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Abstract 
 

Rapid acceptance of the Web Services architecture 
promises to make it the most widely supported and 
popular object-oriented architecture to date.  One 
consequence is that a wave of mission-critical Web 
Services applications will certainly be deployed in 
coming years.  Yet the reliability options available within 
Web Services are limited in important ways. To use a 
term proposed by IBM, Web Services systems need to 
become far more “autonomic,” configuring themselves, 
diagnosing faults, and managing themselves.  High 
availability applications need more attention.  Moreover, 
the scenarios in which such issues arise often entail very 
large deployments, raising questions of scalability. In this 
paper we propose a path by which the architecture could 
be extended in these respects.  
 
1. Introduction 

There is a tremendous difference between a computing 
system that works and one that works well.  In what 
follows, we suggest that for mission-critical purposes, the 
Web Services architecture risks working, but not 
particularly well, and that this poses serious issues for 
enterprises that are already deeply committed to Web 
Services deployments.  If these two trends continue 
unchanged, we face a future in which important 
applications will lack the assurance properties that their 
users expect, with all sorts of undesirable implications. 

A thorough treatment of assurance properties would 
need to consider several kinds of reliability and security 
issues, system installation, configuration and self-
management.  This paper is considerably narrower: we 
focus on reliability issues associated with highly available 
applications – applications that need to remain 
operational and rapidly responsive even when failures 
disrupt some of the nodes in a system.  We suggest that 
although reliability has received a great deal of attention 
in the W3 community, availability has been largely 

overlooked.  Indeed, high availability applications with 
quick response times appear to be at odds with some 
aspects of the Web Services reliability model.   

A decade or more in the past, such a finding might 
have been seen as a comment on the state of the art, but 
now we know far more about high availability, 
scalability, and other forms of reliability [1, 2]. Today, 
the real implication of our observation is that Web 
Services are missing some basic components that have 
proved themselves invaluable in past work on highly 
critical computing applications for settings such as stock 
markets and air traffic control systems.  But Web Services 
systems are also expected to automatically find servers 
and configure themselves, and then to operate securely 
and reliably in a completely automated manner. This goes 
beyond what we know from the past, pointing to a need 
for a new kind of technology – what IBM has been 
calling “autonomic” functionality.   

This paper proposes extensions to the Web Services 
architecture to support mission-critical applications. 
Examples include standard services that track the health 
of system components, mechanisms for integrating self-
monitoring, self-diagnosis of faults and self-repair into 
applications, automated configuration tools, scalable 
event reporting mechanisms, and tools for large-scale data 
mining. Our extensions appear to be fully compatible 
with the existing framework.  We are implementing the 
proposal and hope to have a useable platform in place by 
sometime in 2005.   

Our work parallels trends in the industry, but differs 
by focusing on a somewhat different application scenario.  
Within industry, the Web Services community has 
invested heavily in reliability mechanisms and related 
features for applications hosted on corporate data centers.  
For example, IBM’s Web Sphere v6 product release 
includes replication, data streaming, sophisticated user-
programmable failure detection, reliable messaging, and 
events – roughly the same feature set examined in our 
work.  Our effort is distinguished by support for 



consistent, coordinated behavior even when a system 
includes large numbers of lightweight components 
(including both WS clients and also small WS servers), 
emphasis on scalability issues,  and reduced emphasis on 
transactional database backends.  Our goal reflect an 
interest in supporting very “small”, flexible Web Services 
– high availability distributed objects.   

To illustrate the issues, this paper focuses on a 
hypothetical scenario that might arise if an online vendor 
were to offer developers a library of “Web Serverlets” for 
inclusion into third-party applications.  These developers 
include the serverlets into their applications, and then 
deploy them onto “4th party” end-user systems.  Our e-
tailer now faces the challenge of ensuring that the 
resulting system – a true 4-tier system in which there may 
be serverlets running on tens of thousands of end-user 
platforms – will operate correctly. 

 
2. The Web Services Architecture 

The Web Services architecture is generally described 
at two levels.  The first looks at the component structure 
of a typical Web Services client that has located and 
bound itself to a Web Services server, which in turn 
serves as a front end for one or more back-end servers.  
The Web Services front end runs on one more front-end 
machines, and the client systems run on a diversity of 

remote machines, accessing the data center over the 
Internet.  Figure 1 depicts this scenario. 

A second way to discuss the Web Services architecture 
focuses on the behavioral abstractions supported.  This 
leads to the sort of component stack diagram seen in 
Figure 2.  Here, one sees a set of standards endorsed by 
the W3 consortium, typically describing protocols that 
orchestrate actions spanning both clients and servers.  In 
this paper, we’ll be particularly interested in reliability 
options available through the standards WS_Reliability, 
WS_ReliableMessaging and WS_Transactions. 

 
3. Reliability 

Although the Web Services architecture includes a 
reliability specification and an underlying reliable 
message passing component, the details of these parts of 
the framework are still a subject of debate. To understand 
the nature of the problem, we’ll now consider a scenario 
that might arise in our e-tailer’s 4-tier system. A close 
look will then reveal that while the architecture should 
work well for certain kinds of applications, there are 
others that just won’t fit comfortably within the proposals 
now on the table.  

For clarity of exposition, we’ll assume that our e-tailor 
is a medical supply vendor.  The Web Serverlet library 
consists of a collection of small applets that can be used 
in client applications to place orders, track status, obtain 

Figure 0: Web Services Client/Server Structure. 
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copies of invoices, pay outstanding balances, and so 
forth.  A typical application might be a system developed 
to automate a medical practice or a hospital.  By including 
these Web Serverlets into the application, the developer is 
freed to concentrate on functionality needed by the end-
users, tapping into the e-tailer’s backend systems and 
order fulfillment capabilities without needing to duplicate 
what would presumably be an enormously complex 
system. 

The reliability of the resulting product may boil down 
to a question of reliability of the e-tailer’s 4 tier 
architecture.   If something causes an operation to delay 
“unreasonably”, the hospital may be unable to place 
orders for urgently needed supplies, and will soon be on 
the telephone to the application developer, who will  turn 
to the e-tailor for help (or worse).  In effect, the e-tailor’s 
enterprise has enlarged to include not just the computers 
in its own data center, but also the thousands of client 
systems in which its Web Serverlets have been 
embedded. 

What does “reliability” entail in such an application?  
Setting the development and debugging process to the 
side, and ignoring issues associated with configuration 
(important issues), there are still a number of problems 
that may arise at runtime, and that the application itself 
will need to deal with in an automated manner.  The 
following five broad cases need to be addressed: 

1. A failure could cause the client system to crash 
while performing an operation. 

2. An outage could disrupt connections from the 
client system to the Internet. 

3. A network outage could prevent the client system 
from connecting to a subset of the data centers 
operated by the e-tailer (e.g. others might still be 
accessible). 

4. Something could go wrong in the Web Service 
dispatcher to which the client is connected (it 
might crash, become overloaded, come under a 
DDoS attack, etc).  

5. Something could go wrong on the database cluster 
running the back-end service. 

The Web Services architecture offers different 
responses to these varied scenarios, depending in part on 
the features supported by the specific platform on which 
the application was built, and on the way that the system 
used those features.  Broadly, the technology support 
available falls into the areas covered by the 
WS_Transactions and WS_Reliability specifications, and 
in the WS_ReliableMessaging layer implemented in 
support of these specifications.  

WS_Transactions offers support for two kinds of 
transactions.  Basic transactions are short-running 
operation sequences on one or more transactional 
backend services, terminated by a 2-phase commit and 
offering ACID properties.  Business transactions script a 
series of basic transactions and include exception 
handling logic. 

WS_Reliability and WS_ReliableMessaging offer 
support for message queuing intermediaries: services that 



accept requests on behalf of the client, persist them, and 
then issue those requests when the server becomes 
available (and similarly pass responses back).  The 
request should be uniquely identified by the client, and 
the interface provides an acknowledged handoff protocol, 
so that the client can be sure that the intermediary has the 
request safely in hand.  Various options permit the client 
to preprogram the actions to take in the event of a failure: 
one can specify that an operation should occur at most 
once, at least once, or “exactly once.”  Implicit in the 
standard is the assumption that if the intermediary fails 
after acknowledging a request, the client won’t retry 
through some other intermediary – instead, it should wait 
until the failure is repaired, at which time the 
intermediary will take the appropriate action to push the 
operation forward. 

If we look closely at our list of potential outages, it 
should be clear that these mechanisms respond to some of 
the issues, but not all of them.  WS_Transaction 
guarantees that servers won’t be left in an inconsistent 
state if a client crashes during a multi-operation sequence, 
but is probably not needed if the client is performing just 
a single operation on a single server.  WS_Reliability 
offers ways to issue a request while a server is 
inaccessible, and also to reissue a request without fear 
that it will be performed more than once, provided that 
the server itself supports the necessary mechanisms to 
identify duplicates and store replies.  Most often, these 
properties would require a true message queuing 
intermediary that logs operations and replies to disk, a 
potentially costly action.  Moreover, as just noted, 

ensuring that a request is performed exactly once in this 
architecture may entail waiting for a failed component to 
restart – a delay that could involve many minutes.  
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In summary, although we do have ways to handle 
many kinds of exceptions in the Web Services 
architecture, it lacks lightweight ways to guarantee high 
availability, where the application is trying to perform a 
single operation rapidly and simply wants a quick 
response.  The architecture seems to be designed with a 
different style of application in mind: one in which a 
rather hefty back-end server is being used, in which 
infrequent but potentially rather long delays are basically 
acceptable to the designer, and in which waiting for a 
failed component to reboot and relaunch associated 
services is simply a fact of life. 

If we think of Web Services as a gateway to very 
heavy-weight applications, these would be reasonable 
assumptions.  Indeed, one approach holds that it is a 
mistake to expect prompt response from a Web Service – 
“Web Services are not Distributed Objects.”  Revisiting 
our scenario with this model in mind, one might argue 
that the client would have been wiser to hand its request 
to a message queuing subsystem.  That subsystem would 
log the request, and then pass the operation to the server.  
The client can then poll the response queue for a reply.   

The main objection to this pipelined queuing approach 
is performance.  We’ve taken a transaction that might 
have been possible with a few milliseconds of delay and 
introduced what will probably be many seconds of delay, 
if not minutes when a failure actually does occur. 
Moreover, the approach introduces a very large variance 



in the expected delay.  To the extent that application 
designers try to use Web Services in light-weight object 
oriented applications – applications where we might in 
the past have used CORBA technologies, for example, all 
of this may seem excessively expensive and slow.  This 
raises a basic set of questions.   

First, is the pipelined approach to reliability really 
necessary?  What can be done to offer high availability in 
a Web Services environment?  In what follows, we’ll 
argue that even very limited process group replication 
mechanisms could go far towards supporting a high 
availability and rather lightweight reliability option for 
Web Services, by leveraging the mechanisms already 
described but eliminating their need to persist data to disk 
and to wait for failed components to restart.  By getting 
these very costly steps out of the path, we can offer the 
sort of quick responses that one expects in other kinds of 
object oriented settings. 

But a second and broader issue is also apparent.  If we 
simply offer mechanisms capable of overcoming 
detectable failures, the application using those 
mechanisms might still suffer availability problems for 
other reasons.  In many settings, the ability to sense a 
problem is itself a problem.  As we look towards the sorts 
of ambitious 4-tier applications cited earlier, we should 
also recognize the need for mechanisms capable of 
helping applications monitor the state of a system, 
diagnose problems, and orchestrate a response when a 
problem occurs.  Moreover, much of this functionality 
will be needed not just within the data centers that host 
servers, but also on the client side of a Web Services 
application – the little serverlets handed out by our e-
tailer, for example, will need ways to monitor their health, 
their connectivity to the data center, and to react in a 
loosely coordinated way if disruptions occur. All of this 
leads to a set of proposed Web Services extensions, 
described in the remainder of this paper, that both solve 
the specific problem before us and also open the door to 
all sorts of new applications. 
 
4. Reliability: The Real Requirements 

Before plunging in, it may be helpful to review some 
of the background knowledge in the area of highly 
available, self-managed distributed applications.  Our 
group has worked in this area for twenty years, first 
developing the Isis Toolkit, then a series of follow-on 
systems (Horus, Ensemble and JavaGroups; the latter is a 
component of the popular JBoss platform).  Most 
recently, we developed two extremely scalable 
technologies: Astrolabe and Bimodal Multicast.  Of these, 
Isis gained the widest acceptance – it is still used today in 
the New York and Swiss Stock Exchanges, the French 
Air Traffic Control System and the US Navy’s AEGIS 
warship. These experiences lead to a number of insights. 

1. Consistency (in both an informal sense and a 
more mathematical sense) is at the core of 
predictable, highly available applications.  A 
fundamental aspect of consistent behavior 
concerns agreement on system membership [3, 5]  
If different components have different, confused, 
notions of which components are healthy and 
which are faulty or degraded, this will be reflected 
in a confused higher level behavior.  Consistent 
failure detection and reporting can orchestrate 
consistent reaction.  In much of this work, one 
finds that the most fundamental notion of 
consistency concerns tracking the components that 
are operational members of the system.  
Consistent (agreed-upon) membership information 
can drive all sorts of higher level mechanisms.  

2. Process group replication techniques can be used 
to obtain very high performance cluster-style 
implementations of critical services.  However, 
the groups need to be kept small.  The techniques 
we understand best work well with 3 to 5 group 
members, but scalability problems are evident in 
larger settings.  The Isis Toolkit provided such 
functionality as data and service replication and 
synchronization, monitoring of system status, help 
in launching a new program and integrating it into 
a running system, event notification (also called 
publish-subscribe), and reliable data dissemination 
(multicast).  However, to reiterate the point, these 
tools work only for relatively small server groups, 
albeit with potentially larger numbers of clients. 

3. A solution must enable “local” interventions.  For 
example, in our e-tailer scenario, both the client 
system and many of the backend applications are 
likely to be legacies, hence difficult to modify.  
Any new mechanisms need to operate primarily 
within the Web Services dispatching component.  
Having done this, of course, there may also be an 
opportunity to extend the platform on the client 
side, and developers of new Web Services servers 
would presumably take advantage of all available 
technologies.   But at least some basic set of 
functions need to work even if the clients and 
servers are unmodified. 

4. Large-scale systems need mechanisms for 
monitoring their own state, diagnosing problems, 
and initiating repair when necessary.  Here, we 
begin to step beyond the basic issue of high 
availability by shifting attention to questions of 
large-scale management and control of an 
application that may include components on 
thousands or even tens of thousands of sites, 
scattered over the Internet and in many cases, 
behind firewalls and network address translators.  
Although one can build mechanisms that scale to 



this degree, it isn’t easy, and few off-the-shelf 
technology options exist for such settings.  
Mechanisms that respond to these monitoring 
objectives would also be useful in other settings. 

Two broad observations follow from these comments.  
First, we note that high availability solutions depend up 
replication of underlying critical components.  
Additionally, we note that high availability  doesn’t come 
about by accident.  And this should be a source of 
concern, because Web Services, for the time being, has 
lacked a systematic set of mechanisms aimed at 
applications demanding rapid response times as opposed 
to pipelined on transactional forms of reliability.   

 
5. Extending the Web Services Architecture 

Our arguments lead to the proposed extensions shown 
in Figure 3.  The first two components focus on high 
availability and replication: 
• Component Health Monitoring (CHM).  This 

module represents a new service used to track the 
health of individual Web Services components.  The 
service might be imagined by analogy to the 
Internet’s Domain Name Service: The DNS maps 
host names to IP addresses, while the CHM maps 
component identifiers to health information.  To 
carry out this service, the CHM would watch the 
monitored components and report changes in their 
state in a consistent manner to all components 
“interested” in it.  The data would then be used to 
detect failures and trigger rollover or other 
compensation actions.  For example, a Web Service 
client connected to a data center would be said to 
“have an interest” in the health of the services 
running on that center.   

• Consistent and Reliable Messaging (CRM).  The 
CRM layer basically offers a simple process group 
mechanism, limited to small groups that use virtual 
synchrony for replication.  CRM offers both a group 
communication interface and a second TCP interface 
in which one or both endpoints of a standard TCP 
stream can be replicated over a set of group 
members.  In this  mode, CRM offers a form of 
unbreakable TCP endpoint.  The idea is that when 
WS_Reliability is used to talk to a group over a TCP 
connection that terminates in such a replicated 
manner, we can achieve safe handoffs without 
needing to persist information onto a disk, and can 
tolerate failures without waiting for failed 
components to restart.  CRM can also support other 
styles of group applications in which data is 
replicated, but is not as ambitious a group computing 
toolkit as we supported in our past work on Isis, 
Horus and Ensemble. 

 

These two components of our system are designed to 
benefit even legacy clients and servers – they can be used 
exclusively in the router component of a Web Services 
platform and the result will simply look like a very 
reliable router that remains operational even when some 
of its components crash and restart.  The remainder of our 
platform aims at a new set of clients and servers that are 
designed with high availability and “autonomic behavior” 
in mind.  These include:  
• Data dissemination (DDS).  The DDS component 

would provide reliable multicast mechanisms for use 
in replicating data within critical servers and for 
streaming styles of broadcast from Web Service 
systems to their clients.  Once a server can be 
counted upon to remain operational, we believe that 
it will often be important to stream data of various 
kinds from it to its clients.  Thus DDS needs to 
operate at Internet scale and to be useable even in the 
presence of firewalls and address translators. 

• Monitoring and distributed control (MDC).  The 
MDC component responds to the need for 
mechanisms capable of monitoring and managing the 
entire system, by tracking performance metrics and 
other state variables and reporting them out.  In 
particular, whereas the CHM service is used to detect 
failures of individual Web Services components, the 
MDC service looks at aggregated properties of the 
system as a whole.  For example, in our e-tailer 
scenario, MDC might be used to detect  a problem 
preventing large numbers of serverlets within a 
hospital from connecting to the e-tailor’s Cleveland 
data center.   Such a condition may not involve the 
failure of any part of the Web Services platform – it 
could arise from the Internet itself, and may be 
detectable only by collecting access statistics from 
large numbers of clients and correlating them. 

• Event notification (EVN).  When an event occurs it 
may have system-wide implications, and waiting for 
applications to notice the new situation isn’t always 
appropriate.  For example, perhaps a data center that 
was online is about to go offline and needs to instruct 
clients to roll-over to specific alternative servers.  An 
event notification could tell them to do so.  DDS and 
EVN play related roles, but whereas the DDS service 
focuses on streams of data sent by the Web Service 
to its clients, the EVN service focuses on urgent, 
small, one-time events.   We’re hoping to base the 
interface on the new WS_Eventing specification. 

Reiterating the point made in Section 4, we see it as 
very important that all of these services provide strong, 
well specified properties to the application developer.  
Lacking rigorous semantics, applications layered over 
them will suffer from unpredictable and hence potentially 
unreliable behavior.   Brevity precludes a very detailed 



discussion of this point, but in what follows, we touch on 
the major requirements we’ve identified for each of the 
services and offer some preliminary thoughts on how 
each could be architected. 

 
5.1. Component Health Monitoring (CHM) 

Component health monitoring is basically a failure 
detection service, although we favor a more generic term 
because failure is sometimes interpreted overly narrowly.  
After all, a server may not be acceptable for a given 
purpose if its mean response time is degraded, even if the 
server is still operational, and one can generalize this 
observation to a very broad comment that “failure” is 
often in the eye of the beholder. 

Yet a converse observation also applies.  Consider a 
simple system consisting of a primary server, a backup, 
and a set of clients, and used in a very sensitive setting.  
Perhaps, our server is an air-traffic control server that 
tracks status for sectors of the sky in some region, telling 
controllers whether it is safe to route a plane into that 
sector.  It is easy to see that if the clients are left to make 
their own failure detection decisions, a “split brain” 
condition could arise in which some clients roll to the 
backup while others remain connected to the primary [3]. 
In this state, inconsistent advice could be given out, 
compromising flight safety.   

One solves such a problem by introducing a system-
level protocol to enforce agreement on failure detections: 
if a failure is sensed (by any client), a protocol runs and 
then all components monitoring the failed component are 
informed as simultaneously as possible about the event.  
The property we are after is one that is formally called the 
Consensus property, and one typically uses a group 
membership protocol to enforce it [2].  On the other hand, 
weak notions of failure (e.g. “service A is too sluggish, so 
I’ll try service B”) would typically not require the 
consensus property. 

This leads to a CHM architecture supporting  two 
levels of monitoring, one guaranteeing just a weak form 
of consistency, and the other offering consensus.  The 
service itself would probably be deployed and used in a 
manner similar to the Internet DNS.  When a component 
is determined to have failed, either by a representative of 
the service or by a client, this would trigger the 
appropriate protocol among the group of service 
representatives with an interest in the component in 
question, after which each representative would notify the 
local components that have registered such an interest.  
 
5.2. Consistent, Reliable Messaging (CRM) 

As noted in Section 4, our team has considerable 
experience using process group replication techniques to 
build highly available applications.  CRM is basically a 
simple, highly optimized group communication layer that 

supports the virtual synchrony model and can be used to 
replicate data or to perform a simple task fault-tolerantly.  
CRM lacks many of the features found in previous 
generations of group communication tools.  We intend it 
as a simple, extremely fast, very lightweight mechanism 
with limited functionality offered to the user. 

This said, CRM does offer one rather unusual group-
based communication option.  The Web Services 
architecture inherits a strong dependency on the TCP 
protocol as used by Web Browsers.  Most clients will use 
TCP to talk to Web Services.  However, TCP is a two-
party protocol, and this causes problems: Web Services 
interpose at least one process between a client and the 
server it is contacting, giving  rise to the many scenarios 
cited in Section 2.  WS_Reliability handles this by having 
the intermediary take responsibility for the request by 
making it persistent, but if that intermediary fails, the 
connection breaks and the client may need to wait for the 
failed component to recover.  Replication of the 
intermediary processes  is clearly needed for high 
availability.    

Accordingly, we are designing an extension to TCP 
using techniques developed in our work on process group 
replication, but that never entered into wide use.  
Basically, these allow us to connect a normal 
(unmodified) TCP client to a group of processes that 
jointly manage a server-side TCP endpoint. The resulting 
shared endpoint allows the set of servers to cover for one-
another.   

It is natural to wonder how costly this form of 
replication will be.  To accomplish it, one server within 
the group is elected as a coordinator (the top one, in 
Figure 4), and it broadcasts every incoming IP packet 
associated with the TCP connection, permitting group 
members to maintain identical endpoint state [2].  Indeed, 
even timer events are multicast, so that every action that 
can change the state of the server-side TCP endpoint will 
be seen in the same order by all replicas.  Should the 
coordinator fail, this means that one of the replicas can 
take over by rebinding the IP address associated with the 
endpoint and then resuming action just as if it had been 
the coordinator all along.   

In our work on the Isis, Ensemble and Horus systems, 
we found that highly optimized group replication 
protocols for settings such as this can run at a rate of 
80,000 or more events per second – and this was with 
technology that is now several generations old.  
Accordingly, we believe that replication can be cheap 
enough to pass largely unnoticed, particularly given the 
many other overheads in the Web Services architecture. 

The “endpoint” group can then use the WS_Reliability 
acknowledgement protocol to interact with its client, 
functioning as a “high availability intermediary”.  This 
approach permits us to achieve extremely high levels of 
availability without sacrificing performance in the manner 



seen when using message queuing intermediaries.  Note 
that the CRM module could also be used for other kinds 
of replication in server or even client applications, an 
option we believe will open the door to building new 
kinds of high availability servers.  
 
5.3 Data Dissemination (DDS) 

CHM and CRM are of potential value to legacy clients 
and servers, because they can be used transparently by a 
set of Web Services routers without changing the client or 
server applications.  However, we now describe a series 
of platform features, aimed at situations in which the 
client side will play an active role in self-management.  
The DDS module provides reliable multicast-style data 
streaming from the Web Services platform to a potentially 
large number of clients that must link directly to the DDS 
protocol.  Our DDS framework standardizes such notions 
as joining a group, sending a message, and delivering a 
message, but offers plug-in flexibility with respect to the 
actual properties of the protocol.  The current thinking is 
to exploit the approach we used in our Horus and 
Ensemble multicast systems, both of which permit the 
user to “snap in” a protocol stack consisting of one or 
more multicast microprotocols, each concerned with a 
specific property.  For example, one microprotocol could 
offer data encryption, while another is concerned with 
hiding out-of-order delivery and yet another with the 
virtual synchrony reliability property. 

A given application would assemble a stack of 
protocols having the desired composite property and snap 
it into place, then would use the standard API to send and 
receive messages.  We anticipate that once a group has 
been created, its properties would not be changed on the 
fly, although there is prior work on that problem and this 
decision could be revisited in the future. 
 
5.4. Monitoring, Distributed Control (MDC) 

As noted earlier, we believe that monitoring a system 
“as a whole” poses distinctly different challenges than 
monitoring its individual components.  Our group 
developed Astrolabe as a response to these needs [4].  

Astrolabe works by monitoring the dynamically 
changing state of a collection of distributed resources, 
reporting high quality “local” data and summaries of 
remote information collected system-wide to its users. It 
organizes this data into a hierarchy of domains, which we 
call zones, and structures each zone as a small relational 
database – a table, with a row for each underlying zone or 
system component, and a column for each of a set of 
monitored attributes. Attributes may be redefined while 
the system is running, and updates propagate within 
seconds, even in huge networks.   A novel peer-to-peer 
protocol is used to implement the Astrolabe system, 
which operates without any central servers.  

Much of the power of Astrolabe stems from its ability 
to support online data mining and data fusion. The system 
continuously computes summaries of the raw data it 
monitors, using on-the-fly aggregation.  The aggregation 
mechanism is controlled by SQL queries, and operates by 
extracting summaries of data from each zone, then 
assembling these into higher-level database relations.   By 
reprogramming these features on the fly (a task very 
much like asking a database to compute a dynamically 
materialized relation), a human user can reconfigure 
Astrolabe within seconds, causing the system to begin 
tracking information that it may not even have been 
instrumenting before the request. Thus, as the needs of its 
users change, the behavior of the system can adapt to 
respond to those new requirements. (Aggregation can also 
be valuable even if the “user” is actually the application 
itself, but in this case the aggregation queries would be 
predefined ones and wouldn’t change while the system is 
running).  The speed and agility of the technology open 
the door to a completely new way of viewing the system 
monitoring and control task.  

Astrolabe’s aggregation mechanisms are analogous to 
database queries. When the underlying information 
changes, Astrolabe will automatically and rapidly 
recompute the associated aggregates and report the 
changes to applications that have registered their interest.  
Even in huge networks, any change is soon visible 
everywhere.  For example, suppose that a few servers in a 
data center come under a distributed denial of service 
attack.  Suspecting this, an administrator might ask 
Astrolabe to capture some sort of statistic symptomatic of 
attack – perhaps, the rate of incomplete attempted 
connections to each server.  In doing so, Astrolabe might 
also be asked to begin collecting instrumentation of a type 
that it had not previously been monitoring. 

Astrolabe has potential access to a great variety of 
host-maintained statistics and can also tap into data 
maintained by the application or even stored in files and 
databases. Thus, subject to user-enforced permissions, a 
wealth of information is potentially available to the 
individual operating the system, as well as to application 
programs that exploit Astrolabe as a standard 
infrastructure for capturing system status data.  We see 
Astrolabe as a new kind of system-wide service that, if 
deployed widely enough, could encourage a new 
generation of applications that adapt under stress more 
rapidly and more automatically than is possible in the 
absence of such services.  The value of Astrolabe in such 
a setting is multiple: It brings standards to the monitoring 
task, so that all aspects of an application fall under a 
single umbrella.  It offers a form of “one-stop-shopping”, 
bringing standardization to the way that monitored data is 
delivered to users, both human and programs.  And it 
offers robustness and security, which are often lacking 
when such problems are tackled in ad-hoc ways.  



In a Web Services application, we believe that 
Astrolabe can be used to create new client-side options 
for detecting and responding to problems such as 
difficulty accessing a data center, while also helping the 
administrator of the data center manage the application as 
a whole and diagnose failures that might require 
intervention.  The Astrolabe epidemic protocols often 
route around network disruptions that prevent TCP 
connectivity, hence Astrolabe will usually be operational 
even under conditions where other Web Service protocols 
are disabled and hence not useful. 
 
5.5. Event Notification (EVN) 

The last major component of our architecture is still at 
an early design stage.  Our current thinking is to support a 
form of distributed query processing, in which the 
components of a Web Services system are treated as small 
databases containing one or more “tuples” that can be 
queried (very likely, the same tuples from which 
Astrolabe extracts its data).  Whereas Astrolabe works to 
continuously monitor and aggregate all of this data and 
limits itself to a fairly small amount of data, we envision 
an EVN service that would start by doing more work 
locally: looking at a potentially large amount of data on 
each node, and watching for conditions of interest.  When 
a condition arises, the system would notify applications 
watching for that condition.  Ideally, we believe that such 
an approach can support true queries: the application 
program would express a relational query over the 
“system state”, and we would compile this down to local 
actions, then finalize the query evaluation by combining 
the local results within the network.  Rather than 
speculate, however, we leave further details to some 
future treatment.  As noted earlier, we’re hoping to base 
the interface on the new WS_Eventing specification. 
 

How would our architecture respond to the needs of 
the e-tailer cited as an example in Sections 1 and 2?  In 
this Section, we briefly walk through the architecture.  
Figures 4 and 5 illustrate the approach. 

The basic solution we envision starts by replicating the 
state of the Web Server intermediary on 2 or more nodes, 
offering fault-tolerance against disruptions that might 
occur during request processing.  We use the replicated 
TCP functionality of the CRM component here, hence a 
client can use a traditional TCP implementation, and yet 
its actions are replicated across a set of servers.  
Similarly, when the backend database application 
interacts with the server group, information is replicated 
across the group members.  To exploit this initial feature 
of our solution, no changes are required in the client or 
server systems. 

The remaining failure concerns enumerated at the 
outset can be tackled using other components of our 
architecture, or by exploiting the mechanisms already 
proposed as part of the WS_Reliability and 
WS_ReliableMessaging standards.  Tackling the self-
management aspects of the problem using our tools 
requires some changes on the client side and hence is 
feasible in the scenario of Section 2, where the e-tailor 
developed the serverlets and was in a position to link 
them to our package, but might not be feasible in some 
other setting, for example one in which a similar set of 
issues arise but there is no functionality “owned” by the 
Web Services platform developer running on the client 
systems. 

We anticipate using the DDS, MDC and EVN 
components of our plaform for several purposes.   Using 
DDS it is possible to stream information to client systems, 
such as continuous reports on inventory levels, pricing, or 
(moving away from the etailer scenario) other sorts of 
soft real-time data.  MDC would be used by the Web 
Services client systems to report their status, and in 
particular to share information about performance 
obtained from the various data centers 6 3 As illustrated in Figure 5, clients could thus sense one-
another’s problems and when a pattern arises (“nobody 
can get through to Sunnyvale”), would be in a position to 
undertake a coordinated, clean, roll-over to a backup 
center.  Meanwhile, MDC would let the administrator of 
the data center detect problems very quickly and address 
them even before end-users are aware of a difficulty.  One 
can easily identify additional MDC uses for purposes 
such as load-balancing, sharing of information in client-
side caches, etc. 
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MDC also has applications within the data center 
itself.  Today, we have relatively few monitoring options 
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Figure 1: A reliable client-server interaction in our 
proposed architecture 
 
 
6. Pulling it All Together 

for large, complex applications spread over many 
machines (companies like Google, eBay and Amazon 
report that their data centers have thousands of machines), 
and perhaps also over multiple geographic locations.  



Better data would permit applications to become more 
self-controlled: adaptive, self-configurable, and self-
repairing. 

EVN would be used for “ad hoc” notifications.  For 
example, while we use DDS where there is a long-term 
relationship between data consumer and the server 
producing that data, EVN might be used to notify the 
clients connected to such and such a server that the server 
will be shut down for maintenance in 5 minutes.  In 
systems that do extensive caching (likely to be important 
in high-performance Web Services applications), EVN 
could be used for notification when a cached data item 
changes or must be invalidated.  More broadly, EVN can 
play roles similar to those of publish-subscribe systems, 
although (unlike most such systems), our architecture is 
designed to function at Internet scale and to offer a more 
flexible range of reliability guarantees.  
9.  Conclusions 

A review of the Web Services architecture reveals 
many issues that could limit high availability, reducing 
the perceived reliability of the architecture for 
applications unable to work in a transactional paradigm 
and for which the pipelined style of reliability favored in 
the WS_RELIABILITY specification would be 
inappropriate.  The problem may be particularly acute in 
interactive applications that treat Web Services as if they 
were distributed objects.  We propose a set of extensions 
to the basic architecture that work within the standards, 
yet are able to respond to many of these needs.  Our 
solutions offer a basic form of fault-tolerance where 
client systems must remain unmodified, and a more 
sophisticated fault-tolerance property where the client can 
be linked to a new library.  
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Figure 5: In a traditional Web Services architecture,
clients have no information about data center status.
The MDC (Astrolabe) lets clients track one-another’s 
status and that of the center.  They use it to diagnose 
problems and react in a coordinated way. 


