A Churn-Resistant Peer-to-Peer Web Caching System

Prakash Linga
Cornell University
Ithaca, NY 14853

linga@cs.cornell.edu

Indranil Gupta
Univ. of lllinais,
Urbana-Champaign
Champaign, IL 61801

. *
Ken Birman
Cornell University
Ithaca, NY 14853

ken@cs.cornell.edu

indy@cs.uiuc.edu

ABSTRACT

Denial of service attacks on peer-to-peer (p2p) systems can
arise from sources otherwise considered non-malicious. We

focus on one such commonly prevalent source, called “churn”.

Churn arises from continued and rapid arrival and failure
(or departure) of a large number of participants in the sys-
tem, and traces from deployments have shown that it can
lead to extremely stressful networking conditions. It has
the potential to increase host loads and block a large frac-
tion of normal insert and lookup operations in the peer-to-
peer system. This paper studies a cooperative web caching
system that is resistant to churn attacks. Based on the
Kelips peer-to-peer routing substrate, it imposes a constant
load on participants and is able to reorganize itself contin-
uously under churn. Peer pointers are automatically es-
tablished among more available participants, thus ensuring
high cache hit rates even when the system is stressed un-
der churn. In addition, the system improves on the network
locality of cache accesses in previous web caching schemes.
The paper presents experimental results from a real imple-
mentation running over a commodity PC cluster, as well as
trace-based simulations that use real host availability traces
obtained from another deployed p2p system.

1. INTRODUCTION

Many systems today are built upon the assumption that
if they are secure and available, they are robust. However,
security violations such as denial of service attacks can be
initiated by sources otherwise considered non-malicious. We
consider one such source of possible disruptions in the service
of a peer-to-peer system - churn and continuously occurring
failures of nodes and communication. We investigate this
within the context of a peer to peer system for cooperative

*The authors were supported in part by DARPA/AFRL-
IFGA grant F30602-99-1-0532 and in part by a MURI grant
AFOSR F49620-02-1-0233, with additional support from
the AFRL-IFGA Information Assurance Institute, from Mi-
crosoft Research and from the Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2003 ACM 0-89791-88-6/97/05 ...$5.00.

caching of web services and objects, and show that proba-
bilistic techniques can be used to build a design that heals
proactively in the face of system instabilities. The system
also adapts itself to the underlying network topology to pro-
vide access to nearby cached copies of web objects.

An external caching scheme stores copies of web objects
or meta-data so that clients can avoid requests to a web
server. The best known example of an external cache is a
web proxy, but with the rapid spread of web technologies,
many other caching scenarios can be identified. Caching
is central to performance in the web, both because it re-
duces load on servers, and because cached data is normally
cheaper to access from another machine that is closer in the
network. Although cooperation between cache managers is
not a common feature of existing web architectures, coop-
erative caching supported by peer-to-peer architectures has
great potential [9, 13]. When sets of client systems have sim-
ilar interests and fast low-latency interconnections, shared
caching could bring significant benefits.

The peer-to-peer mechanisms referred to above emerged
from interest in file sharing, and they are a technique with
applicability to sharing web caches [9, 13, 15]. We focus
on cached web pages, primarily because detailed traces are
available for this case and because such an analysis permits
direct comparison with other systems.

However, cooperative caching is more generally applica-
ble, and it could improve performance for web services and
applications. Mohan studies a variety of these scenarios in
[12]. For example, dynamic web content serving can be ac-
celerated by caching html fragments, web applications such
as EJBs can be cached, and database operations such as
queries can be speeded up by caching their results. Peer-
to-peer indexing is a good match for such settings, and the
longer term goal arising from this paper is to develop a pow-
erful caching solution useful in a diversity of web caching
settings.

A primary concern about peer-to-peer cooperative caching
is that while protocols in this class scale well, they are also
sensitive to “churn”, whereby hosts that join and leave the
system trigger high overheads as the system restabilizes [13].
Churn-related overhead is more than just a nuisance, since
an attacker seeking to disable a system could provoke churn
to mount a distributed denial of service attack, potentially
crippling the sharing mechanism while also subjecting par-
ticipating machines to high loads. Resistance to churn is a
crucial objective if this type of mechanism is to be successful.

The Kelips system [6], is unusual in employing proba-
bilistic schemes and a self-regenerating data structure that

adapts automatically and with bounded loads (independent
of system size) as machines join, leave, or fail, or other dis-
turbances occur. Here we show that when Kelips is em-
ployed for shared web caching, the system maintains rapid
lookups and low overheads even when subjected to high
churn rates, and even if new cache entries are simultane-
ously added.

Our analysis focuses on server-bandwidth, lookup time
and access latency both when a cache hit occurs and when
a miss is detected, load balancing and robustness to failures
and churn. Our work is experimental, and includes (a) a
microbenchmark study for small clusters, and (b) a trace-
drive simulation study for larger-sized systems. Our eval-
uation uses web access traces from the Berkeley Home IP
network [18], transit-stub network topology maps obtained
through the Georgia-Tech generator [19], and churn traces
from the Overnet deployment (obtained from the authors
of [2]). We show that loads are low and independent of the
rate of churn and failure events, and the system adapts itself
so that peers that tend to join and leave frequently are un-
likely to be used as targets in lookups - in effect, requests are
directed towards more reliable peers and, within this set, to-
wards those with lower expected latency. Coupled with the
extremely good scalability of the technique, we believe that
Kelips is a strong candidate for caching in web systems of
all kinds, including traditional web sites, databases, and web
services.

2. RELATED WORK

Normal HTTP Request Processing. A client’s request for
a web object is first serviced from the local cache on the
client’s machine. This might fail because either the object is
uncacheable, or not present in the cache, or the local copy is
stale 1. In the first case, the object’s web server is contacted
by issuing an HTTP GET application level request. In the
second case (client cache miss), an HT'TP GET is issued to
the external web cache. For the third case (client cache copy
stale), an HTTP conditional CGET is issued to the external
web cache. If the external web cache is unable to service the
GET (CGET), it could either fall-through to the web server
or inform the client to contact the server directly. The reply
to an external web cache request is the object or, in case of
a CGET, a not-modified reply indicating that the stale copy
is indeed the latest version of the object.

The design of an external web cache falls into one of the
following three categories : (1) a hierarchy of proxies, (2)
distributed proxies, or (3) peer-to-peer caches. We present
a truncated survey below - the interested reader is referred
to [16] for a comprehensive study.

1. Hierarchical Schemes: Harvest [4] and Squid [17] con-
nect multiple web proxy servers at the institutional, wide
area network and root levels in a virtual hierarchy. Servers
store caches of objects, and an external web cache request
is serviced through these multiple levels by traversing the
parent, child and sibling pointers. Chankhunthod et al [4]
found that up to three levels of proxy servers could be main-
tained without a latency loss compared to that of direct web

!Freshness is determined through the use of an expiration
policy in the web cache. The expiration time is either spec-
ified by the origin server or is computed by the web cache
based on the last modification time.

server access. Wang [16] outlines some of the drawbacks of
the hierarchy - proxy placement, redundant cache copies,
and load on servers close to the root, etc.

2. Distributed Caching: Provey and Harrison [20] store
only cache hints (not objects) at proxy servers. Cachemesh
[21] partitions out the URL space among cache servers using
hashing. A cache routing table among the servers is then
used to route requests for objects.

3. Peer-to-peer Caching: The above schemes still require
a proxy infrastructure. The elimination of proxy servers
completely implies that the meta-information that would
normally be stored inside the hierarchy must instead be
stored at the individual clients or the server.

Padmanabhan et al [13] examine a server redirection scheme
that uses IP prefixes, network bandwidth estimates, and
landmarks to redirect a client request at the web server to
a nearby client. Peer-to-peer web caching schemes such as
COOPnet, BuddyWeb, Backslash and Squirrel organize net-
work clients in an overlay within which object requests are
routed. Stading et al [22] propose institutional level special
DNS and HTTP servers, called “Backslash” nodes. Back-
slash nodes are organized within the Content Addressable
Network (CAN) overlay, and an external web cache request
is routed from a client to the nearest Backslash node, and
then into the CAN overlay itself. BuddyWeb [15] uses a
custom p2p overlay among the clients themselves to route
object requests. Squirrel [9] builds a cooperative web cache
on top of the Pastry p2p routing substrate.

Padmanabhan et al contended in [13] that the use of
peer-to-peer routing substrates for web caching may be too
“heavy-weight because individual clients may not partici-
pate in the peer to peer network for very long, necessitating
constant updates of the distributed data structures”. Work
on the p2p cooperative web cache designs described above
has not addressed this criticism. Although the above p2p
overlays are self-reorganizing, we believe our paper is the
first systematic study of cooperative caching under the form
of “churn attack” discussed earlier.

There is a preliminary theoretical study by the authors of
article [11] on how the Chord peer-to-peer system uses a pe-
riodic stabilization protocol to combat the effect of concur-
rent node arrival and failure. Their theoretical analysis how-
ever revealed that such a protocol would be infeasible to run
- either the time to stabilization or the bandwidth consumed
grow super-linearly with the number of nodes. The Kelips
web caching solution does not require supplementary stabi-
lization protocols; constant-cost and low-bandwidth back-
ground communication suffices to combat significant rates
of churn while ensuring favorable and robust performance
numbers. Our study in the current paper is also the first to
demonstrate a practicable and efficient solution to the prob-
lem of churn and experimentally study its working under
realistic conditions.

3. THEKELIPSPEER-TO-PEER OVERLAY

Peer-to-peer overlays for object insertion and retrieval
such as Pastry, Tapestry, and Chord define how each partici-
pant node chooses peers to which they maintain pointers. In
contrast, Kelips uses softer rules to determine sets of possi-
ble peer pointers, permitting a node to pick any peer within
the set according to end-user considerations and constraints
such as topology awareness, trust, security concerns, etc.
The choice can vary over time, and this gives Kelips the

“self-regenerating” behavior mentioned earlier.

More precisely, a Kelips system with n nodes consists
of \/n virtual subgroups called affinity groups, numbered
0 through (v/n — 1). Each node lies in an affinity group,
determined by using a consistent hashing function to map
the node’s identifier (IP address and port number) into the
integer interval [0, /n — 1]. Using SHA-1 as the hash func-
tion, each affinity group size will lie in an interval around
v/n wh.p. The value of n should be consistently known at
all nodes, but can be an estimate of the actual system size.

At each node, Kelips replicates resource tuples and mem-
bership information. Membership information includes (a)
the affinity group view, a (partial) set of other nodes lying
in the same affinity group, and (b) for each foreign affinity
group, a small (constant-sized) set of contact nodes lying in
it. Each membership entry (affinity group view or contact)
carries additional fields such as round-trip time estimates
and heartbeat counts.

A node inserting a resource tuple {resource name, loca-
tion} first determines the resource’s affinity group by hash-
ing the resource name. The tuple is communicated to a
contact in the resource’s affinity group, which in turn dis-
seminates it, perhaps partially, within the affinity group.
With full tuple replication, a node can access a resource tu-
ple given a resource’s name by one RPC to its contact for
the resource’s affinity group.

The freshness of resource tuples is determined through the
use of an integer heartbeat count. The inserting node peri-
odically disseminates an updated heartbeat count to the re-
source’s affinity group. Similarly, each node n; periodically
disseminates a heartbeat count for itself, refreshing member-
ship entries that are maintained for n; at other nodes in the
system. Thus, failure of n; leads to purging of membership
tuples for n; (and associated resource tuples with location
= n;) at other nodes.

Membership heartbeat counts need to be disseminated
throughout the entire system (since contacts are maintained
across affinity groups). So does membership information
such as about joining, leaving or failed members.

All dissemination in Kelips occurs through a continuously
active, low-cost background communication mechanism based
on a peer-to-peer epidemic-style (or gossip-style) protocol [7,
8]. A faster scheme might employ IP multicast for this pur-
pose, using gossip only to fill gaps, but exploration of that
option is outside the scope of this paper.

Gossip-based communication in Kelips proceeds as fol-
lows. A node periodically picks a few peers (from among
its list of contacts and its affinity group view) as gossip tar-
gets. These peers are picked based on a spatial distribu-
tion based on round trip times [10], that as a consequence,
prefers gossip targets topologically close to the node. The
node then sends these nodes a constant sized gossip mes-
sage (via UDP) containing membership and resource tuple
entries selected uniformly at random from among those it
maintains. These gossiped entries also contain the corre-
sponding heartbeat counts. Tuples that are new or were re-
cently deleted are explicitly added on to the gossip message
for faster dissemination. Recipients update their soft state
based on information obtained from the gossip message. No
attempt is made to detect or resend lost messages.

The latency of dissemination within an affinity group de-
pends on the gossip target selection scheme — it varies as
O(log?(n)) under the spatial gossiping scheme from [10] and

Node 110

Affinity Group View ! Affinity
d hbeatf it ! Group #
1490] 230 i o1 2. .9
‘1§ 2057/ 790 | 1 - -
| 160, []
Contacts | | | |
group cont act nodes 3 | |
110
432! '
2 432, [|
30 L] []
o |
Resourcetuples ;7 &

info,
resource g., honenod

hello.c| 160, ...

Figure 1: Kelips soft state at a node: A Kelips sys-
tem with nodes distributed across 10 affinity groups,
and soft state at a hypothetical node.

as O(log(n)) under uniform target selection. These latencies
rise by a factor of O(log(n)) for dissemination throughout
the system (i.e., across affinity groups) - see [6]. Since gos-
sip message sizes are limited, only a part of the soft state
can be sent with each gossip message. This imposes an ex-
tra multiplicative factor of O(y/n) for heartbeat updates.
In fact, however, the constants are small for medium sized
systems. In a system with a thousand nodes, a background
bandwidth utilization of a few KBps per node suffices to
have low dissemination latency ranges in tens of seconds [6].

When a membership tuple expires, the deleted entry is
retained for a while in order to prevent stale copies for the
failed node from being reinserted. This strategy will assume
importance later when we discuss the churn-resistance of
Kelips web caching.

The above soft state occupies a small memory footprint
at each Kelips node. Reference [6] calculates that in a sys-
tem with 10 million files and a 100,000 nodes, the soft state
at each node is 1.93 MB. Section 5.1 of the current paper
shows that the implementation occupies a small footprint in
a Windows runtime environment.

Figure 1 illustrates an example of a base Kelips system.
Membership and resource tuple entries are stored in AVL
tree structures to support efficient operations.

Kelips Flexibility: While designing a Kelips-based p2p
application (such as web caching), the designer as well as
end nodes are equipped with a flexible choice of policies and
tuning knobs.

e Background Overhead can be increased to lower dis-
semination latency.

e Peer Maintenance can be done through flexible end-to-
end policies, e.g., based on network proximity, preference for
peers not connected through a firewall, trusted peers, etc.
e Multiple tries and Routing of queries enables it to
reach an appropriate node (i.e., one with a copy of the re-
source tuple) in the resource’s affinity group when the 1 RPC
lookup fails. TTL (time-to-live) and the number of retries
can be used to trade latency with likelihood of success.

¢ Replication Policies for the resource (not the resource
tuple) can be chosen orthogonal to the base operation of

Node 110

Affinity Group View :

d EE%KE“ !

Contacts
group |contactnodes | | URL

Directory Table for URL

n_addr| tstmps| rtt

160

2 432, ..) hitp:/wwae.con.com/

Resource tuples

Figure 2: Web caching: Modified soft state at a
Kelips node.

Kelips.

For Kelips web caching, the policy choices used are de-
scribed in Section 4, and Section 5 gives experimental results
to show the effect of cranking the knobs.

4. DESIGN OF A P2P WEB CACHING AP-
PLICATION WITH KELIPS

We study the design of a decentralized web caching ap-
plication with Kelips. There are two options to designing
an application over a p2p DHT (such as Pastry or Kelips) :
(a) layering, through the use of the standard get(object,

..), put(object, ...) API exported by the DHT layer
(as in [5]), and (b) pushing the application down into the
DHT layer. Our work adopts the latter. The current sec-
tion describes the required modifications in the Kelips base
design - the details of the soft state at each node, the han-
dling of lookups, and finally, where and how the soft state is
refreshed. Section 5 studies, through cluster-based experi-
ments and trace-based simulations, how well this design sup-
ports the initially stated goals for decentralized web caching
(viz., tolerance to churn, topologically local access, good hit
ratios for low latency and low server bandwidth, and load
balancing).

Soft Sate at A Node. For our web caching application,
Kelips is used to replicate a directory table for each cached
object. A directory table is a collection of a small set of
addresses of topologically proximate nodes that hold a valid
copy of the object. This is depicted in Figure 2.
Concretely, a directory entry contains the following fields:
node address n-addr; round-trip-time estimate rtt; times-
tamp record tstmps. mn_addr is the address of the node
hosting a valid copy of the object; rtt is the round-trip-
time estimate to this node; tstmps is a collection of different
timestamps w.r.t. the web object such as time-to-live, time
of last modification etc. The tstmps fields are used to decide
if this copy of the object is fresh at a given point of time.

Web Object Lookup. A request for web object from the
browser at a node is handled in the following manner. If a
fresh copy of the object exists in the requesting node’s lo-
cal cache, it is returned to the browser. If a stale copy is
found, the node sends a CGET request to one of its con-

tacts for the object’s affinity group. If the requesting node
has not accessed the object previously, a GET request is
sent to one of its contacts for the object’s affinity group.
The requesting node is itself used as the contact in the case
when the requesting node’s affinity group is same as that of
the object’s. At any node n, contacts for a foreign affinity
group are maintained using a peer maintenance policy that
constantly measures the round trip time to contacts, and lis-
tens to the membership heartbeat stream seeking to replace
the known contact that is farthest from node n with the
newly heard-of candidate. Such a peer maintenance policy
means that the GET request for an object will be sent to a
contact that is topologically nearby to the requesting node.

When the contact receives a CGET request for an object,
it first searches for the appropriate directory entry.

If the directory table contains at least one valid entry,
the contact forwards the request to the topologically closest
node among the entries (using the rt¢ field). This node in
turn sends either a not-modified message or a copy of the ob-
ject back to the requesting node. The topological proximity
of the contact to both this node and the requesting node
ensures access to a nearby cache of the requested object.
If the triangle inequality for network distances is satisfied,
the distance to the cached copy is at most the sum of the
requester-contact and contact-cache distances.

If the directory table contains no valid entries, the contact
has two choices - either to return a failure to the request-
ing node, or to forward the request for object to a peer in
its own affinity group. For the former option, the request-
ing node subsequently contacts the web server directly with
a GET/CGET. The latter request forwarding scheme can
be generalized to a query routing scheme that uses multiple
hops for routing a query try and multiple tries per query.
The comparative performance of this multi-hop, multi-try
(MM) scheme and the basic single-hop (SH) scheme is eval-
uated experimentally in Section 5.2.

Where Soft Sate is Maintained and How it is Updated.

When a node n successfully fetches a copy of an object o not
accessed previously by it, the node creates a directory entry
< o,n > and communicates it to the contacts for o’s affinity
group. The contact first searches for object o’s directory
table, creating one if necessary. If the table is empty, a new
entry is created for < o,n >. An expired duplicate entry
for < o,n > is replaced by a new one. If the table is full,
the contact measures the round trip time to node n - if this
exceeds the highest rtt field among directory table entries,
the latter entry is replaced by a new < o,n > entry.

Similar to the unmodified Kelips protocol, all object tu-
ples are subject to selection for inclusion in a gossip message,
in order to disseminate the new tuple < o,n > within o’s
affinity group. However, recall from Section 3 that gossip
targets are chosen through a topologically aware distribu-
tion (spatial distribution based on round trip times). Thus,
gossip messages tend to flow between nodes that are topo-
logically close.

Now, when only a few nodes in the entire system have
accessed the given object o, one would ideally want all the
nodes in 0’s affinity group to point to these nodes. However,
when the number of cached copies of o rises, and as directory
tables begin to fill up, a new tuple < o,n > not previously
inserted would replace entries in directory tables of nodes
close to node n only. Thus, spreading tuple < o, n > through

gossip to nodes that are topologically far from node n will
have low utility. This is achieved by associating a hops-to-
live htl field with the disseminated tuple being disseminated
through gossip.

The first contact spreading < o, n > initializes the htl field
to a small number HTLMAX (set to 3 in our experiments). htl
is decremented at a node if < o, n > is not inserted into the
directory table for 0. A tuple < o,n > received with htl =0
is not gossiped further.

When there are a large number of clients caching a valid
copy of a given object, the effect of the combination of the
above scheme and spatial gossiping is twofold. Firstly, the
directory entries maintained by a contact are topologically
nearby to the contact. Secondly, as the number of cache
copies of a given object rises, the background bandwidth
used to propagate information about a new node hosting a
copy of the object decreases.

5. EXPERIMENTAL EVALUATION

We evaluate the performance of a C prototype implemen-
tation of Kelips web caching. The evaluation consists of (a)
cluster-based microbenchmarks to examine the memory us-
age of the application and the soft state consistency, and
(b) trace-drive experiments to study the system on a larger
scale. The latter study is based on a combination of three
traces/maps - client access web traces obtained from the
Berkeley Home IP network [18], transit-stub network topol-
ogy maps obtained through the Georgia-Tech generator [19],
and churn traces from the Overnet deployment (obtained
from the authors of [2]).

5.1 Microbenchmarks: Small PC Cluster

This section presents microbenchmarks of the core Kelips
component of the web caching application running within a
commodity PC cluster. The cluster consists of commodity
PCs each with a single 450 MHz - 1 GHz CPUs (PII or PIII),
256 MB - 1 GB RAM, and running Win2KPro over a shared
100 Mbps ethernet. A single node called the “introducer”
is set aside to assist new nodes to join by initializing their
membership lists.

We investigate actual memory utilization of the Kelips
application and the consistency of membership soft state
for a small cluster.

Memory Utilization. Figure 3 shows the memory utiliza-
tion at the introducer (triangles) and other nodes (x’s) for
different group sizes. The base memory utilization is low:
less than 4 MB for the introducer at a group size of 1, and
less than 2 MB for other nodes at a group size of 4. The
rise in memory usage due to an increase in group size is im-
perceptible for all nodes. We conclude that memory usage
in Kelips is modest.

Soft State Consistency. In the experiment of Figure 4, 17
nodes join a one-affinity group system. The background
gossiping bandwidth is configured so that at each node, 2
heartbeat entries (each 10 B long) is sent to 5 gossip targets
chosen uniformly at random every 2 s. The heartbeat time-
out is set to be 25 s. The solid line shows the view size
measured at one particular node in the system. The crosses
depict the distribution of heartbeat ages received at this
node from the gossip stream. The numbers are clustered

‘ ‘
introducer &
other nodes x

A a IN IN

Peer Mem Usage (MB)

0 Il Il Il Il Il Il
0 2 4 6 8 10 12 14

Affinity Group Size

Figure 3: Cluster Microbenchmark: Memory Us-
age of the Kelips Application in a Cluster: Memory
usage in Win2KPro-based hosts, at the introducer
node and other nodes.

60 T T T T T

View Size
50 L Last Heartbeat Update (s) + |
40 1
30 N 1

N
20 - + N R i
10 . - o .
¥ o 4 j& 1

0 ix¢$+¢lﬁ$£fé¥f¢£% i%f%i?i

0 50 100 150 200 250 300 350
Timeline (sec)

Figure 4: Cluster Microbenchmark: Distribution of
heartbeat ages and view size at a particular node.

Workload Traits | |

Number of Clients 916
Total reqgs 82142
Total cacheable reqs 75363
Total reqgs size 558.9 MB
Total cacheable reqgs size 523.3 MB
Total objs 47585
Total cacheable objs 43041
Trace duration 12200 s
Mean req rate 6.73 reqs/s
| Perf. of Central Cache | |
Total external bandwidth | 393.3 MB
Avg. Ext. b/w per req. 4.78 KB
Hit ratio 0.331

Table 1: Workload Characteristics and Centralized
Cache Performance on the Berkeley HomelIP web
access traces used.

around less than 10 s for group sizes of up to 14. However,
there are a few outliers - the ones beyond 25 s lie at times
t=220 s, t=290 s, and t=345 s. On closer observation of the
solid line, each of these leads to one node being deleted from
the view. This explains why there are 14 =(17-3) nodes in
the affinity group at time t=350 s.

5.2 Trace-Based Experiments

We study the performance of Kelips web caching through
trace-based simulations. Multiple client nodes were run on
a single host (1 GHz CPU, 1 GB RAM, Win2K) with an
emulated network topology layer 2. The experiments in this
section combine three traces - network topologies, web ac-
cess logs and p2p host availability traces. We enumerate
on the first two, and defer a description of the p2p host
availability trace until later in the section.

The underlying network topology is generated using the
well-known GT-ITM transit stub network model [19]. The
default topology consists of 3 transit domains, with an av-
erage of 8 stub domains each, and an average of 25 routers
per stub domain. Each Kelips node is associated with one
host, and this host is connected to a router that is selected
uniformly at random from among the 600 in the topology.
Stubs are connected to each other with probability 0.5, and
routers are connected to each other with probability 0.5.
Network links are associated with routing delays, but con-
gestion is not modeled.

The Berkeley HomeIP web access traces [18] are used to
model object access workloads at Kelips nodes. Each web
trace client is mapped to one Kelips node. The character-
istics of the traces used are presented in Table 1. The last
two rows in this table contain numbers corresponding to a
single centralized proxy cache with infinite storage. These
two numbers are the optimum achievable for this particular
trace, with any caching scheme.

Finally, the Kelips group is configured as follows. The de-
fault number of participants (nodes) is 1000, and the default
number of affinity groups is 31. The single-hop (SH) query
routing scheme is the default. Background gossip communi-
cation was calculated to consume a maximum of 3 KBps per

2Limitations on resources and memory requirements re-
stricted current simulation sizes to a few thousand nodes.

45 ‘ ‘ ‘ ‘ ‘

Total external b/w without caching ——
40 - Total external biw with kelips-caching ---------)
35 b Total external b/w with central cache - 4

External bandwidth (in MB)

0 4 8 12 16 20 24
Time (* 500s)

Figure 5: External bandwidth vs Time: Kelips web
caching is comparable to that obtained through a
central cache.

Hit ratio

0 Il Il
1 21 41

Object access frequency

Figure 6: Hit ratio vs Object access frequency: Ob-
jects accessed more frequently have higher hit ratios,
saturating out at beyond oaf=20.

node. The number of directory entries per web page is lim-
ited to 4. We do not limit the cache size at each node, but
we study the variation of maximum cache size with time and
show that the maximum cache size stays low for the access
trace considered.

External Bandwidth. Figure 5 shows, over 500 s intervals,
the aggregate bandwidth sent out to web servers due to
misses within the p2p web cache. The external bandwidth
due to Kelips web caching (dashed line) is comparable to
that obtained through a central cache (dotted line).

Hit Ratio. Hit ratio is the fraction of requests served suc-
cessfully by the p2p cache. Define “oaf” as the number of
times an object is accessed throughout the entire trace. As
expected, the hit ratio rises with oaf (Figure 6). The plot
appears to level out beyond a value of oaf=20.

Sngle Hop (SH) versus Multihop (MH). In the multi-
hop scheme, a request is retried at most 4 times. Out of
the four retries at most 2 retries are sent out directly to a
contact. The rest are first forwarded to a node in its own
affinity group in search of other potential contacts. Each
request is routed for at most 3 hops in the requesting nodes

| Scheme | Ext. b/w | Hit Ratio |
SH 5.63 KB 0.317
MM 5.5 KB 0.323
SH + churn 5.65 KB 0.313
MM + churn | 5.46 KB 0.323

Table 2: Average external bandwidth per request
and hit ratio or single hop (SH) and multi-hop multi-
try (MH) query routing schemes.

affinity group and for at most 3 hops in the target affinity
group.

Table 2 compares the hit ratio and average external band-
width per request for the single hop (SH) and multi-hop
(MH) query routing schemes. A comparison with Table 1
shows that the performance of both SH and MM Kelips
web caching schemes are only slightly worse than that of
the centralized cache scheme. The single hop query routing
suffices to achieve as good hit rate as multi-hop, multi-try
query routing. The only condition under which MM would
be advantageous over SH is if either (a) an insertion of a
web object tuple are followed so closely by queries for it
(from other nodes) that the resource tuples might not be
fully replicated, or (b) high churn rates cause staleness of
membership tuples so that the single contact tried by the
SH scheme is down. It is evident from Table 2 that (a) is
not true for the web trace workload under study. The rea-
sons why churn rates considered do not affect the hit ratio
is explained later in Section 5.2.1.

Access Latency. We measure two types of latency: (a)
(Time to find a target node address) the time taken to resolve
a request and return the address of a cache or report a cache
miss to the requesting node, and (b) (Time to reach a target
node) in the case of an external cache hit, the total time for
the request to reach a node with a valid copy of the object
(from the time when the request has been first issued at the
requesting node). We do not measure the total time to fetch
the object as this is a function of the object size. Figure 7
and 8 show these two numbers for the SH query routing
scheme. The plots have a bimodal distribution, with a lower
peak at a zero latency (local cache hit). Most requests are
resolved within 1000 ms, and the total time taken to reach
the target cache is within 1200ms for most requests. These
plots demonstrate that access latencies are low and confirm
the locality awareness of Kelips-caching.

Load Balancing. We investigate the load balancing of re-
quests for web objects in Figure 9. We consider one popular
cacheable object. The requests received for this object that
are served successfully by the p2p cache system are assigned
a global sequence number and plotted on the x-axis. The ac-
cessing nodes are ordered globally by their time of access on
the y-axis. Each data point (z,y) shows that request num-
ber x was served at the node with global sequence number y.
If points on this plot were clustered along horizontal lines, it
would mean that a few nodes were taking most of the hits.
An examination of Figure 9 shows that this is indeed not the
case. Kelips web caching thus achieves good load balancing
w.r.t. object requests.

25000

" To find tarf;et node

20000 b

15000 b

10000 b

5000 [b

Frequency of requests

0 1 1 1 1 1 | I— — 1
0 160 320 480 640 800 960 1120 1280
Latency (in ms)

Figure 7: Request frequency vs. Latency to search
for a cache copy - SH. Plotted for all requests to the
external cache.

16000 ‘ ‘ ‘ ‘
To get to target cache
14000 F— 1

12000 b
10000 1
8000 b
6000 b
4000 r i
2000 i

, 1
0 160 320 480 640 800 960 1120 1280
Latency (in ms)

Frequency of requests

Figure 8: Request frequency vs Latency to access
cached copy - SH. Plotted for requests that result
in external cache hits.

800
*
o 700 - X
'8 % X x %
c 600 r g xox
()] x ™
< 500 | e R
@ o ™ xxxw%”%x
g 400 x{g(x Mx)??)@x(ifxx ix xx:s(X
= w%xx?xxxx R
8 300 [g F
u X KX X)‘%W %%M%«X)&XM)ﬁ XX
© 200 - ST T e oo % Xk g
> X ¥ Xy OX X X x>°< xxx Xy X x x
¥ < xxx)fo& 2 o R X oxx XX
*’2&&& R EHREAGL XX%X% B O e

0 100 200 300 400 500 600 700
Request number

Figure 9: Req processing node# vs Req num (see
text in “Load Balancing” for explanation)

14000

T T
Maximum cache size
Average cache size - ,

12000
10000 b
8000
6000
4000

2000

Cache size (in KB)

Time (* 500s)

Figure 10: Cache size vs Time: Average and Maxi-
mum cache sizes are smaller than 10 MB throughout
the trace of duration 12,200 s.

0.318
0.317 b
0.316 | b
0.315 b
0.314 b
0.313 b
0.312 R
0.311 R
031 1

0.309 : : : :
0 1 2 3 4 5

Maximum background bandwidth (in KBps)

Hit ratio

Figure 11: Hit ratio vs Max background bandwidth:
Increased background gossip communication cost af-
fects the hit ratio by increasing the number of fresh
web object tuples.

Cache Sze. Figure 10 shows the variation of cache size
with time during the simulation, and validates our infinite
cache size assumption since the maximum cache size mea-
sured was smaller than 10 MB over the trace of duration
12,200 s.

Background Bandwidth. We investigated the effect of vary-
ing the background gossip bandwidth (i.e, bandwidth used

at end nodes) on the performance of the web caching scheme.

We observe from Figure 11 that hit ratio decreases with de-

creasing background bandwidth since web object tuples are

replicated less widely, and thus fewer queries hit a node with

fresh tuples. Yet, the decrease is not substantial - from 4.35

KBps to 0.84 KBps, the hit ratio decreases by 0.005.

5.2.1 Effect of Churn: Constant Node Arrival and
Departure Rates

The experiments in reference [6] studied the effect of mul-
tiple node failures, measured the time for membership con-
vergence, and showed that Kelips continues to ensure that
lookups succeed efficiently under such stresses. In this sec-
tion, we study the effects of a more general class of stresses
arising from “churn” in the system - rapid arrival and fail-

30 |
Measured ——
25 ¢ Max -------- |
8 Turnover Time
N
o
=
2
>
(]
o
]
o
>
<
5 i .
0

1000 1500 2000 2500 3000
Time

Figure 12: Effect of churn on Affinity Group View
Size at a node: Hourly availability traces from the
Overnet system are periodically injected into the
system (at the times shown by the vertical bars).
Churn trace injection epoch for this plot is 200 s.

ure (or departure) of nodes - on our implementation of web
caching.

Our study uses client availability traces from the Overnet
p2p system, obtained through the authors of reference [2].
These traces specify at hourly intervals which clients (from
a population of 990) are logged into the system. Typically,
about 20% of the 990 clients are up at the start of each hour,
and the hourly turnover rate varies between 10% - 25% of
the total number of clients that are up.

Effect on Membership. Each Kelips node in a 990-node
system (with 31 affinity groups) is mapped to a node in
this trace. Hourly availability traces are then injected into
the system periodically at the start of epochs (rather than
continuously) - given the hourly availability traces, this in-
jection models the worst case behavior of Kelips from the
churn.

Figure 12 shows the average affinity group view size when
a new churn trace is injected every 200 s (in other words,
1 hour in the availability traces is mapped to 200 s). This
epoch is more than the average stabilization period of the
current Kelips configuration. As a result, one sees that soon
after the trace injection at the beginning of an epoch, there
is first a surge in membership size as information about re-
turning nodes is spread through the system. This is followed
by an expiry of nodes that have become unavailable due to
the trace injection. In most epochs, the membership stabi-
lsizes a little before the end of the start of the next epoch

Figure 13 shows the same experiment with churn traces
injected every 40 s. The effect of such a low injection epoch
is dramatic — the system suffers considerable pressure and
is unable to cope with rapid membership changes. Before
the membership changes from the last trace injection can be
spread or detected by the system, a new trace is injected.
As a result, the size of the membership lists thrash. Even
after churn traces have been stopped being injected at time
t=4000 s, the system takes considerable time to recover.

3The epoch starting at 1800 time units is an exception. In
this case 200s was not quite enough time for the system to
stabilize

30

: :
Measured ——

Average ViewSize

1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Figure 13: Effect of churn on Affinity Group View
Size at a node: Hourly availability traces from the
Overnet system are periodically injected into the
system (at the times shown by the vertical bars).
Churn trace injection epoch for this plot is 40 s.

Effect on Hit Ratio, Access Latency. Deployments of
peer-to-peer applications tend to invite both nodes that are
long lived and thus available most of the time, as well as
nodes that exhibit churn behavior [14]. For this experi-
ment, we choose an operation point where 50% of the nodes
in the Kelips system are available, and the remaining 50%
are churned. More specifically, in a system of 1000 nodes,
500 nodes were churned by mapping to the first 500 entries
in the Overnet availability traces*. The default churn trace
injection epoch was set to 200 simulation time units. The
other 500 nodes were kept alive throughout the trace, and
requests were issued to the trace through these.

Figures 14 and 15 show the request latency distributions
under the effect of churn. A comparison with Figures 7 and
8 respectively, and a glance at Table 2, show that churn
has an a negligible effect on the hit ratio and access latency
distributions. This happens in spite of membership tuples
varying as shown in Figure 12, and the use of only single
hop (and not multi-hop multi-try) query routing.

This churn-resistant behavior arises from the proactive
contact maintenance policies used in Kelips. Recollect that
when a Kelips node hears about another node in a foreign
affinity group, it uses this node to replace the farthest known
contact for the foreign affinity group. In addition, recollect
that when a contact entry expires (as might happen when
the contact node is being churned), the expired entry is re-
tained for a time duration to prevent stale copies for that
node from being reinserted into the contact list within the
specified timeout. Since the retention timeout is set to an
excess of 200 time units in this experiment, the above two
algorithms result in each Kelips node settling on a set of
contacts that are nearest to it, as also highly available (not
churned). Queries thus get routed mostly among the nodes
that are stable, thus succeeding as often as in the simulation
runs without churned nodes.

Figure 16 shows that hit ratio decreases by an insignif-
icant amount (0.006, 2% decrease) as the churn trace in-
jection epoch is decreased from 240 s to 20 s. Even when
affinity group membership entries are thrashing at a churn

4This is justified by the results of [2] showing that availabil-
ity characteristics tend to be uncorrelated across clients.

25000

" To find taréet node

20000 1

15000

10000 1

Frequency of requests

5000 r 1

O Il Il Il Il Il + Il
0 160 320 480 640 800 960 1120 1280
Latency (in ms)

Figure 14: Effect of Churn: Request frequency vs.
Latency to search for a cache copy - SH. Plotted
for all requests to the external cache. Churn trace
injection epoch is 200 s.

16000 ‘ ‘ ‘ ‘
To get to target cache
14000] 1

12000 b
10000 1
8000 b
6000 b
4000 b
2000 1

. — 1. . 1
0 160 320 480 640 800 960 1120 1280
Latency (in ms)

Frequency of requests

Figure 15: Effect of Churn: Request frequency vs
Latency to access cached copy - SH. Plotted for
requests that result in external cache hits. Churn
trace injection epoch is 200 s.

trace injection epoch of 40 s (as shown in Figure 13), the
hit rate is 30.9%, only 0.4% below the hit rate with a churn
trace injection epoch of 200 time units. The reasoning be-
hind this plot follows along the same lines as in the previous
paragraph.

Note from Figure 8 that the number of requests which
are local hits is about 18.8% of all the cacheable requests.
Although a large portion of the cache hits from Figure 8
(54.4%) are local, we focus on the stability of the non-local
p2p cache hits (the “remaining 45.6%”). From Figure 16,
we see that a large fraction of these hits are retained even
when there is excessive churn in the system.

This study thus substantiates our claim that Kelips web
caching survives high rates of churn attack on the system.

6. SUMMARY

Peer-to-peer applications may be subject to denial of ser-
vice attacks from extreme stresses with origins typically con-
sidered non-malicious. We have studied one such source
called churn, that arises from rapid arrival and failure (or
departure) of a large number of participants in the system,
and we have done so in the context of a peer-to-peer web

0.314

0.313 R
0.312 b
0.311 | b
031 1

Hit ratio

0.309 b
0.308 b

0307 Il Il Il Il Il Il
0 40 80 120 160 200 240 280

Epoch

Figure 16: Effect of Churn: Hit rate vs Churn trace
injection epoch.

caching application. Other malicious attacks are possible
but we do not address these in this paper. This paper has
shown how to design a churn-survivable peer-to-peer appli-
cation. Our study has focused on the caching of web objects,
and our solution has relied on the use of probabilistic tech-
niques in the framework of the Kelips peer-to-peer overlay.
Evaluation through microbenchmarking on commodity clus-
ters, as well as experiments done through a combination of
web access logs, transit-stub topologies, and p2p host avail-
ability traces, reveal significant advantages of locality and
load balancing over previous designs for p2p web caching.
Hit ratios and external bandwidth usage are both compa-
rable to that in centralized web caching. In a system with
a 1000 nodes, background communication costs as low as 3
KBps per peer suffice to ensure favorable and stable hit ra-
tio, latency, external bandwidth use, and load balancing for
access of web objects in the presence of system churn that
causes 10%-25% of the total number of nodes to turn over
within a few tens of seconds.

The investigation in this paper can be extended to studies
in several interesting directions - (1) the hit ratio and latency
behavior of Kelips web caching at other operation points
than the “50% available - 50% churned” above, (2) the effect
of churn on caching scenarios other than web page brows-
ing, and (3) the feasibility of the Kelips constant-cost low-
bandwidth solution to other applications and other stressful
networking environments.

7. REFERENCES

[1] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. R. Karlin, H. M. Levy, “On the scale and
performance of cooperative web proxy caching”, Proc.
17" ACM Symposium on Operating Systems
Principles, 1999, pp. 16-31.

[2] R. Bhagwan, S. Savage, G.M. Voelker, “Understanding
availability”, Proc. 2*¢ International Workshop on
Peer-to-Peer Systems (IPTPS), 2003, pp. 135-140.

[3] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber
and M. F. Schwartz, “The Harvest information
discovery and access system”, Computer Networks and
ISDN Systems, 28(1-2):119-125, Dec. 1995.

[4] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F.
Schwartz, K. J. Worrell, “A hierarchical Internet
object cache”, Proc. 1996 Usenix Technical

Conference, San Diego, CA, Jan. 1996.

[5] F. Dabek B. Zhao, P. Druschel, J. Kubiatowicz, 1.
Stoica, “Towards a common API for structured
peer-to-peer overlays”, Proc. 2"% International
Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[6] I. Gupta, K. Birman, P. Linga, A. Demers, R. van
Renesse, “Kelips: building an efficient and stable p2p
DHT through increased memory and background
overhead”, Proc. 2"® International Workshop on
Peer-to-Peer Systems (IPTPS), 2003, pp. 81-86.

[7] N. T. J. Bailey, “Epidemic Theory of Infectious
Diseases and its Applications”, Hafner Press, Second
Edition, 1975.

[8] A. Demers, D. H. Greene, J. Hauser, W. Irish, J.
Larson, “Epidemic algorithms for replicated database
maintenance”, Proc. 6 Annual ACM Symposium on
Principles of Distributed Computing (PODC), 1987.

[9] S. Iyer, A. Rowstron, P. Druschel, “Squirrel: A
decentralized, peer-to-peer web cache”, Proc. 21°
Annual ACM Symposium on Principles of Distributed
Computing (PODC), 2002.

[10] D. Kempe, J. Kleinberg, A. Demers. “Spatial gossip
and resource location protocols”, Proc. 38" ACM
Symposium Theory of Computing (STOC), 2001.

[11] D. Liben-Nowell, H. Balakrishnan, D. Karger,
“Observations on the Dynamic Evolution of
Peer-to-Peer Networks”, Proc. 1% International
Workshop Peer-to-Peer Systems (IPTPS), 2002.

[12] C. Mohan, “Caching Technologies for Web
Applications”, Talk at Cornell University, [thaca, NY,
http://www.almaden.ibm.com/u/mohan, Nov. 2002.

[13] V. N. Padmanabhan, K. Sripanidkulchai, “The case
for cooperative networking”, Proc. 1°* International
Workshop on Peer-to-Peer Systems (IPTPS), LNCS
2429, Springer-Verlag, 2002.

[14] S. Saroiu, P.K. Gummadi, S.D. Gribble, “A
measurement study of peer-to-peer file sharing
systems”, Proc. Multimedia Computing and
Networking (MMCN), 2002.

[15] X.Y. Wang, W.-S. Ng, B.-C. Ooi, K.-L. Tan, A.-Y.
Zhou, “BuddyWeb: a p2p-based collaborative web
caching system”, Proc. International Workshop on
Peer-to-Peer Computing, 2002.

[16] J. Wang, “A survey of web caching schemes for the
internet”, ACM Computer Communication Review,
29(5):36-46, Oct. 1999.

[17] D. Wessel, “Squid internet object cache”,
http://squid.nlanr.net.

[18] B.D. Davison, “Web Caching and Content Delivery
Resources”, http://www.web-caching.com

[19] “Modeling Topology of Large Internetworks”,
http://www.cc.gatech.edu/projects/gtitm

[20] D. Provey and J. Harrison, “A distributed internet
cache”, Proc. 20" Australian Computer Science
Conference , Sydney, Australia, Feb. 1997.

[21] Z. Wang and J. Crowcroft, “Cachemesh: a distributed
cache system for the world wide web”, Proc. Web
Cache Workshop, 1997.

[22] T. Stading, P. Maniatis, M. Baker, “Peer-to-peer

caching schemes to address flash crowds”, Proc. 15 Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS), 2002.

