
Using AVL Trees for Fault Tolerant Group Key

Management

Ohad Rodeh, Kenneth P. Birman, Danny Dolev∗

2-Nov-2000

Abstract

In this paper we describe an efficient algorithm for the management
of group-keys for Group Communication Systems. Our algorithm is
based on the notion of key-graphs, previously used for managing keys
in large IP-multicast groups.

The standard protocol requires a centralized key-server that has
knowledge of the full key-graph. Our protocol does not delegate this
role to any one process. Rather, members enlist in a collaborative
effort to create the group key-graph. The key-graph contains n keys,
of which each member learns log2 n.

We show how to balance the key-graph, a result that is applicable to
the centralized protocol. We also show how to optimize our distributed
protocol and provide a performance study of its capabilities.

1 Introduction

This paper describes an efficient algorithm for key-management in Group
Communication Systems (GCSs).

Use of GCSs is now common in industry when clustering technology
is required. The SP2, and other IBM clustering systems use the Phoenix
system [9], IBM AS/400 clusters use the Clue system [14], and Microsoft
Wolfpack clusters use Group Communication technology at the core of their
system [33]. GCSs are used for other purposes as well. The first industrial
strength GCS, Isis [5], has been used for air-traffic control, large-scale sim-
ulations, in the New-York and Swiss stock exchanges and more. Some of

∗The authors were supported in part by the Israeli Ministry of Science grant number
9762, by DARPA/ONR under grant N00014-92-J-1866, and NSF grant EIA 97-03470.

1

these projects are described in [6]. Adding security to Group Communi-
cation Systems will enable industry to use this technology were it was not
possible before, in unprotected wide area networks.

In our work we use the fortress security model. The “good guys” are
protected by a castle from the hordes of barbarians outside. In the real
world this maps to a situation where the “good guys” are the organization’s
machines, which need protection from hackers lurking outside.

In the context of a Group Communication System, the basic entity is a
process (member). The set of honest processes requires protection from the
adversary. Since the honest members are distributed across the network,
they cannot be protected by a firewall. An alternative vehicle for protection
is a shared secret key. Assuming all members agree on the same key, all
group messages can be MAC-ed1 and encrypted. Assuming the adversary
has no way of retrieving the group-key, the members are protected.

The group-key needs special handling as it must be distributed only to
authenticated and authorized group members. This raises two issues: merge
and rekey.

• How do we allow new members into an existing group? More generally,
how do we merge two existing group components, each using a different
group-key?

• How do we switch the secret key, without relying on the old key?

Here, we confine ourselves to describing an efficient rekey algorithm. For a
discussion on merge-related issues see [31].

Other work on GCS key architectures and security has been performed
in Spread [1], Antigone [22], Rampart [25], and Totem [20]. We postpone
discussion of related work until section 7.

2 Model

Consider a universe that consists of a finite group U of n processes. Processes
communicate with each other by passing messages through a network of
channels. The system is asynchronous: clock drifts are unbounded and
messages may be arbitrarily delayed or lost in the network. We do not
consider Byzantine failures.

1MAC is a Message Authentication Code algorithm. In practice, the group-key is
composed of two disjoint pieces. A separate key for encryption, and a separate key for
MAC-ing.

2

Processes may get partitioned from each other. A partition occurs when
U is split into a set {P1, . . . , Pk} of disjoint subgroups. Each process in Pi

can communicate only with processes in Pi. The subsets Pi are sometimes
called network-components. We shall consider dynamic partitions, where
in network-components dynamically merge and split. The partition model
is more general than the more common “crash failure” model since crash
failures may be modeled as partitions, but not the converse.

A GCS creates process groups in which reliable ordered multicast and
point-to-point messaging is supported. Processes may dynamically join and
leave a group. Groups may dynamically partition into many components
due to network failures/partitions; when network partitions are healed group
components remerge through the GCS protocols. Information about groups
is provided to group members in the form of view notifications. For a par-
ticular process p a view contains the list of processes currently alive and
connected to p. When a membership change occurs due to a partition or
a group merge, the GCS goes through a (short) phase of reconfiguration.
It then delivers a new view to the applications reflecting the (new) set of
connected members.

In what follows p, q, and s denote Ensemble processes and V, V1, V2 de-
note views. The generic group is denoted by G. G’s members are numbered
from p1 to pn.

In this paper, all group-messages are delivered in the order they were
sent: “fifo” or “sender-ordered” property. This is the basic guarantee pro-
vided by the system.

Ensemble follows the Virtual Synchrony (VS) model. This model de-
scribes the relative ordering of message deliveries and view notifications. It
is useful in simplifying complex failure and message loss scenarios that may
occur in distributed environments. For example, a system adhering to VS
ensures “atomic failure”. If process q in view V fails then all the members
in V \ {q} observe this event at the “same time”.

In particular, virtual synchrony is a strong enough model to support
replicated data and consistency in a distributed environment [19, 13]. Our
protocols (described later) employ these guarantees to consistently replicate
complex data structures. Furthermore, our algorithms strongly depend on
the guarantee that views are agreed. This is important in choosing agreed
group leaders. The VS guarantee is used to agree an all-or-nothing property
whereby either all group members receive the new group key, or none of
them do.

To achieve fault-tolerance, GCSs require members to actively partici-
pate in failure-detection, membership, flow-control, and reliability protocols.

3

Therefore, such systems have inherently limited scalability. We have man-
aged to scale Ensemble, the GCS with which the work reported here was
undertaken, to a hundred members per group, but no more. For a detailed
study of this problem, the interested reader is refered to [7, 6, 30]. In this
paper, we do not discuss configurations of more than a hundred members.
However, given a GCS capable of supporting larger groups our algorithms
are intended to scale at least as well.

We assume processes in a group have access to trusted authentication
and authorization services, as well as to a local key-generation facility. We
also assume that the authentication service allows processes to sign mes-
sages. Our system currently uses the PGP [36] authentication system. Ker-
beros [24] is also supported, though our interface is out of date.

As noted earlier, in a secure group, protection is afforded to group mem-
bers through a shared key, with which all group messages are MAC-ed and
encrypted. Accordingly, a secure group should support:

• Authorization and access control. Only trusted and authorized mem-
bers are allowed into the group.

• Perfect Forward Secrecy (PFS). Briefly, this means that past members
cannot obtain keys used in the future. The dual requirement that
current members cannot obtain keys used in the past is termed Perfect
Backward Secrecy (PBS).

To support PFS, the group key must be switched every time members
join and leave. This may incur high cost, therefore, we would like to relax
this requirement without breaching safety. To this end we do two things:

• The system rekeys itself every 24 hours

• Rekeying becomes a user initiated action. Hence, the user can trade
off security against performance.

Our main goal in this paper is to improve rekeying performance, allowing
a better tradeoff for the user. In the next subsection we briefly describe
how authorization and access control are enforced. For more details the
interested reader is refered to [31].

2.1 Authorization and Access Control

A secure GCS allows only authenticated and authorized members into a
group. To support this, Ensemble makes use of the Exchange protocol.

4

This subsection provides a brief overview of this protocol and its security
guarantees.

All members in a group component share a single group key. If a group
is split into several components, then different components share different
keys. To facilitate the merging of such components, a protocol that achieves
secure key-agreement is required. Once key-agreement is achieved, members
in different components can “hear” each other, and subsequentally merge.

Note that in the case where a group has just a single member, this merge
protocol solves the problem of authorizing the join of a new process in an
already running system.

To explain the key-agreement protocol, we assume two group compo-
nents: P and Q with leaders p, q, and keys KP , KQ respectively. We assume
all members agree on some 1024-bit integer modulos n and generator g for
group Zn, and that member p has chosen a random number a ∈ Zn, and
q chose a random number b ∈ Zn. We omit the modulo n operations from
the arithmetic used below to simplify notation. Each leader multicasts an
ImAlive message at fixed intervals. At some time point q and p receive each
other’s ImAlive message. In what follows the notation mx → my,z : M is
used to show that member x sends to members y and z message M . The
member with the lexicographically smaller name ,w.l.o.g q, engages in the
following protocol:

Exchange protocol:

• p → q : ImAlive

• q checks that p is allowed to join Q. If so, it signs and sends:
q → p : {q, p, gb}

• p checks the signature on the received message. It also checks that q
is allowed to join P . If so it signs and sends:
p → q : {p, q, ga, {KP }gab}

• q checks that p is allowed to join Q, and verifies the signature. If both
conditions hold it sends:
q → Q : {KP }KQ

In essence, this is an authenticated Diffie-Hellman exchange, where p’s
key is passed to q’s component, and members of Q switch their key to
KP . The full implementation uses nonces to protect the protocol from reply

5

Figure 1: Overview of the merge sequence. (1) Two components with keys
KP and KQ. Each leader sends ImAlive messages. (2) q sends gb to p. (3)
p sends ga and KP encrypted with gab to q. (4) q decrypts KP and switches
his component key to KP . (5) Components P and Q now merge, after both
have the same key.

attacks. It also allows multiple concurrent runs of Exchange. Security of
this protocol draws from the security of the Diffie-Hellman exchange, and
from the security of the Bellare-Rogaway protocol [4].

In this protocol, the leader is entrusted with checking the group Access
Control List (ACL). This guarantees only a certain level of authorization
checking. If leaders p and q are in each other’s ACLs then components P
and Q will merge. This assumes that the ACL is symmetric and transitive,
i.e., an equivalence relation. While it is possible to allow each member in
P to check all members in Q, and vice-versa, we have decided this was too
expensive in terms of communication and computation.

In Ensemble, it is up to the application developer to make sure that
the ACL is in fact an equivalence relation. While this may sound impracti-
cal, there are simple ways of implementing this behavior. For example, the
system could employ a centralized authorization server, or simply a static
ACL. Such an ACL must separate the list of trusted hosts into several dis-
joint subgroups. Trust is complete in each subgroup, but no member need
trust members outside its subgroup.

Our system allows applications to dynamically change their ACL, how-
ever, this may temporarily break the equivalence relation. For example, it is
possible that ,temporarily, member p trusts q, q trust s but p does not trust
s. This may allow the creation of a group {p, q, s} where not all members
trust each other. Therefore, care is required while changing ACLs, and it is
up to the application to make sure such inconsistencies do not occur.

6

2.2 Secure Groups

Henceforth, we assume that the system creates only secure groups where:

• All members are trusted and authorized

• All members have the same group-key.

• No outside member can eavesdrop, or tamper with group messaging.

In the remainder of this paper, we make extensive use of secure point-to-
point communication. Although public keys can be used for this purpose,
their poor performance motivates us to employ symmetric point-to-point
keys where such communication may occur repeatedly. Accordingly, we in-
troduce a secure channel abstraction. A secure channel allows two members
to exchange private information, it is set up using a Diffie-Hellman [11] ex-
change. The initial exchange sets up an agreed symmetric key with which
subsequent communication is encrypted. The set of secure channels at mem-
ber p is managed using a simple caching scheme: (1) only connections to
present group members are kept. (2) the cache is flushed every 24 hours2 to
prevent cryptanalysis.

Integer module exponentiations, needed for a Diffie-Hellman exchange,
are expensive. We used a 500Mhz PentiumIII with 256Mbytes of memory,
running the Linux2.2 OS for speed measurements. An exponentiation with a
1024bit key using the OpenSSL [10] cryptographic library was clocked at 40
milliseconds. Setting up a secure channel requires two messages containing
1024bit long integers. Hence, we view the establishment of secure channels
as expensive, in terms of both bandwidth and CPU. Our caching scheme
efficiently manages channels, but in what follows, an important goal will be
to minimize the need of their use.

2.3 Liveness and Safety

Ideally, one would hope that distributed protocols can be proven live and
safe. Key management protocols must also provide agreement and authen-
ticity properties. Here we define these properties, and discuss the degree to
which our protocols satisfy them.

Liveness: We say that a protocol is live if, for all possible runs of the
protocol, progress occurs. In our work, progress would involve the
installation of new membership views with associated group keys, and
the successful rekeying of groups.

2This is a settable parameter.

7

Safety: We say that a protocol is safe if it does not reveal the group key to
unauthorized members.

Agreement: the protocol should guarantee that all group-members decide
on the same group-key.

Authenticity: An authentic group-key is one chosen by the group-leader.

To show how a rekeying protocol can comply with the above four re-
quirements, we introduce a simplistic rekeying protocol, P.

Protocol P:

1) The group leader chooses a new key.

2) The leader uses secure channels to send the key securely to the
members.

3) Each group member, once it receives the group-key from the leader,
sends an acknowledgment (in the clear) to the leader.

4) The leader, once it receives acknowledgments from all group mem-
bers, multicasts a ProtoDone message.

5) A member that receives a ProtoDone message knows that the pro-
tocol has terminated and the new key can now be used.

P is safe since it uses secure channels to group members, all of which
are trusted. It satisfies agreement because a single agreed member acts as
leader. It satisfies authenticity because only a trusted authorized member
can become the leader, and only the leader can choose a new key.

However, P is not live. Notice that the protocol requires all processes to
receive the new-key and send acknowledgments. If some member fails and
never recovers during the execution, protocol P blocks.

To make the protocol fault-tolerant we restart the protocol in case of
a view change. Note that restarting the protocol in case of a view-change
is not enough to guarantee liveness. In fact, no protocol solving this class
of problems can guarantee liveness in an asynchronous networking envi-
ronment (see FLP [12]). However, our protocol is able to make progress
“most of the time”. The scenarios under which the protocol would fail to
make progress are extremely improbable, involving an endless sequence of
network partitioning and remerge events, or of timing failures that mimic

8

process crashes. Theoretically, such things can happen, but in any real net-
work, these sequences of events would not occur, hence our protocol should
make progress.

This short exposition has shown that the four requirements listed above,
while fundamental for a rekeying protocol, are easily satisfied (to the de-
gree possible) for a protocol using the services of a Group Communication
System. The critical ingredients are the ack-collection stage, and restart-
ing. Such stages can be added to any rekeying protocol. Hence, in the
more complex protocol described later on in sections 4, and 5 we omit these
stages.

3 The centralized solution (C)
Here we describe a protocol created by Wong et al. [35], and Wallner et
al. [34]. Improvements were later suggested in [3, 8]. The general idea
is termed a Logical Key Hierarchy, and it uses the notion of key-graphs.
Key-graphs have been put to use in other security protocols, for example,
Cliques [21].

A key-graph is defined as a directed tree where the leafs are the group
members and the nodes are keys. A member knows all the keys on the way
from itself to the root. The keys are chosen and distributed by a key-server.
While the general notion of a key-graph is somewhat more general, we focus
on binary-trees. In Figure 2 we see a typical key-graph for a group of eight
members. This will serve as our running example.

Figure 2: A key-graph for a group of eight members.

Each member pi shares a key with the server, Ki, using a secret channel.
This key is the secure-channel key used for private communication between
pi and the server. It is called the basic-key. Each member also knows all

9

the keys on the path from itself to the root. The root key is the group
key. In the example, member p1 knows keys K1,K12,K14,K18. It shares K1

with the server, K12 with p2, K14 with {p2, p3, p4}, and K18 with members
{p2, . . . p8}. In what follows we denote by {M}K1,K2 a tuple consisting of
message M encrypted once with key K1, and a second time with K2.

The key server uses the basic keys to build the higher level keys. For
example, the key-graph in the figure can be built using a single multicast
message comprised of three parts:

• Part I: {K12}K1,K2 , {K34}K3,K4 , {K56}K5,K6 , {K78}K7,K8

• Part II: {K14}K12,K34 , {K58}K56,K78

• Part III: {K18}K14,K58

All group members receive this multicast, and they can retrieve the exact
set of keys on the route to the root. For example, member p6 can decrypt
from the first part (only) K56. Using K56, it can retrieve K58 from the second
part. Using K58 it can retrieve K18 from the third part. This completes the
set K56,K58,K18. In general, it is possible to construct any key-graph using
a single multicast message.

The group key needs to be replaced if some member joins or leaves. This
is performed through key-tree operations.

Join: Assume member p9 joins the group. S picks a new (random) group-
key K19 and multicasts: {K19}K18,K9 . Member p9 can retrieve K19

using K9, the rest of the members can use K18 to do so.

Leave: Assume member p1 leaves, then the server needs to replace keys
K12,K14, and K18. It chooses new keys K24, and K28 and multicasts
a two part message:

• Part I: {K24}K2,K34

• Part II: {K28}K24,K58 .

The first part establishes the new key K24 as the subtree-key for mem-
bers p2, p3, p4. The second part establishes K28 as the group key.

In this scheme each member stores log2 n keys, while the server keeps a
total of n keys. The server uses n secure channels to communicate with the
members. The protocol costs exactly one multicast message (acknowledg-
ments are not discussed here). The message size, as a multiply of the size
of a key K, is as follows:

10

Figure 3: Examples for join/leave cases. Examples one and two depict a
scenario where member p1 leaves. Examples three and four depict a scenario
where member p9 joins. New keys are marked by diamonds.

Construction Leave Join
2Kn 2K log2 n 2K

Trees become imbalanced after many additions and deletions, and it
becomes necessary to rebalance them. A simple rebalancing technique is
described in [23]. However, their scheme is rather rudimentary. For example,
in some full binary key-tree T , if most of the right hand members leave, the
tree becomes extremely unbalanced. The simple scheme does not handle
this well. Our scheme can handle such extreme cases.

3.1 Tree balancing

After multiple leaves, a key-graph is composed of a disjoint set of sub-key-
graphs. More generally, setting up the distributed version of the protocol,
we shall be interested in merging different key-graphs. For example, in Fig-
ure 4(1), one can see two key graphs, T1 that includes members {p1, . . . , p5},
and T2 that includes members {p6, p7}. The naive approach in merging T1

and T2 together is to add members {p6, p7} one by one to T1. However, as
we can see in Figure 4(2) this yields a rather unbalanced graph. Instead, we
create a new key K57 and put T2 under it.

11

Figure 4: Balancing example.

Merging two trees in this fashion can be performed using one message
sent by the key-server. The message includes two parts:

• Part I: The new key, K57 encrypted for both of its children:
{K57}K67,K5

• Part II: All keys above T2 encrypted with K57:
{K15}K67

The example can be generalized to a balanced merge (Bal Merge) proce-
dure. In what follows we denote by h(T) the height of tree T . To describe
the structure of a tree we use a recursive data structure that contains nodes
of two kinds:

• Br(L,K, R): An inner-node with left subtree L, right subtree R, and
key K.

• Leaf(pi): A leaf node with member pi.

The simplest tree contains a single member, Leaf(px). A single member
tree does not have a key, since a single member can communication with
itself alone. Such communication does not need protection. The height of a
tree Leaf(px) is 1.

Assume that L and R are two subtrees that we wish to merge. W.l.o.g
we can assume that h(L) ≥ h(R). Bal Merge will find a subtree L′ of L such

12

that 1 ≥ h(R)− h(L′) ≥ 0, and create a new tree T where L′ is replaced by
Br(L′,Knew, R). The merge procedure is performed at the key-server, that
has complete knowledge of all keys and the structure of existing key-trees.
The local computation is a simple tree recursion. The message size required
to notify the group is of size O(log2 n). This is because R’s members must
know all keys above Knew.

In a general key-graph, there is no bound on depth as a function of
the number of leaves. If a member that is situated very deep in the tree is
removed, then the tree is split into many disconnected fragments. Therefore,
it is desirable to have balanced trees. We propose using AVL trees for
this purpose. Assume that T1 and T2 are AVL trees. We shall show that
the merged tree is also AVL. First, we state more carefully the Bal Merge
algorithm, in the form of pseudo-code.

Algorithm Balanced Merge(T1, T2):

if h(T1) == h(T2) then {
choose a new key Knew

return Br(T1,Knew, T2)
}
if h(T1) > h(T2) then {

assume T1 = Br(L,KT1 , R)
if h(L) < h(R) then return (Br(merge(L, T2),KT1 , R))
else return Br(L,KT1 ,merge(T2, R))

}
if h(T1) < h(T2) then {

the same as above, reversing the names T1, T2.
}

Claim 1 : Merging two AVL trees T1 and T2 results in an AVL tree whose
height is at most 1 + max(h(T1), h(T2)).

Proof: The proof is performed by induction on the difference in height:
h(T1)− h(T2).

• Base Case: If h(T1) = h(T2) then the merged tree is T = Br(T1,Knew, T2).
The depth of the T is h(T1) + 1.

13

• Induction: We assume that if h(T1) − h(T2) < k then the theorem
holds. W.l.o.g h(T1) > h(T2). If h(T1)−h(T2) = k then T1 is of height
at least two, and T1 = Br(L, key,R). There are two cases:

– h(L) < h(R): The result will be, T = Br(merge(T2, L), key, R)
By induction we have that merge(T2, L) is AVL, and that its
height is at most h(R) + 1.
Hence, the difference in height between the left and right children
of T is no more than 1, and T ’s height conforms to h(T) ≤
h(R) + 2 = 1 + max(h(T1), h(T2))
h(L) ≥ h(R): The result will be T = Br(L, key,merge(T2, R)).
By induction we have that merge(T2, R) is of height that is at
most h(L) + 1.
Hence, the difference in height between the left and right children
of T is no more than 1, and T ’s height conforms to h(T) ≤
h(L) + 2 = 1 + max(h(T1), h(T2))

2

Two AVL trees can be merged into a single AVL tree at low cost. This
can be generalized to merging a set of trees. Sets of trees are interesting
since they occur naturally in leave operations. For example, if a member
leaves an AVL tree T , then T is split into a set of log2 n subtrees. These
subtrees, in turn, are AVL and they can be merged into a new AVL tree.

The cost of a merge operation is measured by the size of the required
multicast message. We are interested in the price of merging m AVL trees,
with n members. First, we shall use a naive but imprecise argument to show
that the price is bounded by 2K(m − 1) + K(max{h(Ti)} − min{h(Ti)}).
Then we shall provide a proof showing this to be in fact 3K(m − 1) +
K(max{h(Ti)} −min{h(Ti)}).

We sort the trees by height into a set {T1, T2, . . . , Tm}. They are merged
two at a time: first the smallest two into T12, then T12 and T3 into T13

etc. The price for merging two trees is 2K + K‖h(T1)− h(T2)‖. Assuming
naively that h(Bal Merge(Tx, Ty)) = max(h(Tx), h(Ty)) then the total price
is the height difference between the deepest tree, and the shallowest one.
Hence, the total price is: 2K(m− 1) + K(max{h(Ti)} −min{h(Ti)}).

The naive argument fails to take into account the fact that merged trees
conform to h(Bal Merge(Tx, Ty)) ≤ 1 + max(h(Tx), h(Ty)). Therefore, we
insert the trees into a heap. Iteratively, the smallest two trees are poped
from the heap, merged together, and put back into the heap.

14

Claim 2 : The cost of a balanced merge of m trees Tm = {T1, . . . , Tm} is
bounded by 3K(m− 1) + K(max{h(Ti)} −min{h(Ti)}).

Proof: The proof is by induction. For two trees T1 and T2 , the price is
simply 2K + K‖h(T1)− h(T2)‖.

Assume the claim is true for up to m−1 trees. We shall show for m. We
proceed according to the heap discipline and merge the two smallest trees,
T1 and T2 into T1]2. We get a heap with trees Tm−1 = {T1]2, T3, . . . , Tm}.

The cost for merging the trees in Tm−1 is, by induction, 3K(m − 2) +
K(max{h(Ti)}Tm−1 −min{h(Ti)}Tm−1). The cost for merging T1 and T2 is
K‖h(T1)− h(T2)‖+ 2K.

We know that:
1) max{h(Ti)}Tm−1 is bounded by max{h(Ti)}Tm + 1.
2) min{h(Ti)}Tm−1 ≥ min{h(Ti)}Tm + ‖h(T1)− h(T2)‖

Hence, the sum:
K(max{h(Ti)}Tm−1 −min{h(Ti)}Tm−1) + 3K(m− 2) + 2K + K‖h(T1)− h(T2)‖

is bounded by:
K((max{h(Ti)}Tm −min{h(Ti)}Tm) + 1) + 3K(m− 2) + 2K =

= K(max{h(Ti)}Tm −min{h(Ti)}Tm) + 3K(m− 1)

2

In Figure 5 we can see a balanced tree, after a join.

Figure 5: Balancing the join case.

The table below lists the costs of balanced join and leave events. This
shows that AVL trees do not cost significantly more than standard key-
graphs. We shall use them henceforth.

Construction Leave Join
2Kn 2K log2 n K log2 n

15

Note that the technique described so far does not maintain Perfect Back-
ward Secrecy (PBS). For example, in the join case, member p9 learns the
set of keys used before by members {p1, . . . p8}. To guaranty PBS, we must
replace all keys on the path from the joiner to the root with fresh keys.

Currently, we do not address the issue of PBS in full. However, we allow
the application to determine a time period after which the whole tree is
discarded and built from scratch. By default this timer is set to 24 hours.
Hence, PBS is guaranteed up to 24 hours.

4 The basic (B) distributed protocol

The centralized solution C does not satisfy our objectives because it relies
on a centralized server which has knowledge of the complete key-graph. We
require a completely distributed solution, without a single point of failure.
While our algorithm is based on C, each member keeps only log2 n, keys
and members play symmetric roles. The algorithm presented here is called
Basic (B) since it is rather simple and inefficient. We optimize it in the next
sections.

We shall say that a group of members G has key-graph T if the set of
leaf-nodes that T contains is equal to G. Furthermore, each member of G
must posses exactly the set of keys on the route from itself to the root of
T . The leader of T , denoted CT , is the leaf that is the left-most in the tree.
Since members agree on the tree structure, each member knows if it is a
leader or not. We denote by M(T) the members of T , and by KT the top
key in T (if one exists).

We can see that members in G must have routes in the tree that “match”,
i.e., when pulled together they make a tree that is the same as a tree ob-
tained by the centralized algorithm. To perform this ‘magic” in a distributed
environment we rely on Virtual Synchrony (see more below 4.1.

To motivate the general algorithm, we shall describe a naive protocol
that establishes key-trees for groups of size 2n. We use the notion of subtrees
agreeing on a mutual key. Informally, this means that the members of two
subtrees L and R, securely agree on a mutual encryption key. The protocol
used to agree on a mutual key is as follows:

Agree(L,R):

1. CL chooses a new key KLR, and sends it to CR using a secure channel.

16

2. CL encrypts KLR with KL and multicasts it to L; CR encrypts KLR

with KR and multicasts to R.

3. All members of L ∪R securely receive the new key.

The agree primitive costs one point-to-point and two multicast messages.
Its effect is to create the key-graph Br(L,KLR, R) for athe members of
M(L) ∪M(R).

Below is an example for the creation of a key-tree for a group of 8 mem-
bers (see Figure 6):

1. Members 1 and 2 agree on mutual key K12

Members 3 and 4 agree on mutual key K34

Members 5 and 6 agree on mutual key K56

Members 7 and 8 agree on mutual key K78

2. Members 1,2 and 3,4 agree on mutual key K14

Members 5,6 and 7,8 agree on mutual key K58

3. Members 1,2,3,4 and 5,6,7,8 agree on mutual key K18

Each round’s steps occur concurrently. In this case, the algorithm takes
3 rounds, and each member stores 3 keys. This protocol can be generalized
to any number of members.

Base case: If the group contains 0 or 1 members, then we are done.

Recursive step (n = 2k+1): Split the group into two subgroups, ML and
MR, containing each 2k members. Apply the algorithm recursively to
ML and MR. Now, subgroup ML possesses key-tree L, and subgroup
MR posseses key-tree R. Apply the agreement primitive to L and R
such that they agree on a group key.

This protocol takes log2 n rounds to complete. Each member stores log2 n
keys.

Clearly, the naive protocol builds key-graphs for groups of members of
size 2n. Note that no member holds more than log2 n keys, and the total
number of keys is n.

In the lifetime of the group members join, and leave, the group partitions
and merges with other group components. For example, when member p1

leaves, the key-graph is split into three pieces. When p9 joins, the new
key-tree is a merging of the key-graphs containing {p1, . . . , p8}, and {p9}.

17

Figure 6: The naive protocol for a group of eight members. Groups that
agree on a key are surrounded by a dashed rectangle.

To handle these events efficiently, the computation of the new key-tree, as a
function of existing subtrees, is performed by the group leader. After a view-
change, the leader requests subtree layouts from subleaders. A tree layout is
a symbolic description of a key-tree. The leader combines the subtree layouts
and multicasts a new complete layout, coupled with a schedule describing
how to merge subtrees together.

Note that the leader is not allowed to learn the actual keys used by other
members. This is the reason for using symbolic representations.

We now extend agree to conform to the merge step described in the
previous section. If L and R are two subtrees that should be merged together
then, assuming h(L) ≥ h(R), the leader finds a subtree L′ of L such that
1 ≥ h(R) − h(L′) ≥ 0. The protocol is as follows. CL′ denotes the leader
within L′, CR the leader within R, CT the tree leader. The algorithm as a
whole is initiated by CT .

Extended Agree(L,R):

1. CT initiates the protocol by multicasting the new layout and schedule.

2. CL′ chooses a new key KL′R, and sends it to CR using a secure channel.

3. CL′ encrypts KL′R with KL′ and multicasts it.
CL′ encrypts all keys above KL′R with KL′R and multicasts them.
CR encrypts KL′R with KR and multicasts it.

4. All members of L ∪R securely receive the new key.

18

Below are two examples, the first is a leave scenario, the second is a join
scenario. Both reference Figure 3.

In figures (1) and (2), member p1 fails. All members receive a view-
change notification, and locally erase from their key-trees all keys of which
p1 had knowledge. The key-graph has now been split into three pieces
T1, T2, T3 containing: {p2}, {p3, p4}, {p5, p6, p7, p8} respectively. The leader
collects the structures of T1, T2, and T3 from the subleaders p2, p3, and p5.
It decides that the merged tree will have the layout described in Figure 7(2).
It multicasts this structure to the group, with instructions for T1 to merge
with T2 into T12, and later for T12 to merge with T3.

In figures (3) and (4) member p9 joins the group. All members receive
a view-change that includes member p9. The key-graph is now comprised
of two disjoint components: T1 containing: {p1, . . . , p8}, and T2 containing
{p9}. The leader collects the structures of T1 and T2 from the subleaders
p1 and p9. It decides that the merge tree will have the layout described in
Figure 7(4). It multicasts this structure to the group with instructions for
T1 to merge with T2.

Figure 7: Single member join/leave cases. Examples (1) and (2) show the
actions performed when member p1 leaves the group. Examples (3) and (4)
show the actions performed when member p9 joins.

Protocol B takes 2 stages in case of join, log2 n stages in case of leave,
and log2 n in case of tree construction. In general, the number of rounds

19

required is the maximal depth of the set of new levels in the tree that must
be constructed. The optimized protocol improves this result to two commu-
nication rounds, regardless of the number of levels that must be constructed.

4.1 Virtual Synchrony

Protocol B makes use of the GCS guarantees on message delivery, and
view agreement. All point-to-point and multicast messages are reliable, and
sender-ordered. Furthermore, they arrive in the view they are sent, hence,
an instance of the protocol is run in a single view. If the view changes, due
to members leaving or joining, then the protocol is restarted.

The guarantee that members agree on the view is crucial. It allows
members to know what role they play in the protocol, be it leader, sub-
leader, or no-role.

Although the protocol is multi-phased, we can guarantee an all-or-nothing
property. Either all members receive the new key-tree, and the new group-
key, or the protocol fails (and all members agree on this). To see this,
examine the last step of the protocol, where B has been completed, and ac-
knowledgments are collected by the leader. Once acknowledgment collection
is complete, a ProtoDone message is multicast by the leader. Members that
receive ProtoDone know that the protocol is over, and that other members
also posses the same key-tree.

Should failures occur prior to the last multicast, then the protocol is
restarted with the previous sub-trees. If a failure occurs afterwards, then
remaining members agree on the key-tree and group-key. Failed members
will be removed in the next view, and the protocol will be restarted.

This description is also valid for the optimized solution described in the
next section.

5 Optimized solution (O)

First, we describe an example showing that B can be substantially improved.
Then we describe the optimized algorithm O.

Examine the case where member p1 leaves the group. There are three
components to merge, T1, T2, T3 and two tree levels to reconstruct. This
requires two agree rounds. However, we can transform the protocol and
improve it substantially by having p2 choose all required keys at the same
time. See Figure 8(1).

The protocol used is as follows:

20

Figure 8: Optimizing the leave case.

• Round I: p2 chooses K24,K28. It sends K24 to the leader of T2, K28

to the leader of T3. Finally, it multicasts {K28}K24 so that members
of T2 can retrieve K28.

• Round II: The leader of T2 multicasts {K24}K34 .
The leader of T3 multicasts {K28}K58 .

A larger example is depicted in Figure 8(2). Here, in a 16 member
group, p1 leaves. The regular algorithm requires three agree rounds, costing
six communication rounds. This can be optimized to cost only two commu-
nication rounds, similarly to the above example.

• Round I: p2 chooses K24,K28,K2,16. It sends K24 to the leader of
T2, K28 to the leader of T3, and K2,16 to the leader of T4. Finally, it
multicasts {K28}K24 , {K2,16}K28 , so that members of T2 and T3 can
retrieve K28 and K2,16.

• Round II: The leader of T2 multicasts {K24}K34 .
The leader of T3 multicasts {K28}K58 .

21

The leader of T4 multicasts {K2,16}K9,16 .

Prior to presenting the general solution, we provide an example for the
creation of a complete key-tree of a group of eight members (see Figure 9).

Figure 9: Tree construction for an eight member group.

In the first stage (Figure 9(1)), members engage in a protocol similar to
the leave case. It is performed in parallel by all leaders in the group. New
keys are denoted by full arrows. Multicasted keys are written underneath
member nodes. In the second stage, members pass received keys along, using
multicast.

Round 1:
p1 chooses K12,K14,K18.

m1 → m2 : K12

m1 → m3 : K14

m1 → m5 : K18

p1 → G : {K14}K12 , {K18}K14

p3 chooses K34.
m3 → m4 : K34

p5 chooses K56,K58.
m5 → m6 : K56

m5 → m7 : K58

p1 → G : {K58}K56

p7 chooses K78.

22

m7 → m8 : K78

Round 2:
p3 → G : {K14}K34

p5 → G : {K18}K58

p7 → G : {K58}K78

At the end of the protocol, all members have all the keys. For example,
member p1 has all the keys at the end of the first round. It learns no other
keys as the protocol progresses. Member p8 receives in round one K78. In
round two it receives: {K18}K58 and {K58}K78 . Thus, it can retrieve K58,
and K18.

We now generalize the protocol. We shall describe how the leader, after
retrieving subtree layouts {T1, . . . , Tm}, creates an optimal schedule describ-
ing how to merge the subtrees together. Since members simply follow the
leader’s schedule, we shall focus on the scheduling algorithm (Sched).

Sched works recursively. First, we use the centralized algorithm, and
merge T1, . . . , Tm together. There are m − 1 instances where merge opera-
tions occur, each such operation is translated using a simple template.

Assuming subtrees L and R are to be merged, and h(L) ≥ h(R), then
there is a subtree L′ of L with which to merge R. Mark the list of keys on
the route from KL′ to the root of L by Lpath.

The template is:

Stage 1:
CL′ choose a new key KL′R and:

CL′ → CR : KL′R

CL′ → G : {KL′R}KL′ , {L′
path}KL′R

Stage 2:
CR → G : {KL′R}KR

Building a complete schedule requires performing Sched iteratively for
{T1, . . . , Tk} and storing the set of instructions in a data structure with
two fields: one for the first stage, and another for the second stage. Each
application of Sched adds two multicasts and one point-to-point message to
the total. The number of rounds remains two.

An example for a more general case of Sched can be seen in Figure 10.
The figure shows a set of three subtrees T1, T2, T3 that need to be merged.

The resulting schedule will be:

23

Figure 10: The leader of T ′
2 must send K2 to T3.

Stage1:
CT1 chooses K1.

CT1 → CT2 : K1

CT1 → G : {K1}KT1

CT ′
2

chooses K ′.
CT ′

2
→ CT3 : K ′

CT ′
2
→ G : {K ′}KT ′

2

CT ′
2
→ G : {K2}K′

Stage2:
CT2 → G : {K1}KT2

CT3 → G : {K ′}KT3

For example, all members of T3 will receive: {K ′}KT3
from CT3 , {K2}K′

from CT ′
2
, and {K1}K2 from CT2 . Using KT3 they can decrypt K ′,K2, and

finally K1. Hence, they can retrieve all the keys on the route to the root.
Notice that KT ′

2
must send the path inside T2 to all members of T3. In this

case, the path included only K2.

Claim 3 Algorithm Sched produces a schedule that guarantees all members
receive exactly all the keys on the path to the root.

Proof: The proof is performed by induction on the number of merge steps.
If m trees need to be merged, then there are m − 1 steps to perform. The

24

induction invariant is that the leader of a subtree knows all keys on the path
to the root of its subtree in stage 1.

Base case:

If m trees need to merged, then the base case is merging the first two.

For two trees L, R, we assume w.l.o.g that h(L) ≥ h(R). At the end of
the protocol, CR learns KL′R, and the set of multicasts: {KL′R}KL′ ,
{Lpath}KL′R , {KL′R}KR

is sent. Members of R learn (exactly) KL′R

and Lpath. Members of L learn KL′R, and the rest of the members
learn nothing.

Note that the leader of L′ chooses the new key KL′R, hence the invari-
ant holds.

Induction step:

Assume k − 1 steps can be performed in two stages. Now we need
to show for the k’th step. We perform the first k − 1 steps, and get
a tree L coupled with a two step schedule. The k’th step consists
of scheduling a merge between the smallest tree in the heap R and
L. Assume w.l.o.g that h(L) ≥ h(R), and that h(R) = h(L′), where
L′ is a subtree of L. The final tree will be L with L′ replaced with
Br(L′,KL′R, R).

CL′ chooses KL′R and passes it to CR. It knows KL′ , hence it multi-
casts {KL′R}KL′ . All members of L′ will know KL′ at the end of stage
two, hence they will also know KL′R.

Leader CR knows KR in the first stage, hence, it multicasts {KL′R}KR

in the second stage. By induction, all members of R will know KR at
the end of the second stage, hence they will also be able to retrieve
KL′R.

Furthermore, In the first stage, CL′ multicasts {Lpath}KL′R . This guar-
antees that members of R will know all the keys on the path to the
root at the end of the second stage.

Note that the leader of L′ chooses KL′R, hence the invariant holds.

2

5.1 Three round solution (O3)

The optimized solution O is optimized for rounds, i.e., it reduces the number
of communication rounds to a minimum. However, it is not optimal with

25

respect to the number of multicast messages. Each subtree-leader sends
log2 n multicast messages, potentially one for each level of recursion. Since
there are n/2 such members, we may have up to O(n × log2 n) multicast
messages sent in a protocol run.

Here we improve O and create protocol O3. Protocol O3 is equiva-
lent to O except for one detail, in each view, a member px is chosen. All
subtree-leaders, in stage 2, send their multicasts messages point-to-point to
px. Member px concatenates these messages and sends them as one (large)
multicast. The other members will unpack this multicast and use the rele-
vant part. This scheme reduces costs to n/2 point-to-point messages from
subtree leaders to px, and one multicast message by px. Hence, we add
another round to the protocol but reduce multicast traffic.

5.2 Costs

Here, we compare the three-round solution with the regular centralized solu-
tion. Such a comparison is inherently unfair, since the distributed algorithm
must overcome many obstacles that do not exist for the centralized version.
To even out the playing ground somewhat, we do not take into account (1)
collection of acknowledgments (2) sending tree-layouts. We compare three
scenarios — building the key-tree, the join algorithm and the leave algo-
rithm. We use tables to compare the solutions and we use the following
notations:

pt-2-pt: The number of point-to-point messages sent.

multicast: The number of multicast messages sent.

bytes: The total number of bytes sent

rounds: The number of rounds the algorithm takes to complete

First, we compare the case of building a key-tree for a group of size 2n

where there are no preexisting subtrees. The following table summarizes the
costs for each algorithm:

pt-2-pt # multicast # bytes # rounds
C 0 1 2Kn 1
O3 1.5n− 1 1 3Kn 3

Since the group contains n members, there are n − 1 keys to create. A
single secure point-to-point message is used to create each key. There are

26

n/2 members that act as subleaders. These all send multicast messages in
the first and second stages. These messages are converted into point-to-point
messages sent to the leader. All counted, there are 1.5n − 1 point-to-point
messages. The number of bytes is broken down as follows: (1) the n − 1
secure point-to-point messages cost Kn. (2) The messages to the leader
cost a total of Kn (3) The final multicast bundles together all point-to-
point messages, and it therefore costs an additional Kn. The cost is in
fact Kn for the second and third items because the final multicast contains
essentially all the group key-tree, except for the lowest level.

The leave algorithm costs:

pt-2-pt # multicast # bytes # rounds
C 0 1 2K log2 n 1
O3 log2n 1 3K log2 n 3

The join algorithm costs:

pt-2-pt # multicast # bytes # rounds
C 0 1 log2 n 1
O3 2 1 log2 n 3

6 Performance

We have fully implemented our algorithm in the Ensemble [28] group com-
munication system. This section describes its performance. Our test-bed
was a set of 20 PentiumIII 500Mhz Linux2.2 machines, connected by a
switched 10Mbit/sec Ethernet. Machines were lightly loaded during test-
ing. A group of n members was created, a set of member join/leave op-
erations was performed, and measurements were taken. To simulate real
conditions, we flushed the cache once every 30 rekey operations, and dis-
carded “cold-start” results. To simulate more than 20 members, we ran a
couple of processes on the same machine.

Figure 11(1) describes the latency of join/leave operations. Performance
in the join case is optimal. There are exactly two integer exponentiations on
the critical path. This is optimal. For example, if a new member is added
on the left hand side of the tree, then that member must create connections
to log2 n components. The improvement comes from using a tree-skewing
technique. When a single member joins, we attempt to add it as far to the
right as possible. For example, if it becomes the right-most member, then
only one connection will be required to connect it to the tree. Since we must

27

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30 35 40 45

s
e
c
o
n
d
s

�

#members

latency

LEAVE
JOIN

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45

e
x
p
o
n
e
n
t
i
a
t
i
o
n
s

�

#members

max #exponentiations

LEAVE
JOIN

(1) (2)

Figure 11: (1)Latency of the dWGL algorithm for join/leave operations.(2)
The maximal number of exponentiations on the critical path.

also keep our tree AVL, we can keep skewing the tree until it reaches a state
depicted in figure 12.

Figure 12: A skewed tree. The tree is comprised of four subtrees: T1, T2, T3,
and T4 with heights h, h + 1, h + 3, and h + 5.

When a member leaves, naively, log2 n components should be merged
together. This should cost 2 log2 n exponentiations. Examining the latency
graph, and Figure 11(2), we can see that very few exponentiations take place.
This is due to the caching optimization, and due to tree-skewing. To see
how tree-skewing is beneficial, examine Figure 12. Assume a member of T1

leaves, and keys K1,K2,K3 must be reconstructed. The leader of T1 needs
three secure connections in order to disseminate new keys. Had the tree
been fully balanced, the depth of T1 would have been substantially larger
than three, incurring the creation of additional channels.

28

Figure 13(1) describes the size of the multicast message describing the
layout of the group-tree. Figure 13(2) depicts the size of the round three
multicast message containing the set of encrypted keys. Figure 13(2) depicts
the (average) total number of exponentiations. For the join case, this is a
constant two, whereas for the leave case, this slowly rises.

29

0

200

400

600

800

1000

5 10 15 20 25 30 35 40 45

b
y
t
e
s

�

#members

schedule size

LEAVE
JOIN

0

200

400

600

800

1000

5 10 15 20 25 30 35 40 45

b
y
t
e
s

�

#members

bundled-keys size (round 3)

LEAVE
JOIN

(1) (2)

0

2

4

6

8

10

5 10 15 20 25 30 35 40 45

e
x
p
o
n
e
n
t
i
a
t
i
o
n
s

�

#members

total #exponentiations

LEAVE
JOIN

(3)

Figure 13: Additional performance measurements. (1) Size of the schedule
sent by the leader. (2) Size of the bundled keys sent in the third round. (3)
Total number of integer exponentiations.

To summarize, the protocol does not incur significant communication
overhead, and the number of exponentiations is kept to a bare minimum. In
some cases, the number of exponentiations is in fact optimal.

7 Related Work

Ensemble is a direct descendent of three systems: Isis [5], Horus [29], and
Transis [2]. The Ensemble security architecture [31] has evolved from semi-
nal work by Reiter [26, 27] done in the context of the Isis and Horus systems.

Many other GCSs have been built around the world. The secure GCSs

30

that we know of are: Antigone [22], and Spread [1]. Spread splits the GCS
functionality into a server and client sides. Protection, in the form of a
shared encryption and MAC key, is offered to the client while the server is
left unprotected. Access control is not supported. The shared group-key is
created using Cliques cryptographic toolkit [32]. Cliques uses contributed
shares from each member to create the group-key. Cliques’s keys are stronger
than our own, however, they require substantially more computation.

Antigone has been used to secure video conferences over the web, using
the VIC and VAT tools. However, to date, it has not been provided with a
fault tolerance architecture. The Totem [20], and Rampart [25] systems can
survive Byzantine faults, at the cost of a further degradation of performance.

The Enclave system [15] allows a set of applications to create a shared
security context in which secure communicate is possible. All multicast
communication is encrypted and signed using a symmetric key. The security
context is managed by a member acting as leader. Security is afforded to any
application implementing the Enclave API. The Enclave system addresses
the security concerns of a larger set of applications than our own, however,
fault-tolerance is not addressed. Should the group-leader fail, the shared
security context is lost and the group cannot recover.

The Cactus system [18] is a framework allowing the implementation of
network services and applications. A Cactus application is typically split
into many small layers (or micro-protocols), each implementing specific func-
tionality. Cactus has a security architecture [17] that allows switching en-
cryption and MAC algorithms as required. Actual micro-protocols can be
switched at runtime as well. This allows the application to adapt to attacks,
or changing network conditions at runtime.

Of all systems, ours is closest to Reiter’s security architecture for Ho-
rus [27]. Horus is a group communication system, sharing much of the char-
acteristics of Ensemble. The system followed the fortress security model,
where a single partition was allowed, and members could join and leave
the group, protected by access control, and authentication barriers. Group
members share a symmetric group key used to encrypt and MAC all inner
group messages. Furthermore, the system allocated public keys for groups,
that clients could use to perform secure group-RPC. Horus was built at a
time when authentication services were not standard, therefore, it included
a secure time service, and a replicated byzantine fault-tolerant authentica-
tion service. Symmetric encryption was optimized through the generation
of one-time-pads in the background.

By comparison, our system uses off-the-shelf authentication services, it
does not handle group-RPC, and symmetric encryption is not a bottleneck.

31

In Ensemble we handle the “next tier” of issues: supporting efficient group
merge (not just join and leave), allowing multiple partitions (not just pri-
mary partition), and efficient group rekeying with PFS (and a weak form of
BFS).

8 Conclusions

We have described an efficient protocol for the management of group-keys for
Group Communication Systems. Our protocol is based on the notion of key-
graphs, or Logical Key Hierarchy, as originally suggested by Wong Gauda
and Lam. We adapt and extend this work, making the protocol completely
decentralized and fault-tolerant (to the extent possible), and employing a
highly efficient tree balancing scheme.

In contrast, keygraphs were previously used in centralized settings, where
a large group of clients is managed by a central server. The server builds
a keygraph encompassing all the clients, allowing it to manage the set of
clients. In a GCS, where no single point of failure is allowed, we could not
afford to delegate the server-task to any single member.

Therefore, our protocol differs substantially from the centralized ap-
proach. Rather, members enlist in a collaborative effort to create the group
key-graph. The surprising result is that the completely distributed solution
has comparative performance to the centralized one.

An issue for future work is supporting Perfect Backward Secrecy effi-
ciently. Currently, we support it in a weak sense.

Another problematic area is scalability to thousands of nodes. Our pro-
tocol relies on a Group Communication system, that can operate up to a
hundred nodes. The protocol strongly relies on the agreed membership, and
virtual synchrony properties of the GCS. It remains to be seen whether or
not the protocol can be rewritten to use a weaker, yet more scalable type
of infrastructure. For example, recent work on probabilistic failure track-
ing [16] has yielded a scalable membership mechanisms but with properties
weaker than virtual synchrony. Applying our algorithm to such a scalable
system is an interesting open question.

References

[1] Amir, Y., Ateniese, G., Hasse, D., Kim, Y., Nita-Rotaru, C., Schloss-
nagle, T., Schultz, J., Stanton, J., and Tsudik, G. Secure group com-
munication in asynchronous networks with failures: Integration and

32

experiments. In International Conference on Distributed Computing
Systems, USA, April 2000. IEEE Computer Society Press.

[2] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Transis: A
Communication Sub-System for High Availability. In FTCS confer-
ence, pages 76–84, USA, July 1992. IEEE Computer Society Press.
http://www.cs.huji.ac.il/∼transis.

[3] Balenson, D., McGrew, D., and Sherman, A. Key management for large
dynamic groups: One-way function trees and amortized initialization.
Technical report, IETF, Febuary 1999. draft-balenson-groupkeymgmt-
oft-00.txt.

[4] Bellare, M. and Rogaway, P. Entity authentication and key distribution.
In Crypto 93, pages 232–249, USA, 1993. IEEE Computer Society Press.

[5] Birman, K. and Renesse, R. V. Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press, USA, 1994.

[6] Birman, K. P. A review of experiences with reliable multicast. Software,
Practice and Experience, 29(9):741–774, Sept 1999.

[7] Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Min-
sky, Y. Bimodal multicast. ACM Transactions on Computer Systems,
17(2):41–88, May 1999.

[8] Canetti, R., Garay, J., Itkis, G., Micciancio, D., M. Naor, and
B. Pinkas. Multicast security: A taxonomy and some efficient con-
structions. In INFOCOM, volume 2, pages 708–716, USA, March 1999.
IEEE Computer Society Press.

[9] Chiakpo, E. RS/6000 SP High Availability Infrastructure. IBM, Inter-
nationl Technical Support Organization, Poughkeepsie, USA, Novem-
ber 1996.

[10] Cox, M. J., Engelschall, R. S., Henson, S., Laurie, B., Young, E. A.,
and Hudson, T. J. Open SSL, 2000. http://www.openssl.org.

[11] Diffie, W. and Hellman, M. New directions in cryptography. IEEE
Transactions on information Theory, IT-22:644–654, November 1976.

[12] Fischer, M., Lynch, N., and Paterson, M. Impossibility of distributed
consensus with one faulty process. J. ACM, 32:374–382, April 1985.

33

[13] Friedman, R. and Vaysburd, A. Fast replicated state machines over par-
titionable networks. In IEEE 16th International Symposium on Reliable
Distributed Systems, October 1997.

[14] Goft, G. and Lotem, E. Y. The AS/400 Cluster Engine: A case Study.
In International Workshop on Group Communication (IWGC’99),
USA, September 1999. IEEE Computer Society Press.

[15] Gong, L. Enclaves: Enabling secure collaboration over the internet.
IEEE Journal on Selected Areas in Communications, 15(3):567–575,
April 1997.

[16] Gupta, I., Renesse, R. V., and Birman, K. P. A pobabilistically correct
leader election protocol for large groups. Tr, Department of Computer
Science, University of Cornell, 2000.

[17] Hiltunen, M. A., Jaiprakash, S., Schlichting, R.D., and Ugarte, C.
A. Fine-grain configurability for secure communication. Technical Re-
port TR00-05, Department of Computer Science, University of Arizona,
June 2000.

[18] Hiltunen, M. A. and Schlichting, R. D. Adaptive distributed and fault-
tolerant systems. International Journal of Computer Systems Science
and Engineering, 11(5):125–133, September 1996.

[19] Keidar, I. A highly available paradigm for consistent object replication.
Master’s thesis, Hebrew University Jerusalem, 1995.

[20] Kihlstrom, K.P., Moser, L.E., and Melliar-Smith, P.M. The securering
protocols for securing group communication. In Proceedings of the 31st
Annual Hawaii International Conference on System Sciences (HICSS),
volume 3, pages 317–326, USA, 1998. IEEE Computer Society Press.

[21] Kim, Y., Perrig, A., and Tsudik, G. Simple and fault-tolerant key
agreement for dynamic collaborative groups. In 7th ACM Conference
on Computer and Communication Security, New York, USA, November
2000. ACM press.

[22] McDaniel, P. D., Prakash, A., and Honeyman, P. Antigone: A Flexible
Framework for Secure Group Communication. In Proceedings of the
8th USENIX Security Symposium, Berkely USA, August 1999. Usenix
society.

34

[23] Moyer, M. J., Rao, J.R., and Rohatgi, P. Maintaining balanced key
trees for secure multicast. Technical report, IETF, June 1999. draft-
irtf-smug-key-tree-balance-00.txt.

[24] Neuman, B. C. and Ts’o, T. Kerberos: An authentication service for
computer networks. IEEE Communications, 32(9):33–38, September
1994.

[25] Reiter, M.K. Secure agreement protocols: Reliable and atomic group
multicast in rampart. In ACM Conference on Computer and Commu-
nication Security, pages 68–80, New York, USA, November 1994. ACM
press.

[26] Reiter, M.K., Birman, K.P., and Gong, L. Integrating security in a
group oriented distributed system. TR 92-1269, Department of Conm-
puter Science, University of Cornell, February 1992.

[27] Reiter, M.K., Birman, K.P., and Renesse, R.V. A security architecture
for fault-tolerant systems. ACM Transactions on Computer Systems,
16(3):986–1009, November 1994.

[28] Renesse, R.V., Birman, K. P., Hayden, M., Vaysburd, A., and Karr,
D. Building adaptive systems using ensemble. TR 97-1638, Cornell
University, July 1997.

[29] Renesse, R.V., Birman, K.P., and Maffeis, S. Horus, a flexible group
communication system. Communications of the ACM, 39(4):76–83,
April 1996.

[30] Rensesse, R. V., Minsky, Y., and Hayden, M. A gossip-style failure
detection service. In Middleware, 1998.

[31] Rodeh, O., Birman, K.P., Hayden, M., Xiao, Z., and Dolev, D. Ensem-
ble security. TR 1703, Department of Conmputer Science, University
of Cornell, 1998.

[32] Steiner, M., Tsudik, G., and Waidner, M. Cliques: A new approach to
group key agreement. In IEEE International Conference on Distributed
Computing Systems (ICDCS’98), pages 380–387, USA, May 1998. IEEE
Computer Society Press.

[33] Vogels, W., Dumitriu, D., Birman, K., Gamache, R., Short, R., Vert,
J., Massa, M., Barrera, J., and Gray, J. The design and architecture of

35

the microsoft cluster service – a practical approach to high-availability
and scalability. In 28th Symposium on Fault-Tolerant Computing, USA,
June 1998. IEEE Computer Society Press.

[34] Wallner, D., Harder, E., and Agee, R. Key management for multicast:
Issues and architectures. Internet Draft draft-wallner-key-arch-01.txt,
IETF, Network Working Group, September 1998. Work in progress.

[35] Wong, C.K., Gouda, M., and Lam, S.S. Secure group communication
using key graphs. In SIGGCOM, New York, USA, September 1998.
ACM press.

[36] Zimmermann, P. Pretty good privacy, 2000. http://www.pgp.com.

36

