each result is the mean value of 10 runs.

Overhead. Figure 8 shows the traffic overhead and time
required to construct a tree overlay in the two situations.
Dealing with simultaneous join of 1530 hosts, the pure OMNI
solution takes around 190ms to construct the overlay, and
the traffic measured per millisecond ranges between several
tens of messages to over 350 messages per second. In con-
trast, by assigning most of the hosts to regional multicast
patches, Quilt is able to construct a much smaller OMNI
tree for the case in which IPMC is available, consisting of
just 8 nodes, each from a data center patch. This tree is
formed in less than 30 milliseconds, and traffic is less than
3 messages per millisecond (embedded graph in Figure 8).

Latencies. Figure 9 shows the event delivery latencies we
achieved in the two cases. With the pure OMNI tree ALM,
it takes up to 40 milliseconds to multicast a single event
to 1530 servers. The line grows in a “step by step” way
due to the strictly hierarchical latency relationship among
servers. When running Quilt, we can see the latency has
been reduced. In roughly 14 milliseconds, all the servers
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in Figure 10.

have received the multicast event.
There are two explanations for this performance gain. One

is that in Quilt, each patch only contributes a single node to
the inter-patch OMNI tree, decreasing the tree depth dra-
matically. Thus messages reach the sites more quickly. The
second speedup reflects IPMC: Quilt routes multicasts from
the OMNI network into the IPMC regions as they arrive in
each site, and gives an additional latency improvement.
Churn Resilience. To evaluate the churn resilience of

Quilt at various levels of throughput, we run Quilt with
10Mbps and 50Mbps multicast events. Quilt reaches a steady
state within a few seconds. After 40 seconds, we introduce
a catastrophic failure: 50% of the nodes, selected randomly,
fail simultaneously. Figures 10(a) and 10(b) show the av-
erage throughput when experiencing the correlated failure.
When the failure happens, the average throughput will drop
dramatically in both figures for two reasons. First, in the
OMNI tree, failed representatives at higher level would af-
fect the throughput of representatives at lower level. Sec-
ond, patches without responsive representatives cannot re-
ceive multicast events. In the experiments, the monitoring
interval for representatives is set to 10 seconds. We see two
effects. The first involves self-repair of the OMNI ALM:
within about 2 seconds, the OMNI overlay is repaired, but to
the extent that the crash disrupted the OMNI tree, some loss
can occur. Next one sees a slower repair as Quilt’s bootstrap
server notices that patch representatives have failed and re-
places them. As on would expect, with bigger k value, less
loss occurs and indeed, when k = 3, all patches retain some
responsive representatives.
Duplication Suppression. Next, we evaluated the per-

formance of the algorithm from Section 4.7. Our experiment
transmits a video stream consisting of a series of 1Mb video
segments, transmitted at a data rate of 10Mb/s: 10 segments
per second. We use k=3 (there are three forwarders into
each region), and stress the overlay by injecting an abrupt
churn event after 40 seconds: half the nodes in the system
suddenly depart.
Our experiment treats each segment as a single Quilt mul-

ticast. The large segment size is deliberate: this amortizes
the Quilt duplicate suppression mechanism over more bytes
of data, so the effective overheads are reduced.
Recall that Quilt has two ways of inhibiting duplicates.

The first is based purely on Bloom filters, and the second on
an inexpensive 2-phase “sync” mechanism that runs among
the representatives. We first looked at suppression using

Table 4: Locality-aware partition performance

Range Partition# Intra Latency Inter Latency
3 513 23ms 473ms
4 403 37ms 518ms
5 327 127ms 973ms
6 241 131ms 1489ms
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Figure 12: Internet: Number of nodes receiving a single
multicast as a function of time.

the Bloom filter alone. Figure 11 shows the total number of
duplicate segments received per second with k = 3. Each de-
livery of a segment to a single server is counted as a distinct
“event” here, hence with 1531 receivers a perfect solution
would yield 15,310 receive events per second and zero dupli-
cates. An ineffective duplicate suppression scheme, for k=3,
would deliver 15,310 legitimate receive events, but would
have 30,620 duplicate receptions. As seen in Figure 11,
Quilt’s Bloom filter scheme roughly halves the worst-case
duplication frequency for this particular mix of data size
and data rate.

Next we enabled the 2-phase sync protocol. With this ad-
ditional mechanism in use, Quilt pays a small cost in terms
of latency. However the benefit is substantial: now the du-
plicate rate is a factor of 10 smaller, corresponding to a
duplicate rate of about 1.2% at a typical receiver.

5.4 Internet Scenario
Our final test scenario examines a WAN Internet broad-

cast using the Internet Topology. Because IPMC is
not generally supported on the public Internet, Quilt em-
ploys DONet as its intra-patch ALM. As discussed before,
DONet implements a mesh-structured overlay, without ex-
plicit parent-child relationships. This mesh has multiple
routes, increasing effective bandwidth. The DONet protocol
[41] is similar in spirit to BitTorrent: nodes download needed
data from peers, and offer multicasts retained in their mul-
ticast buffers to neighbors, sending on demand. Porting to
Quilt involved minimal changes.

Recall from Section 3 that Quilt uses the router host to
cluster hosts by latency. As a first step, we measured the
effectiveness of this locality-aware grouping mechanism us-
ing the network topology generated from our PeerWise data
set, augmented in the manner described above using CAIDA
traces.

Table 4 shows node to node latencies within (“intra”) and
between (“inter”) Quilt-generated partitions using EUID sets
reflecting varying router-path lengths. We see that EUIDs
measuring 4-hops towards the Internet core strike a balance:
we obtain 403 small multicast patches with median intra-
node latency under 40ms, and median inter-patch latency of
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about 500ms. Quilt runs DONet within these patches and
OMNI trees to sew them together.
Latencies. Figure 12 shows a CDF for delivery latencies

for a single Internet broadcast message over the resulting
structures. Quilt substantially outperforms the pure DONet
solution, delivering the packet in just 4 seconds, compared
to 60 seconds for DONet. The data is again averaged over 10
runs. The huge performance difference is easily explained:
in DONet, as in any BitTorrent-based protocol, transfer of a
message between two hosts requires three scheduling cycles:
a so-called “buffermap” broadcast, a packet solicitation, and
then a response containing the desired message. Each cycle
requires 1 second in our simulation. If all hosts run DONet,
with node degrees ranging from 4 to 6, a broadcast needs to
traverse around 5 hops to reach the most distant receivers:
an additional delay of about 15 seconds. Quilt’s OMNI trees
avoid the need for such a handshake.
Overhead. Quilt’s lower latencies for delivery come at

a cost as witnessed by the number of messages exchanged
to construct the 951-node OMNI tree shown in Figure 13.
DONet builds its mesh using an inexpensive random strat-
egy. On the other hand, DONet pays such a high overhead
to determine which packets to pull and request them that
if we compare Quilt with DONet once the OMNI tree is in
place, we see that Quilt takes the lead, with substantially
lower control overhead (Figure 14). One explanation for
this overhead reduction is that grouped patches have very
few members due to PeerWise’s sparse topology. More im-
portantly, higher latency of data deliveries in pure DONet
requires multiple scheduling cycles, resulting in additional
control overhead for each of them.
Churn Resilience. In the Internet scenario, we also

measure the system robustness under 200Kbps and 500Kbps
traffic, picked to match the most popular streaming rates
seen in the current Internet. As shown in Figures 15(a) and
15(b), the results are similar to the ones shown in Figures
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Figure 15: Internet: Average throughput over time when
sending 200Kbps (a) and 500Kbps (b) multicast streams. In
this network, recovery is harder than in the one used for
Figure 10 since many patches contain only one or two nodes.

10(a) and 10(b). There is an initial repair phase during
which Quilt recovers its OMNI overlay tree, after which the
value of k determines the delay of full recovery. With k = 3
recovery is quite rapid. Nonetheless, this experiment reveals
two important differences from the data scenario used in Fig-
ures 10(a) and 10(b). First, the sparse PeerWise topology
has many regions that are too small to provide k represen-
tatives. Thus even with k = 2, the system gains as much
robustness as is available in these regions. From such an ex-
treme failure (50% of the nodes), the overlay resulting from
the crash is even sparser than it was in the first place. Addi-
tionally, the size of an OMNI tree can be quite different for
k = 2 and k = 3. Thus, when catastrophic failure happens,
a bigger tree can actually exhibit a lower average through-
put in the worst case since there are more hosts in low levels
of the OMNI tree. Our experiment shows that for all values
of k, the OMNI tree has repaired itself within 10 seconds.

Duplication Suppression. For reasons of brevity, we
have not graphed duplicate suppression data for this exper-
iment. We found that for data rates below 500Kbps, the
average number of duplicate events received per second is
50% lower for k = 2 and 63% lower for k = 3, or 86 and 114
before the correlated failure, and 22 and 56 after the failure.

6. CONCLUSION
Our paper starts with the premise that it is impractical

to create one-size-fits-all multicast solutions for distributed
applications that may include nodes separated by Internet
WAN links, small clusters of nodes residing behind a shared
NAT or firewall, and larger clusters running in settings where
IPMC is available. Quilt addresses this need by creating a
patchwork of multicast regions. Quilt senses the environ-
ment in which the client is running and automates the re-



gion formation process using a simple, extensible scheme.
Quilt itself is lightweight and should scale easily to large
deployments and to applications involving large numbers of
multicast sources. The system is available for free download
from our Cornell site in source form, and has been integrated
with Cornell’s Live Distributed Objects platform.
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