

Adding High Availability and Autonomic Behavior to Web Services

Ken Birman, Robbert van Renesse, Werner Vogels1
Dept. of Computer Science, Cornell University

{ken,rvr,vogels}@cs.cornell.edu

1 Our work was supported in part by DARPA/AFRL Grant number IFGA-F30602-99-1-0532 and in part by the National
Science Foundation under its ITR program. Additional support was provided by the AFRL Infrastructure Assurance
Institute, AFOSR, and Microsoft Research.

Abstract

Rapid acceptance of the Web Services architecture
promises to make it the most widely supported and
popular object-oriented architecture to date. One
consequence is that a wave of mission-critical Web
Services applications will certainly be deployed in
coming years. Yet the reliability options available within
Web Services are limited in important ways. To use a
term proposed by IBM, Web Services systems need to
become far more “autonomic,” configuring themselves,
diagnosing faults, and managing themselves. High
availability applications need more attention. Moreover,
the scenarios in which such issues arise often entail very
large deployments, raising questions of scalability. In this
paper we propose a path by which the architecture could
be extended in these respects.

1. Introduction

There is a tremendous difference between a computing
system that works and one that works well. In what
follows, we suggest that for mission-critical purposes, the
Web Services architecture risks working, but not
particularly well, and that this poses serious issues for
enterprises that are already deeply committed to Web
Services deployments. If these two trends continue
unchanged, we face a future in which important
applications will lack the assurance properties that their
users expect, with all sorts of undesirable implications.

A thorough treatment of assurance properties would
need to consider several kinds of reliability and security
issues, system installation, configuration and self-
management. This paper is considerably narrower: we
focus on reliability issues associated with highly available
applications – applications that need to remain
operational and rapidly responsive even when failures
disrupt some of the nodes in a system. We suggest that
although reliability has received a great deal of attention
in the W3 community, availability has been largely

overlooked. Indeed, high availability applications with
quick response times appear to be at odds with some
aspects of the Web Services reliability model.

A decade or more in the past, such a finding might
have been seen as a comment on the state of the art, but
now we know far more about high availability,
scalability, and other forms of reliability [1, 2]. Today,
the real implication of our observation is that Web
Services are missing some basic components that have
proved themselves invaluable in past work on highly
critical computing applications for settings such as stock
markets and air traffic control systems. But Web Services
systems are also expected to automatically find servers
and configure themselves, and then to operate securely
and reliably in a completely automated manner. This goes
beyond what we know from the past, pointing to a need
for a new kind of technology – what IBM has been
calling “autonomic” functionality.

This paper proposes extensions to the Web Services
architecture to support mission-critical applications.
Examples include standard services that track the health
of system components, mechanisms for integrating self-
monitoring, self-diagnosis of faults and self-repair into
applications, automated configuration tools, scalable
event reporting mechanisms, and tools for large-scale data
mining. Our extensions appear to be fully compatible
with the existing framework. We are implementing the
proposal and hope to have a useable platform in place by
sometime in 2005.

Our work parallels trends in the industry, but differs
by focusing on a somewhat different application scenario.
Within industry, the Web Services community has
invested heavily in reliability mechanisms and related
features for applications hosted on corporate data centers.
For example, IBM’s Web Sphere v6 product release
includes replication, data streaming, sophisticated user-
programmable failure detection, reliable messaging, and
events – roughly the same feature set examined in our
work. Our effort is distinguished by support for

consistent, coordinated behavior even when a system
includes large numbers of lightweight components
(including both WS clients and also small WS servers),
emphasis on scalability issues, and reduced emphasis on
transactional database backends. Our goal reflect an
interest in supporting very “small”, flexible Web Services
– high availability distributed objects.

To illustrate the issues, this paper focuses on a
hypothetical scenario that might arise if an online vendor
were to offer developers a library of “Web Serverlets” for
inclusion into third-party applications. These developers
include the serverlets into their applications, and then
deploy them onto “4th party” end-user systems. Our e-
tailer now faces the challenge of ensuring that the
resulting system – a true 4-tier system in which there may
be serverlets running on tens of thousands of end-user
platforms – will operate correctly.

2. The Web Services Architecture

The Web Services architecture is generally described
at two levels. The first looks at the component structure
of a typical Web Services client that has located and
bound itself to a Web Services server, which in turn
serves as a front end for one or more back-end servers.
The Web Services front end runs on one more front-end
machines, and the client systems run on a diversity of

remote machines, accessing the data center over the
Internet. Figure 1 depicts this scenario.

A second way to discuss the Web Services architecture
focuses on the behavioral abstractions supported. This
leads to the sort of component stack diagram seen in
Figure 2. Here, one sees a set of standards endorsed by
the W3 consortium, typically describing protocols that
orchestrate actions spanning both clients and servers. In
this paper, we’ll be particularly interested in reliability
options available through the standards WS_Reliability,
WS_ReliableMessaging and WS_Transactions.

3. Reliability

Although the Web Services architecture includes a
reliability specification and an underlying reliable
message passing component, the details of these parts of
the framework are still a subject of debate. To understand
the nature of the problem, we’ll now consider a scenario
that might arise in our e-tailer’s 4-tier system. A close
look will then reveal that while the architecture should
work well for certain kinds of applications, there are
others that just won’t fit comfortably within the proposals
now on the table.

For clarity of exposition, we’ll assume that our e-tailor
is a medical supply vendor. The Web Serverlet library
consists of a collection of small applets that can be used
in client applications to place orders, track status, obtain

Figure 0: Web Services Client/Server Structure.

Web
Serve

(e.g.
WebSpher ,

Indig
WebLogic)

DB
serve

SA

WSDL -
described

Web Service

Web
Ap

Serve

Web Service
invoker

COM
Ap

CORB
Ap

C
Ap

serverlets

SOA
messaging

Client Server

Business
Processes

Quality
of

Service

Description

Messaging

Transport

Coordination

Reliable
Messaging

Security

Business Process Languages

XML, Encoding

Other
Protocols

TCP/IP or other network transport protocols

SOAP

WSDL, UDDI, Inspection

Transactions

Figure 0: Web Services Stack

copies of invoices, pay outstanding balances, and so
forth. A typical application might be a system developed
to automate a medical practice or a hospital. By including
these Web Serverlets into the application, the developer is
freed to concentrate on functionality needed by the end-
users, tapping into the e-tailer’s backend systems and
order fulfillment capabilities without needing to duplicate
what would presumably be an enormously complex
system.

The reliability of the resulting product may boil down
to a question of reliability of the e-tailer’s 4 tier
architecture. If something causes an operation to delay
“unreasonably”, the hospital may be unable to place
orders for urgently needed supplies, and will soon be on
the telephone to the application developer, who will turn
to the e-tailor for help (or worse). In effect, the e-tailor’s
enterprise has enlarged to include not just the computers
in its own data center, but also the thousands of client
systems in which its Web Serverlets have been
embedded.

What does “reliability” entail in such an application?
Setting the development and debugging process to the
side, and ignoring issues associated with configuration
(important issues), there are still a number of problems
that may arise at runtime, and that the application itself
will need to deal with in an automated manner. The
following five broad cases need to be addressed:

1. A failure could cause the client system to crash
while performing an operation.

2. An outage could disrupt connections from the
client system to the Internet.

3. A network outage could prevent the client system
from connecting to a subset of the data centers
operated by the e-tailer (e.g. others might still be
accessible).

4. Something could go wrong in the Web Service
dispatcher to which the client is connected (it
might crash, become overloaded, come under a
DDoS attack, etc).

5. Something could go wrong on the database cluster
running the back-end service.

The Web Services architecture offers different
responses to these varied scenarios, depending in part on
the features supported by the specific platform on which
the application was built, and on the way that the system
used those features. Broadly, the technology support
available falls into the areas covered by the
WS_Transactions and WS_Reliability specifications, and
in the WS_ReliableMessaging layer implemented in
support of these specifications.

WS_Transactions offers support for two kinds of
transactions. Basic transactions are short-running
operation sequences on one or more transactional
backend services, terminated by a 2-phase commit and
offering ACID properties. Business transactions script a
series of basic transactions and include exception
handling logic.

WS_Reliability and WS_ReliableMessaging offer
support for message queuing intermediaries: services that

accept requests on behalf of the client, persist them, and
then issue those requests when the server becomes
available (and similarly pass responses back). The
request should be uniquely identified by the client, and
the interface provides an acknowledged handoff protocol,
so that the client can be sure that the intermediary has the
request safely in hand. Various options permit the client
to preprogram the actions to take in the event of a failure:
one can specify that an operation should occur at most
once, at least once, or “exactly once.” Implicit in the
standard is the assumption that if the intermediary fails
after acknowledging a request, the client won’t retry
through some other intermediary – instead, it should wait
until the failure is repaired, at which time the
intermediary will take the appropriate action to push the
operation forward.

If we look closely at our list of potential outages, it
should be clear that these mechanisms respond to some of
the issues, but not all of them. WS_Transaction
guarantees that servers won’t be left in an inconsistent
state if a client crashes during a multi-operation sequence,
but is probably not needed if the client is performing just
a single operation on a single server. WS_Reliability
offers ways to issue a request while a server is
inaccessible, and also to reissue a request without fear
that it will be performed more than once, provided that
the server itself supports the necessary mechanisms to
identify duplicates and store replies. Most often, these
properties would require a true message queuing
intermediary that logs operations and replies to disk, a
potentially costly action. Moreover, as just noted,

ensuring that a request is performed exactly once in this
architecture may entail waiting for a failed component to
restart – a delay that could involve many minutes.

High Assurance

Enhanced
Communication

Fault Detection

Data
Dissemination

(DD)

Monitoring and
Distributed

Control (MDC)

Consistent and
Reliable Messaging (CRM)

Component Health Monitoring (CHM)

Scalable Event
Notification

(EVN)

Figure 0: Components of Proposed Extensions to Web Services Architecture

In summary, although we do have ways to handle
many kinds of exceptions in the Web Services
architecture, it lacks lightweight ways to guarantee high
availability, where the application is trying to perform a
single operation rapidly and simply wants a quick
response. The architecture seems to be designed with a
different style of application in mind: one in which a
rather hefty back-end server is being used, in which
infrequent but potentially rather long delays are basically
acceptable to the designer, and in which waiting for a
failed component to reboot and relaunch associated
services is simply a fact of life.

If we think of Web Services as a gateway to very
heavy-weight applications, these would be reasonable
assumptions. Indeed, one approach holds that it is a
mistake to expect prompt response from a Web Service –
“Web Services are not Distributed Objects.” Revisiting
our scenario with this model in mind, one might argue
that the client would have been wiser to hand its request
to a message queuing subsystem. That subsystem would
log the request, and then pass the operation to the server.
The client can then poll the response queue for a reply.

The main objection to this pipelined queuing approach
is performance. We’ve taken a transaction that might
have been possible with a few milliseconds of delay and
introduced what will probably be many seconds of delay,
if not minutes when a failure actually does occur.
Moreover, the approach introduces a very large variance

in the expected delay. To the extent that application
designers try to use Web Services in light-weight object
oriented applications – applications where we might in
the past have used CORBA technologies, for example, all
of this may seem excessively expensive and slow. This
raises a basic set of questions.

First, is the pipelined approach to reliability really
necessary? What can be done to offer high availability in
a Web Services environment? In what follows, we’ll
argue that even very limited process group replication
mechanisms could go far towards supporting a high
availability and rather lightweight reliability option for
Web Services, by leveraging the mechanisms already
described but eliminating their need to persist data to disk
and to wait for failed components to restart. By getting
these very costly steps out of the path, we can offer the
sort of quick responses that one expects in other kinds of
object oriented settings.

But a second and broader issue is also apparent. If we
simply offer mechanisms capable of overcoming
detectable failures, the application using those
mechanisms might still suffer availability problems for
other reasons. In many settings, the ability to sense a
problem is itself a problem. As we look towards the sorts
of ambitious 4-tier applications cited earlier, we should
also recognize the need for mechanisms capable of
helping applications monitor the state of a system,
diagnose problems, and orchestrate a response when a
problem occurs. Moreover, much of this functionality
will be needed not just within the data centers that host
servers, but also on the client side of a Web Services
application – the little serverlets handed out by our e-
tailer, for example, will need ways to monitor their health,
their connectivity to the data center, and to react in a
loosely coordinated way if disruptions occur. All of this
leads to a set of proposed Web Services extensions,
described in the remainder of this paper, that both solve
the specific problem before us and also open the door to
all sorts of new applications.

4. Reliability: The Real Requirements

Before plunging in, it may be helpful to review some
of the background knowledge in the area of highly
available, self-managed distributed applications. Our
group has worked in this area for twenty years, first
developing the Isis Toolkit, then a series of follow-on
systems (Horus, Ensemble and JavaGroups; the latter is a
component of the popular JBoss platform). Most
recently, we developed two extremely scalable
technologies: Astrolabe and Bimodal Multicast. Of these,
Isis gained the widest acceptance – it is still used today in
the New York and Swiss Stock Exchanges, the French
Air Traffic Control System and the US Navy’s AEGIS
warship. These experiences lead to a number of insights.

1. Consistency (in both an informal sense and a
more mathematical sense) is at the core of
predictable, highly available applications. A
fundamental aspect of consistent behavior
concerns agreement on system membership [3, 5]
If different components have different, confused,
notions of which components are healthy and
which are faulty or degraded, this will be reflected
in a confused higher level behavior. Consistent
failure detection and reporting can orchestrate
consistent reaction. In much of this work, one
finds that the most fundamental notion of
consistency concerns tracking the components that
are operational members of the system.
Consistent (agreed-upon) membership information
can drive all sorts of higher level mechanisms.

2. Process group replication techniques can be used
to obtain very high performance cluster-style
implementations of critical services. However,
the groups need to be kept small. The techniques
we understand best work well with 3 to 5 group
members, but scalability problems are evident in
larger settings. The Isis Toolkit provided such
functionality as data and service replication and
synchronization, monitoring of system status, help
in launching a new program and integrating it into
a running system, event notification (also called
publish-subscribe), and reliable data dissemination
(multicast). However, to reiterate the point, these
tools work only for relatively small server groups,
albeit with potentially larger numbers of clients.

3. A solution must enable “local” interventions. For
example, in our e-tailer scenario, both the client
system and many of the backend applications are
likely to be legacies, hence difficult to modify.
Any new mechanisms need to operate primarily
within the Web Services dispatching component.
Having done this, of course, there may also be an
opportunity to extend the platform on the client
side, and developers of new Web Services servers
would presumably take advantage of all available
technologies. But at least some basic set of
functions need to work even if the clients and
servers are unmodified.

4. Large-scale systems need mechanisms for
monitoring their own state, diagnosing problems,
and initiating repair when necessary. Here, we
begin to step beyond the basic issue of high
availability by shifting attention to questions of
large-scale management and control of an
application that may include components on
thousands or even tens of thousands of sites,
scattered over the Internet and in many cases,
behind firewalls and network address translators.
Although one can build mechanisms that scale to

this degree, it isn’t easy, and few off-the-shelf
technology options exist for such settings.
Mechanisms that respond to these monitoring
objectives would also be useful in other settings.

Two broad observations follow from these comments.
First, we note that high availability solutions depend up
replication of underlying critical components.
Additionally, we note that high availability doesn’t come
about by accident. And this should be a source of
concern, because Web Services, for the time being, has
lacked a systematic set of mechanisms aimed at
applications demanding rapid response times as opposed
to pipelined on transactional forms of reliability.

5. Extending the Web Services Architecture

Our arguments lead to the proposed extensions shown
in Figure 3. The first two components focus on high
availability and replication:
• Component Health Monitoring (CHM). This

module represents a new service used to track the
health of individual Web Services components. The
service might be imagined by analogy to the
Internet’s Domain Name Service: The DNS maps
host names to IP addresses, while the CHM maps
component identifiers to health information. To
carry out this service, the CHM would watch the
monitored components and report changes in their
state in a consistent manner to all components
“interested” in it. The data would then be used to
detect failures and trigger rollover or other
compensation actions. For example, a Web Service
client connected to a data center would be said to
“have an interest” in the health of the services
running on that center.

• Consistent and Reliable Messaging (CRM). The
CRM layer basically offers a simple process group
mechanism, limited to small groups that use virtual
synchrony for replication. CRM offers both a group
communication interface and a second TCP interface
in which one or both endpoints of a standard TCP
stream can be replicated over a set of group
members. In this mode, CRM offers a form of
unbreakable TCP endpoint. The idea is that when
WS_Reliability is used to talk to a group over a TCP
connection that terminates in such a replicated
manner, we can achieve safe handoffs without
needing to persist information onto a disk, and can
tolerate failures without waiting for failed
components to restart. CRM can also support other
styles of group applications in which data is
replicated, but is not as ambitious a group computing
toolkit as we supported in our past work on Isis,
Horus and Ensemble.

These two components of our system are designed to
benefit even legacy clients and servers – they can be used
exclusively in the router component of a Web Services
platform and the result will simply look like a very
reliable router that remains operational even when some
of its components crash and restart. The remainder of our
platform aims at a new set of clients and servers that are
designed with high availability and “autonomic behavior”
in mind. These include:
• Data dissemination (DDS). The DDS component

would provide reliable multicast mechanisms for use
in replicating data within critical servers and for
streaming styles of broadcast from Web Service
systems to their clients. Once a server can be
counted upon to remain operational, we believe that
it will often be important to stream data of various
kinds from it to its clients. Thus DDS needs to
operate at Internet scale and to be useable even in the
presence of firewalls and address translators.

• Monitoring and distributed control (MDC). The
MDC component responds to the need for
mechanisms capable of monitoring and managing the
entire system, by tracking performance metrics and
other state variables and reporting them out. In
particular, whereas the CHM service is used to detect
failures of individual Web Services components, the
MDC service looks at aggregated properties of the
system as a whole. For example, in our e-tailer
scenario, MDC might be used to detect a problem
preventing large numbers of serverlets within a
hospital from connecting to the e-tailor’s Cleveland
data center. Such a condition may not involve the
failure of any part of the Web Services platform – it
could arise from the Internet itself, and may be
detectable only by collecting access statistics from
large numbers of clients and correlating them.

• Event notification (EVN). When an event occurs it
may have system-wide implications, and waiting for
applications to notice the new situation isn’t always
appropriate. For example, perhaps a data center that
was online is about to go offline and needs to instruct
clients to roll-over to specific alternative servers. An
event notification could tell them to do so. DDS and
EVN play related roles, but whereas the DDS service
focuses on streams of data sent by the Web Service
to its clients, the EVN service focuses on urgent,
small, one-time events. We’re hoping to base the
interface on the new WS_Eventing specification.

Reiterating the point made in Section 4, we see it as
very important that all of these services provide strong,
well specified properties to the application developer.
Lacking rigorous semantics, applications layered over
them will suffer from unpredictable and hence potentially
unreliable behavior. Brevity precludes a very detailed

discussion of this point, but in what follows, we touch on
the major requirements we’ve identified for each of the
services and offer some preliminary thoughts on how
each could be architected.

5.1. Component Health Monitoring (CHM)

Component health monitoring is basically a failure
detection service, although we favor a more generic term
because failure is sometimes interpreted overly narrowly.
After all, a server may not be acceptable for a given
purpose if its mean response time is degraded, even if the
server is still operational, and one can generalize this
observation to a very broad comment that “failure” is
often in the eye of the beholder.

Yet a converse observation also applies. Consider a
simple system consisting of a primary server, a backup,
and a set of clients, and used in a very sensitive setting.
Perhaps, our server is an air-traffic control server that
tracks status for sectors of the sky in some region, telling
controllers whether it is safe to route a plane into that
sector. It is easy to see that if the clients are left to make
their own failure detection decisions, a “split brain”
condition could arise in which some clients roll to the
backup while others remain connected to the primary [3].
In this state, inconsistent advice could be given out,
compromising flight safety.

One solves such a problem by introducing a system-
level protocol to enforce agreement on failure detections:
if a failure is sensed (by any client), a protocol runs and
then all components monitoring the failed component are
informed as simultaneously as possible about the event.
The property we are after is one that is formally called the
Consensus property, and one typically uses a group
membership protocol to enforce it [2]. On the other hand,
weak notions of failure (e.g. “service A is too sluggish, so
I’ll try service B”) would typically not require the
consensus property.

This leads to a CHM architecture supporting two
levels of monitoring, one guaranteeing just a weak form
of consistency, and the other offering consensus. The
service itself would probably be deployed and used in a
manner similar to the Internet DNS. When a component
is determined to have failed, either by a representative of
the service or by a client, this would trigger the
appropriate protocol among the group of service
representatives with an interest in the component in
question, after which each representative would notify the
local components that have registered such an interest.

5.2. Consistent, Reliable Messaging (CRM)

As noted in Section 4, our team has considerable
experience using process group replication techniques to
build highly available applications. CRM is basically a
simple, highly optimized group communication layer that

supports the virtual synchrony model and can be used to
replicate data or to perform a simple task fault-tolerantly.
CRM lacks many of the features found in previous
generations of group communication tools. We intend it
as a simple, extremely fast, very lightweight mechanism
with limited functionality offered to the user.

This said, CRM does offer one rather unusual group-
based communication option. The Web Services
architecture inherits a strong dependency on the TCP
protocol as used by Web Browsers. Most clients will use
TCP to talk to Web Services. However, TCP is a two-
party protocol, and this causes problems: Web Services
interpose at least one process between a client and the
server it is contacting, giving rise to the many scenarios
cited in Section 2. WS_Reliability handles this by having
the intermediary take responsibility for the request by
making it persistent, but if that intermediary fails, the
connection breaks and the client may need to wait for the
failed component to recover. Replication of the
intermediary processes is clearly needed for high
availability.

Accordingly, we are designing an extension to TCP
using techniques developed in our work on process group
replication, but that never entered into wide use.
Basically, these allow us to connect a normal
(unmodified) TCP client to a group of processes that
jointly manage a server-side TCP endpoint. The resulting
shared endpoint allows the set of servers to cover for one-
another.

It is natural to wonder how costly this form of
replication will be. To accomplish it, one server within
the group is elected as a coordinator (the top one, in
Figure 4), and it broadcasts every incoming IP packet
associated with the TCP connection, permitting group
members to maintain identical endpoint state [2]. Indeed,
even timer events are multicast, so that every action that
can change the state of the server-side TCP endpoint will
be seen in the same order by all replicas. Should the
coordinator fail, this means that one of the replicas can
take over by rebinding the IP address associated with the
endpoint and then resuming action just as if it had been
the coordinator all along.

In our work on the Isis, Ensemble and Horus systems,
we found that highly optimized group replication
protocols for settings such as this can run at a rate of
80,000 or more events per second – and this was with
technology that is now several generations old.
Accordingly, we believe that replication can be cheap
enough to pass largely unnoticed, particularly given the
many other overheads in the Web Services architecture.

The “endpoint” group can then use the WS_Reliability
acknowledgement protocol to interact with its client,
functioning as a “high availability intermediary”. This
approach permits us to achieve extremely high levels of
availability without sacrificing performance in the manner

seen when using message queuing intermediaries. Note
that the CRM module could also be used for other kinds
of replication in server or even client applications, an
option we believe will open the door to building new
kinds of high availability servers.

5.3 Data Dissemination (DDS)

CHM and CRM are of potential value to legacy clients
and servers, because they can be used transparently by a
set of Web Services routers without changing the client or
server applications. However, we now describe a series
of platform features, aimed at situations in which the
client side will play an active role in self-management.
The DDS module provides reliable multicast-style data
streaming from the Web Services platform to a potentially
large number of clients that must link directly to the DDS
protocol. Our DDS framework standardizes such notions
as joining a group, sending a message, and delivering a
message, but offers plug-in flexibility with respect to the
actual properties of the protocol. The current thinking is
to exploit the approach we used in our Horus and
Ensemble multicast systems, both of which permit the
user to “snap in” a protocol stack consisting of one or
more multicast microprotocols, each concerned with a
specific property. For example, one microprotocol could
offer data encryption, while another is concerned with
hiding out-of-order delivery and yet another with the
virtual synchrony reliability property.

A given application would assemble a stack of
protocols having the desired composite property and snap
it into place, then would use the standard API to send and
receive messages. We anticipate that once a group has
been created, its properties would not be changed on the
fly, although there is prior work on that problem and this
decision could be revisited in the future.

5.4. Monitoring, Distributed Control (MDC)

As noted earlier, we believe that monitoring a system
“as a whole” poses distinctly different challenges than
monitoring its individual components. Our group
developed Astrolabe as a response to these needs [4].

Astrolabe works by monitoring the dynamically
changing state of a collection of distributed resources,
reporting high quality “local” data and summaries of
remote information collected system-wide to its users. It
organizes this data into a hierarchy of domains, which we
call zones, and structures each zone as a small relational
database – a table, with a row for each underlying zone or
system component, and a column for each of a set of
monitored attributes. Attributes may be redefined while
the system is running, and updates propagate within
seconds, even in huge networks. A novel peer-to-peer
protocol is used to implement the Astrolabe system,
which operates without any central servers.

Much of the power of Astrolabe stems from its ability
to support online data mining and data fusion. The system
continuously computes summaries of the raw data it
monitors, using on-the-fly aggregation. The aggregation
mechanism is controlled by SQL queries, and operates by
extracting summaries of data from each zone, then
assembling these into higher-level database relations. By
reprogramming these features on the fly (a task very
much like asking a database to compute a dynamically
materialized relation), a human user can reconfigure
Astrolabe within seconds, causing the system to begin
tracking information that it may not even have been
instrumenting before the request. Thus, as the needs of its
users change, the behavior of the system can adapt to
respond to those new requirements. (Aggregation can also
be valuable even if the “user” is actually the application
itself, but in this case the aggregation queries would be
predefined ones and wouldn’t change while the system is
running). The speed and agility of the technology open
the door to a completely new way of viewing the system
monitoring and control task.

Astrolabe’s aggregation mechanisms are analogous to
database queries. When the underlying information
changes, Astrolabe will automatically and rapidly
recompute the associated aggregates and report the
changes to applications that have registered their interest.
Even in huge networks, any change is soon visible
everywhere. For example, suppose that a few servers in a
data center come under a distributed denial of service
attack. Suspecting this, an administrator might ask
Astrolabe to capture some sort of statistic symptomatic of
attack – perhaps, the rate of incomplete attempted
connections to each server. In doing so, Astrolabe might
also be asked to begin collecting instrumentation of a type
that it had not previously been monitoring.

Astrolabe has potential access to a great variety of
host-maintained statistics and can also tap into data
maintained by the application or even stored in files and
databases. Thus, subject to user-enforced permissions, a
wealth of information is potentially available to the
individual operating the system, as well as to application
programs that exploit Astrolabe as a standard
infrastructure for capturing system status data. We see
Astrolabe as a new kind of system-wide service that, if
deployed widely enough, could encourage a new
generation of applications that adapt under stress more
rapidly and more automatically than is possible in the
absence of such services. The value of Astrolabe in such
a setting is multiple: It brings standards to the monitoring
task, so that all aspects of an application fall under a
single umbrella. It offers a form of “one-stop-shopping”,
bringing standardization to the way that monitored data is
delivered to users, both human and programs. And it
offers robustness and security, which are often lacking
when such problems are tackled in ad-hoc ways.

In a Web Services application, we believe that
Astrolabe can be used to create new client-side options
for detecting and responding to problems such as
difficulty accessing a data center, while also helping the
administrator of the data center manage the application as
a whole and diagnose failures that might require
intervention. The Astrolabe epidemic protocols often
route around network disruptions that prevent TCP
connectivity, hence Astrolabe will usually be operational
even under conditions where other Web Service protocols
are disabled and hence not useful.

5.5. Event Notification (EVN)

The last major component of our architecture is still at
an early design stage. Our current thinking is to support a
form of distributed query processing, in which the
components of a Web Services system are treated as small
databases containing one or more “tuples” that can be
queried (very likely, the same tuples from which
Astrolabe extracts its data). Whereas Astrolabe works to
continuously monitor and aggregate all of this data and
limits itself to a fairly small amount of data, we envision
an EVN service that would start by doing more work
locally: looking at a potentially large amount of data on
each node, and watching for conditions of interest. When
a condition arises, the system would notify applications
watching for that condition. Ideally, we believe that such
an approach can support true queries: the application
program would express a relational query over the
“system state”, and we would compile this down to local
actions, then finalize the query evaluation by combining
the local results within the network. Rather than
speculate, however, we leave further details to some
future treatment. As noted earlier, we’re hoping to base
the interface on the new WS_Eventing specification.

How would our architecture respond to the needs of
the e-tailer cited as an example in Sections 1 and 2? In
this Section, we briefly walk through the architecture.
Figures 4 and 5 illustrate the approach.

The basic solution we envision starts by replicating the
state of the Web Server intermediary on 2 or more nodes,
offering fault-tolerance against disruptions that might
occur during request processing. We use the replicated
TCP functionality of the CRM component here, hence a
client can use a traditional TCP implementation, and yet
its actions are replicated across a set of servers.
Similarly, when the backend database application
interacts with the server group, information is replicated
across the group members. To exploit this initial feature
of our solution, no changes are required in the client or
server systems.

The remaining failure concerns enumerated at the
outset can be tackled using other components of our
architecture, or by exploiting the mechanisms already
proposed as part of the WS_Reliability and
WS_ReliableMessaging standards. Tackling the self-
management aspects of the problem using our tools
requires some changes on the client side and hence is
feasible in the scenario of Section 2, where the e-tailor
developed the serverlets and was in a position to link
them to our package, but might not be feasible in some
other setting, for example one in which a similar set of
issues arise but there is no functionality “owned” by the
Web Services platform developer running on the client
systems.

We anticipate using the DDS, MDC and EVN
components of our plaform for several purposes. Using
DDS it is possible to stream information to client systems,
such as continuous reports on inventory levels, pricing, or
(moving away from the etailer scenario) other sorts of
soft real-time data. MDC would be used by the Web
Services client systems to report their status, and in
particular to share information about performance
obtained from the various data centers 6 3 As illustrated in Figure 5, clients could thus sense one-
another’s problems and when a pattern arises (“nobody
can get through to Sunnyvale”), would be in a position to
undertake a coordinated, clean, roll-over to a backup
center. Meanwhile, MDC would let the administrator of
the data center detect problems very quickly and address
them even before end-users are aware of a difficulty. One
can easily identify additional MDC uses for purposes
such as load-balancing, sharing of information in client-
side caches, etc.

4

11
client 2,

MDC also has applications within the data center
itself. Today, we have relatively few monitoring options

WS dispatcher has been turned
a group that replicates the TCP

Bac - end server is
unchange
Figure 1: A reliable client-server interaction in our
proposed architecture

6. Pulling it All Together

for large, complex applications spread over many
machines (companies like Google, eBay and Amazon
report that their data centers have thousands of machines),
and perhaps also over multiple geographic locations.

Better data would permit applications to become more
self-controlled: adaptive, self-configurable, and self-
repairing.

EVN would be used for “ad hoc” notifications. For
example, while we use DDS where there is a long-term
relationship between data consumer and the server
producing that data, EVN might be used to notify the
clients connected to such and such a server that the server
will be shut down for maintenance in 5 minutes. In
systems that do extensive caching (likely to be important
in high-performance Web Services applications), EVN
could be used for notification when a cached data item
changes or must be invalidated. More broadly, EVN can
play roles similar to those of publish-subscribe systems,
although (unlike most such systems), our architecture is
designed to function at Internet scale and to offer a more
flexible range of reliability guarantees.
9. Conclusions

A review of the Web Services architecture reveals
many issues that could limit high availability, reducing
the perceived reliability of the architecture for
applications unable to work in a transactional paradigm
and for which the pipelined style of reliability favored in
the WS_RELIABILITY specification would be
inappropriate. The problem may be particularly acute in
interactive applications that treat Web Services as if they
were distributed objects. We propose a set of extensions
to the basic architecture that work within the standards,
yet are able to respond to many of these needs. Our
solutions offer a basic form of fault-tolerance where
client systems must remain unmodified, and a more
sophisticated fault-tolerance property where the client can
be linked to a new library.

10. References

[1] K. P. Birman A Review of Experiences with Reliable
Multicast. Software Practice and Experience Vol. 29, No.
9, pp, 741-774, July 1999.

[2] K.P. Birman. Reliable Distributed Systems. Springer-
Verlag. 2004. (Pages 319-329 discuss the fault-tolerant
TCP endpoint proposed in Section 3.2.)

 [3] B. Glade and K. Birman. Reliability Through
Consistency. IEEE Software (Special Issue on Safety and
Reliability), May 1995.

[4] R. van Renesse, K. Birman and W. Vogels.
Astrolabe: A Robust and Scalable Technology for
Distributed System Monitoring, Management, and Data
Mining. ACM Transactions on Computer Systems, May
2003, Vol.21, No. 2, pp 164-206

[5] W. Vogels. Tracking Service Availability in Long
Running Business Activities, in Proceedings of the First
International Conference on Service Oriented Computing,
Trento, Italy, December 2003.

[6] WS_RELIABILITY, WS-ReliableMessaging,
WS_Eventing. W3W Working Drafts. August 8, 2003.
http://www.w3.org

Internet

6.0

4.1

6.2

Word
Version

014.5cardinal

011.5falcon

102.0swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.83.1Paris

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

San Francisco New Jersey

SQL querySQL query

Virtual “summary” table

Astrolabe

Figure 5: In a traditional Web Services architecture,
clients have no information about data center status.
The MDC (Astrolabe) lets clients track one-another’s
status and that of the center. They use it to diagnose
problems and react in a coordinated way.

