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Abstract

Gossip protocols are an important building block of
many large-scale systems. They have inherent load-
balancing properties as long as nodes are deployed over
a network with a “flat” topology, that is, a topology where
any pair of nodes may engage in a gossip exchange. Un-
fortunately, the Internet is not flat in the sense that firewalls
and NAT boxes block many peer-wise interactions. In par-
ticular, nodes that are behind a firewall can initiate com-
munication with nodes on the public Internet, but not vice
versa. This may easily unbalance the number of gossip ex-
changes in which nodes are involved. In particular, nodes
in well connected regions of the network tend to participate
in many more interactions than other nodes and may suffer
from resource exhaustion.

In this paper we present and evaluate a new approach to
balance gossip exchanges in networks with firewalls. Our
solution requires only local information and has no coor-
dination overhead, allowing nodes to participate in a simi-
lar number of gossip exchanges independent of the network
topology.

1. Introduction

A gossip protocol is a protocol where every participant
periodically selects a peer at random to perform an ex-
change of information. This process is executed repeatedly
such that information spreads among all the participants.
Gossip protocols have been used to implement a wide range
of scalable services.

Most gossip-based protocols have inherent load-
balancing properties as long as nodes are deployed over a
network with a “flat” topology, that is, a topology where any
pair of nodes may engage in a gossip exchange. Most gossip
protocols attempt to ensure that when a node selects another
node to gossip, that peer is selected uniformly at random
from the entire population. This can be easily achieved if
each node knows the complete membership [1]. However,
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even if nodes only have a partial view of the entire mem-
bership, this can be achieved if the local views are uniform
samples of the population [6].

Unfortunately, in realistic settings, not all interactions
are possible. For instance, in the Internet, a large portion
of nodes are behind firewalls or boxes that execute Network
Address Translation (so-called NAT boxes, which in the re-
mainder of this paper we will consider firewalls as well).
This limits the communication patterns that can be estab-
lished during gossip. If two nodes are behind the same box,
we say that they belong to the same confinement domain.
Also, we denote a node that can be directly accessed from
any point in the Internet, without any sort of restrictions, as
an unconfined node. In practice, a node in a confinement
domain can only initiate communication with other nodes
in its confinement domain or unconfined nodes. Unconfined
nodes can only contact other unconfined nodes. This results
in an unbalanced participation of nodes in gossip. As we
shall see, such an imbalance can be problematic.

Much work on efficient gossip protocols focuses on
reducing bandwidth requirements. The most significant
source of bandwidth use is when two peers are gossiping
to reconcile their respective states. In the original Clearing-
house paper [3], the authors propose an iterative reconcili-
ation technique, where nodes compare their internal states
using hash functions, and exchange the most recent updated
they performed until their states become reconciled. Byers,
Considine, and Mitzenmacher [2] improve on this design by
combining Bloom filters, Merckle trees, and Patricia tries.
Trachtenberg, Minsky, and Zippel [14] propose a method
based on characteristic polynomials.

While effective in reducing bandwidth, these techniques
require significant CPU resources to reconcile state. Be-
sides the computations involved in state reconciliation it-
self, there is often a non-negligible amount of work required
to serialize and deserialize objects that are transmitted, as
well as signing and/or encryption in case any level of secu-
rity is required. For example, in a commercial Java-based
deployment of Astrolabe [16], a gossip-based aggregation
service that uses Bloom filters and Merckle trees for rec-
onciliation, nodes spend approximately 3% CPU time on
all these operations. In a Planetlab deployment of Fire-
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flies [9], a secure gossip-based overlay network that uses
the reconciliation technique of Trachtenberg et al. [14], as
well as public key cryptography, nodes use approximately
10% CPU time.

While significant enough, it is worth considering what
would happen if there were a relatively small number of
unconfined nodes in the presence of a large number of “is-
lands” with confined nodes behind a firewall. The uncon-
fined nodes would have to act as gateways for all informa-
tion that is gossiped between all participants. In doing so,
either unconfined nodes will experience a much larger net-
working and CPU load than ordinary peers (likely becom-
ing CPU saturated), or by equalizing loads, dissemination
times would be significantly increased compared to a “flat”
network in which no nodes are confined.

In this paper we present and evaluate a new approach to
balance gossip exchanges in networks with firewalls. Our
solution requires only local information and has no coordi-
nation overhead, allowing all nodes in the system to partic-
ipate using a similar rate of gossip exchanges, independent
of the network topology.

The rest of this paper is organized as follows. Section 2
describes our approach to balance gossip exchanges in net-
works with firewalls. Section 3 presents experimental re-
sults that validate our approach. Section 4 discusses related
work and Section 5 concludes this paper.

2. Balancing Gossip

In this section we describe the rationale for our approach
and provide a full description of our gossip protocol.

2.1. Rationale

Our approach stems from the observation that the only
way to convey information from a node p (in a confinement
domain) to another node q (in a different confinement do-
main) is via an unconfined node u. That is, since p and
q cannot communicate directly, it is unavoidable that some
unconfined node u acts as a mediator. One way for u to
act as a mediator is to engage in two full gossip exchanges.
In detail, if node p first engages in a gossip exchange with
u and, subsequently, node q engages in another gossip ex-
change with u, u is able to convey information from p to
q. It is possible to alleviate the extra load on u if it merely
serves as a router of messages exchanged between p and q,
instead of executing the full gossip operation (as we have
seen, full gossip can consume a substantial portion of CPU
resources).

Therefore, the key idea of our approach is that nodes
should have a dual operation mode: they sometimes partici-
pate in complete gossip exchanges (to update and propagate
their own state) and sometime participate only has routers,
forwarding messages exchanged between nodes that would
otherwise not be able to communicate. There are several
challenges in the implementation of this strategy:

i) Nodes should not be required to figure out if they are
confined or unconfined. Ideally, all nodes would simply ex-
ecute the same algorithm, and the emergent behavior of the
system would ensure that a balanced participation in full
gossip exchanges would happen.

ii) Nodes should use a localized algorithm to decide
when to accept to participate in a full gossip exchange or
when to merely serve as a router.

iii) An unconfined node u should be able to route mes-
sages between confined nodes p and q despite the fact that
it cannot be the initiator of communication to p or to q.

These challenges are addressed in our protocol using the
following two complementary techniques:

i) Nodes keep track of how many gossip exchanges they
initiated and how many gossip exchanges they have ac-
cepted (initiated by other peers). In a balanced network, on
average, every node participates in the same number of gos-
sip exchanges initiated by itself and by other peers. There-
fore, we define a quota that limits the number of gossip ex-
changes initiated by other nodes, in excess of the gossips
initiated by itself, in which a node participates. The quota
is increased when the node initiates a gossip exchange and
decreased when it accepts a gossip exchange. When a node
runs out of quota it no longer accepts gossip exchanges and
simply acts as a router of the gossip request.

ii) Nodes that accept a connection keep the connection
to that node open1. For instance, if an unconfined node u re-
ceives a gossip request from node q, it keeps the connection
to q open until it receives another gossip request directly
from some other peer. In this way, if node u is later con-
tacted by another node p and its quota has been exhausted,
u can route p’s request to q.

2.2. Protocol

Algorithm 1 presents pseudo-code for our protocol. We
assume that each node in our system has access to a view
that contains identifiers of other nodes in the system with
whom it can engage in direct communication (i.e., uncon-
fined nodes or nodes within the same confinement domain).
The contents of the view is managed by an external peer
sampling service, such as [17, 13], whose implementation
details are not relevant to our approach.

As noted before, each node owns a quota value, initially
set to 1, of gossip interactions it can accept from other peers.
Additionally, each node keeps a single-entry cache of the
connection to the last peer from which it received a gos-
sip messages directly; the connection allows contacting that
peer regardless of other connectivity constraints.

When out of quota, our protocol forwards gossip re-
quests. We limit the maximum number of times that a mes-
sage can be forwarded using a protocol parameter denoted
TTL. This avoids network congestion scenarios due to the

1The mechanism to maintain this connection open depends on the trans-
port protocol being used.
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Algorithm 1: Protocol
Internal data:

cache←−⊥
quota←− 1
view //Managed by an external membership protocol

1: every ∆ T do
2: p←− random(view)
3: Send(GOSSIP(∅ ∪me,1),p)
4: quota←− quota +1

5: upon Receive(GOSSIP(path,hop)) do
6: if quota > 0 or hop = TTL or cache =⊥ then
7: quota←− quota−1
8: trigger Deliver(GOSSIP)
9: n←− last(path)
10: Send(GOSSIPREPLY(path \ n), n)
11: else
12: path←− path ∪me
13: Send(GOSSIP(path,hop+1), cache)
14: if hop = 1 then
15: cache←− last(path)

16: upon Receive(GOSSIPREPLY(path) do
17: if path = ∅ then
18: trigger Deliver(GOSSIPREPLY)
19: else
20: n←− last(path)
21: Send(GOSSIPREPLY(path \ n), n)

accumulation of messages in the system whose processing
keeps being postponed.

Periodically (line 1) every node tries to initiate a gossip
exchange with a peer selected at random from its local view
(lines 2 − 3) by sending a GOSSIP message. The node also
increases its quota (line 4), which will enable engagement
in an additional gossip exchange initiated by another peer.

Upon receiving a GOSSIP message from a peer (line 5)
a node engages in the gossip exchange if at least one of the
following conditions is true: i) it has available quota (i.e.
its quota value is above zero); ii) the GOSSIP message has
been already forwarded TTL times; or iii) the cache of the
node does not contain a connection that can be used to route
the GOSSIP message.

If none of the above conditions is met, the node sim-
ply routes the GOSSIP message using the connection in its
cache (i.e., to the last peer from which it received a gos-
sip messages directly). Notice that the node adds its own
identifier to the path associated with this message. This
is required to allow the bi-directional gossip exchange be-
tween nodes in distinct confinement domains, as the GOS-
SIPREPLY message has to traverse the inverse path in the
network (lines 16− 21)2.

Whenever a node receives a GOSSIP message directly
from its source (i.e, a GOSSIP message that has not been
routed, line 14), it updates its cache. This means that the
next time the node needs to route a GOSSIP message it will
send to a different peer. GOSSIP messages that have been
routed or GOSSIPREPLY messages do not update the cache.

We note that there is an interesting symbiosis between

2This requires nodes to keep these connections open for some time, by
using an additional cache outside our protocol’s scope.

the cache and the quota mechanisms that helps in having
routed GOSSIP messages quickly accepted. When node u
adds to its cache a connection to p, p’s quota is known to
be greater than 0, as it has just initiated a gossip exchange;
therefore, p is likely to still have a positive quota when a
GOSSIP request is routed to it.

3. Experimental Evaluation
In this section we evaluate the efficacy of our approach.

In particular we want to validate that the number of gos-
sip exchanges in which peers engage is balanced across all
peers, and assert the costs in terms of dissemination latency
and the message forwarding overhead.

3.1. Experimental Setup

We start by describing the experimental setup that we
employed, and provide motivation for the network model
used in the simulations. We conducted extensive simula-
tions in the Peersim simulator [8], using its event driven en-
gine. In our experiments we simulated 12800 nodes dis-
tributed in a variable number of distinct confinement do-
mains that ranges from 1 (the equivalent of a flat network
topology) to 12100. For simplicity, we model all uncon-
fined nodes as belonging to domain 1. In each experiment,
we ensure that each confinement domain has at least one
node, and then we distribute the remaining nodes at random
among all domains.

We configured each node with a static view that con-
tains all other nodes in its own domain plus all nodes in
domain 1 (i.e., all unconfined nodes). We have evaluated
our approach using several values for the TTL parameter in
order to assert its impact. In particular, we performed simu-
lations for TTL values of 1, 2, 5 and 10. Notice that a TTL
value of 1 prevents a message from ever being routed, and
corresponds to a classic gossip protocol, used as a baseline.

The state of the nodes is modeled by a single bit, initially
set to 0. When an experiment begins, a random node sets
its state to 1. Then, every node periodically gossips this
value. When gossiping, nodes execute a simple anti-entropy
protocol, in which they set their value to the largest value,
between their own and the value received from its peer. This
process models, in an abstract manner, the propagation of
information in the population.

In each simulation each node initiates 500 gossip ex-
changes. Every node gossips its value every 10 time units,
therefore a simulation takes 5000 units. Each link has a
random latency between 2 and 7 simulator time units. All
results reported in this paper are an average of 100 indepen-
dent simulations. Confidence intervals reported in figures
where calculated to a confidence of 95%.

3.2. Experimental Results

Figure 1 depicts the maximum number of gossip inter-
actions in which a node participates for the scenarios de-
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Figure 1. Max gossip exchanges / node.
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Figure 2. Maximum Latency.

scribed above. Notice that with a flat network (i.e., a single
confinement domain) both the baseline (TTL = 1) and our
approach behave similarly (for all tested TTL values). The
maximum number of gossip interactions in which a single
node participates is approximately 1000, which reflects a
perfect balance: 500 interactions initiated by the node itself
and another 500 that are initiated by other peers.

However, in scenarios with several confinement do-
mains, the maximum number of gossip exchanges in which
a single node may participate starts to rise with the base-
line protocol. This is expected, as nodes that are in the In-
ternet domain are selected for more gossip exchanges. As
the number of domains increases, this effect becomes more
visible. This happens because the number of nodes in the
Internet domain decreases (given that we maintain the total
number of nodes constant in our experiments). In a scenario
with 12100 domains, the number of interactions in which a
single node may be requested to participate approximates
20000. In sharp contrast, our approach, in all tested scenar-
ios, is able to maintain a constant value which is very close
to 1000. This shows that our approach effectively succeeds
in balancing gossip interactions in networks with firewalls.

Figure 2 presents how long it takes to infect the entire
population. With a flat network our approach presents an
increase in latency of approximately 10 time units, that is,
a single gossip round. This is observed for all TTL val-
ues. As the number of confinement domains increases, the

latency increases slightly. This happens because more re-
quests need to be routed, resulting in additional latency in
gossip exchanges. Notice however that maximum increase
in latency is only of 30 time units (roughly 3 gossip rounds).

Interestingly, as the number of confinement domains
increases, the latency of the classic gossip approach de-
creases. This happens because the number of nodes in
the Internet domain also decreases, which leads the sys-
tem to behave like a centralized architecture. Therefore,
the dissemination becomes very fast, by first contaminating
the central Internet domain and then, having nodes in all
other domains pulling the value from that domain. This is
achieved at the cost of overloading unconfined nodes.

Figure 3 depicts results for the maximum number of
messages forwarded by a single node. This is a measure
of the communication overhead that is imposed by our ap-
proach. In the flat network topology our approach presents
a negligible overhead, given that there are few requests that
need to be routed. As expected, when the number of con-
finement domains increases, the maximum number of for-
warded messages by a single node also increases, as the
nodes in the Internet domain are forced to route more re-
quests to avoid being overloaded. Considering that the CPU
overhead imposed by forwarding a message is low (the node
does not need to deserialize the payload, check signatures,
and so on), we believe this overhead is acceptable.

In our experiments the efficacy is mostly unaffected by
the TTL configuration parameter. This is because with high
probability most requests are accepted in their second hop.

4. Related Work

In this section we discuss various prior work on deal-
ing with the fact that the Internet is not flat. There are es-
sentially two approaches. One approach is to exploit the
structure of the Internet, while the other tries to find ways
to hide it. In the first approach, many overlay networks,
structured and unstructured, have introduced the notion of
superpeers. Superpeers are nodes that have static, globally
addressable IP addresses, are well-connected and exhibit lit-
tle churn, and are altruistic, generously providing their re-

!" !#$$" %!$$" &#$$" #!$$" '#$$" (!$$" !$#$$" !)!$$"

!
"
##
$
%
"
#&
'(
)*

$
)+
"
+
&

,-!.")&('&/(,0,"!",1&+(!$2,#&

**+",")"

**+","-"

**+","!$"

Figure 3. Max forwarded messages / node.
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sources for the good of the entire overlay. The popular file
sharing service Kazaa (www.kazaa.com) is a good exam-
ple of an unstructured P2P network that uses superpeers.
[18] explores how best to use superpeers in an unstructured
network. Various others explored the use of superpeers in
structured networks. These works can be subdivided into
structured overlay networks that exploit heterogeneity but
hide it to users, such as [15], and those overlays that expose
the heterogeneity in the network, such as [16].

The other approach is to try to hide the structure of the
Internet, so that all peers can directly communicate with one
another. Some firewalls support explicit protocols for tun-
neling, such as [12]. Since this is not widely supported,
another option is hole-punching through NAT boxes [10].
Based on hole-punching, Nylon is a gossip-based service
that provides each peer with a random sample of nodes that
it can communicate with [11]. [4] finds that hole-punching
works for UDP in about 80% of cases, and for TCP in about
65% of cases.

Our work can be thought of as combining advantages of
both approaches. We use a superpeer approach that does not
require any special features of firewalls, but the only extra
work that the superpeers do is forwarding traffic. Other-
wise, all peers are equal participants. This hybrid approach
does not prevent the overlay protocol from exploiting het-
erogeneity or proximity. Thus protocols that try to exploit
heterogeneity such as HEAP [5] can take advantage of our
approach to overcome the presence of firewalls, while al-
lowing hosts with high capacity, even confined ones, to do
more work than others.

Finally, previous works (such as [7]) have evaluated the
performance of gossip protocols over random graphs. Typ-
ically these works assume either a regular graph, or that ev-
ery pair of nodes can exchange messages directly. In our
work we are studying the behavior of gossip protocols in
scenarios that impose limitations to which nodes can inter-
act directly.

5. Conclusion
We have presented a new approach to balance gossip ex-

changes in networks with firewalls and NAT boxes. When
compared with classic gossip protocols, our approach is
able to ensure that all nodes in the system participate in
a similar number of gossip exchanges independent of the
network topology. Moreover, we have presented experi-
mental results showing that the increase in latency imposed
by our solution is acceptably low, and that the communi-
cation overhead is acceptable for gossip-based applications
that are CPU intensive.
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