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Abstract—Mission-critical applications frequently rely on com-
munication middleware products, enabling ease of deployment,
component integration, and proven dependability. However, ex-
isting communication middleware options present limitations
such as weak consistency guarantees, reflecting concerns about
overheads for strong forms of assurance. The hardware landscape
is now evolving: hardware-based kernel bypass technologies
like Remote Direct Memory Access (RDMA) offer faster com-
munication with near-perfect reliability. This paper introduces
DerechoDDS, an implementation of the OMG Data Distribution
Service (DDS) layered over Derecho, an open-source library
embodying a new approach to atomic multicast that maps
efficiently to RDMA (or TCP emulations of RDMA). We first
describe how DerechoDDS maps the standard DDS API on
the Derecho library to achieve a zero-copy data path among
remote entities. Then, we propose a novel QoS policy to control
the level of consistency for data distribution. We demonstrate
that DerechoDDS offers comparable or substantially higher
performance than today’s major DDS implementations, while
simultaneously strengthening guarantees. Even when configured
for strong consistency, DerechoDDS achieves high performance.

Index Terms—DDS, state machine replication, consistency, QoS

I. INTRODUCTION

Mission-critical applications are often object oriented with a
distributed structure, in which components coded by different
teams (and perhaps, using multiple languages and libraries)
interoperate to solve the larger problem. For example, the
command and control (C2) of an airplane or vehicle might
have one component to control the motor, another for guid-
ance, yet another for audio dialog between crew members,
etc. Safety and correctness often leads to end-to-end quality
of service (QoS) expectations in the connectivity technology.
For example, although networking hardware may delay, drop
or reorder packets, a C2 application may require low delay,
high bandwidth, lossless order-based consistency, and so forth.
Stronger QoS is presumed costly and used only as needed [1].

Many systems implement this approach by deploying a
middleware layer between applications and the operating
systems, protocol stacks and hardware. Such a layer reduces
development time and effort, facilitating integration, reusabil-
ity, extensibility, and better overall scalability. To ensure that
components will interoperate correctly, standards are used such
as the OMG Data Distribution Service (DDS) [2].

The OMG DDS defines a data-centric model in which
components share typed distributed objects (topics), which
jointly comprise an abstract global data space (GDS) and can

be updated or monitored using the DDS API: the Data-Centric
Publish-Subscribe (DCPS) interface. An OMG DDS uses QoS
policies to let developers control properties such as reliability,
consistency and many others. In particular, DDS policies can
be combined to offer two consistency levels. Weak consistency
is used when low latency is critical but some message loss can
be tolerated. Configured for eventual consistency subscribers
will eventually see an exact copy of the publisher local data
store, but there may be long delays.

Our work begins with the observation that some applications
need additional guarantees. For instance, when an application
needs to replicate data over a set of components (for fault-
tolerance, or to share some plan of action among components
that will be each be responsible for a distinct aspect), the gold
standard is to adopt a state machine replication model (SMR).
However, the OMG QoS options are not strong enough to
directly support SMR [3].

When the standard was defined, this reflected a pragmatic
concern: At that time, the available SMR protocols were
reputed too costly in terms of higher latency and reduced
bandwidth. But the evolution of networking hardware and
software calls this conclusion for reconsideration. Kernel-
bypassing techniques such as Remote Direct Memory Access
(RDMA) enable ultra-efficient high-speed direct data transfers
between the virtual memory of processes on remote machines
at DMA speeds, achieving high throughput (>200 Gbps) and
very low latency (∼1-2µs). RDMA emulation enables the
same code to run over TCP but at lower speeds.

This paper introduces DerechoDDS, an OMG DDS platform
that leverages RDMA to offer stronger consistency guaran-
tees without performance penalties. DerechoDDS maps the
DCPS interface to Derecho [4], a mature, open-source C++
library that offers multicast and point-to-point communica-
tion, supporting total ordering, failure atomicity, and optional
durable message logging. Small-messages are sent with one-
sided RDMA writes, and large ones using two-sided RDMA
transfers over a binomial pipeline [5]. An efficient RDMA
hardware mapping enables Derecho to break past performance
records. This, in turn, allows us to offer new DDS QoS options
supporting SMR while sustaining exceptionally high speeds
and low latencies. DerechoDDS is in use by AFRL Wright-
Patterson, as part of a middleware layer supporting a new
generation of avionic architectures.



In the remainder of the paper, we briefly describe the
architecture of DerechoDDS and motivate the need for a QoS
policy that controls the consistency of the data distribution.
We demonstrate that DerechoDDS performs at least as well
as today DDS products, and outperforms them in some config-
urations - even as it offers higher reliability and consistency.
Finally, we show that our higher consistency guarantees can
better serve critical traffic under real-world traffic conditions.

II. BACKGROUND

A. Relevant DDS QoS policies

We start with a short overview of the DDS QoS policies.
DDS QoS covers a wide set of non-functional properties, ex-
pressing a contract between the local data stores of publishers
and subscribers. DDS subscription-matching uses a request-vs-
offered approach: a subscriber can subscribe to a topic (can
“see” a shared object) only if the requested level of QoS is
compatible with (not more restrictive than) the QoS offered
by the publisher. This ensures that QoS invariants between
publishers and subscribers are preserved [2].

The Durability QoS controls the lifetime of data written to
the GDS. It supports four values: (1) Volatile, if data should
be discarded immediately after delivery; (2) Transient Local,
if data should be stored in the local cache of publishers
and subscribers, thus allowing late joiners to catch up; (3)
Transient, which ensures that data are kept even beyond the
lifetime of single publishers or subscribers; (4) Persistent,
which stores those data in persistent memory to make them
survive system failures. The number of data samples (i.e.,
subsequent writes of the same topic) that must be stored in
local cache is determined by the History QoS policy, that
can assume values “all” or “last n”. Together, Durability and
History determine the dataset and the time period for which
consistency should be maintained.

Three additional policies determine the kind of consistency
required. The Reliability QoS controls the reliability associated
with the transport-level protocol (by default, UDP). The two
possible values are best-effort and reliable. The latter corre-
sponds to the eventual consistency property discussed above: if
a publication is somehow lost or delayed, the middleware will
arrange for it to be retransmitted, even if this might delay other
publications. The Lifespan QoS determines the time interval
during which a data sample is to be considered valid (either
infinite, or a time period). Finally, the Destination Order policy
controls the delivery to the subscriber of the different updates
according to source or destination timestamps.

With respect to the amount of data defined by the Durability
and History policies, DDS applies an eventual consistency
model when Reliability is reliable, Lifespan is infinite, and
Destination Order is by source timestamp. Otherwise, consis-
tency is weak as defined in section I. Recall that all DDS
policies are enforced for publisher-subscriber pairs, hence
there is no option that will impose consistency constraints on
groups of subscribers, where multiple system components are
tracking the same data. For example, no QoS property will
ensure that updates to some topic will be delivered in the

same order to all subscribers, or not delivered at all (the core
requirement of SMR, and implemented by atomic multicast).

Our work is motivated by this omission: the Air Force
applications in which DerechoDDS will be used may include
mission-critical tasks, for which adherence to an SMR model
can enhance safety and predictability. SMR also enables multi-
component coordination paradigms that could be particularly
powerful in federated ML settings, where a graphical structure
of ML components is deployed as an adjunct to more classi-
cal flight-control elements. SMR also lends itself to formal
verification and formal reasoning about higher level system
properties. Accordingly, DerechoDDS offers a novel SMR-
based QoS option.

B. The Derecho library

As noted in the introduction, DerechoDDS layers the DCPS
API over Derecho [4]. The Derecho model organizes a group
of processes (nodes) as a distributed service that can execute
either on physical servers or in virtual environments. The
membership of this top-level group evolves as processes join,
terminate or crash through a series of views using partition-
free state machine replication. To build a distributed service,
developers define“replicated objects,” each consisting of a
state and a set of operations that operate on it. Processes
holding replicas of such an object would be a subgroup of
the top-level group membership. Each state update can then
be forwarded as a multicast to all the subgroup members
and performed by all replicas. Although Derecho supports
a weakly reliable multicast, the workhorse of the system
is a novel implementation of atomic multicast, which has
been proved to correctly implement the SMR model. On an
RDMA network, Derecho offers a zero-copy, lock-free critical
path among remote applications, leading to exceptionally high
bandwidth utilization and very low latency. A more detailed
discussion about the properties of RDMA networks and how
DerechoDDS leverages them to obtain high network perfor-
mance is out of the scope of this paper, but we extensively
discuss this topic in a previous work [6].

III. RELATED WORK

Many DDS vendors recognize the high cost of unnecessary
copying. The usual response is to offer a zero-copy data path
that leverages shared-memory, so that when an object is shared
by a publisher and subscriber on the same machine, they have
direct access. However, our work is the first to extend this style
of sharing to work across a network, with automated failure
handling based on the heavily-studied and formalized SMR
model. We believe that this sort of configuration will be of
growing importance as new memory models and smart NIC
models become standard, and as operating systems increas-
ingly support kernel-bypassing network hardware.

Although our work expands the standard DDS QoS options,
we are not alone in doing so. For example, RTI Connext offers
an Availability QoS [7]. This property allows subscribers to
reconstruct an agreed ordering of updates when a shared object
is updated by multiple publishers. Availability can also be used



Fig. 1: Architecture of DerechoDDS.

by publishers to define a statically-defined group of required
subscribers to their updates. However, whereas DerechoDDS
has been formally shown to implement a fault-tolerant SMR
model, the RTI availability QoS level is not strong enough to
support a true atomic multicast in a dynamic group processes
that may experience hardware and software crashes.

Our focus on the formal SMR model centers on the oppor-
tunity to leverage the rich body of research associated with
it. For example, there has been a great deal of recent work
on software verification tools for SMR-based protocols and
applications. In settings like avionics components for fly-by-
wire aircrafts, or other mission-critical control tasks, such tools
can strengthen assurances that the platform will operate in a
safe and correct manner. Moreover, DerechoDDS itself can be
proved correct and verified (as was done in [4] and follow-on
work). We are not the first to make this observation: Leslie
Lamport’s Paxos SMR protocols were designed with proofs
in mind, and Lorch et. al. implemented a fully proved Paxos-
based atomic multicast called IronFleet [8], although without
supporting a DDS API or leveraging RDMA.

The evaluation portion of this paper compares four DDS
implementations under a variety of metrics. The last general
comparison of this kind occurred many years ago [9]–[11], for
an earlier generation of hardware and DDS products. A more
recent comparison was included in a study of publish/subscribe
options for Industrial IoT, which included DDS but also looked
at other publish-subscribe models, such as message-queuing
middleware [12]. The authors of this more recent study noted
that its extensive set of QoS policies make DDS customizable
for various scenarios that require a high level of reliability.

We believe that the stronger consistency option proposed
in this paper could take such an argument one-step fur-
ther by enabling the mission-critical community to leverage
proof tools and formal methods in the context of DDS-based
applications. From a performance perspective, in this same
work, the authors stress the importance of batching techniques
to improve throughput performance. In work that will be
published elsewhere, we show how valuable batching can be
in DerechoDDS. The study also recommends enabling (when
available) auto-throttling to slow publishers down when the
network is congested. As we see in section V, this is indeed
important for other DDS products, but not for DerechoDDS,
which leverages rate control into RDMA to ensure that data
will not be lost in transmission.

IV. DERECHODDS
We now have the context to dive somewhat deeper into

DerechoDDS, which implements the OMG Data-Centric

Fig. 2: Zero-Copy data path of DerechoDDS for Volatile
durability.

Durability QoS Consistency QoS Derecho Service

Volatile Eventual NoStore, Unordered subgroup
Atomic NoStore, Ordered subgroup

TransientLocal Eventual TransientStore, Unordered subgroup
Atomic TransientStore, Ordered subgroup

Persistent Eventual PersistentStore, Unordered subgroup
Atomic PersistentStore, Ordered subgroup

TABLE I: Mapping of DDS Durability QoS on Derecho.

Publish-Subscribe (DCPS) API [2]. DerechoDDS is coded in
C++ 17, enabling an exceptionally lightweight mapping from
the DCPS API to the APIs already present within Derecho,
which is also coded in C++ [4]. Given a C++ application the
compiler is able to eliminate overheads for this layering at
compile time. As a result, DerechoDDS enables the user appli-
cation to transparently benefit from kernel-bypassing RDMA.
The publisher simply operates directly on the shared object,
with the effect that the published message is created “in place,”
i.e., directly in the memory region that Derecho will copy to
remote peers via RDMA. On RDMA networks, where even
a single message copy or a single lock can sharply degrade
performance, this avoids significant overheads. DerechoDDS
can also support applications in other languages, such as
Python and Java, but at some loss of efficiency: their object
representation formats, automated memory-management, and
garbage collection features inject unavoidable locking and
copying. Here we evaluate only the C++ case.

DerechoDDS stores. The first step to build DerechoDDS
was to model the concept of DDS Global Data Space (GDS)
introduced in section I. We addressed this by defining a set
of distributed key-value stores, one for each durability option:
NoStore for volatile, TransientStore for transient local, and
PersistentStore for persistent (Fig. 1). As a consequence, we
can represent DDS Topics as objects of a user-defined type
that live in one of these three K/V stores: The object key
serves as a topic name (for keyless topics [2]) or the name
plus a set of fields of the corresponding type (for keyed topics).
Once we defined this mapping, we implemented these three
stores as Derecho replicated objects. First, we defined a basic
set of operations to access the store: The most important
one is put, which inserts a new object in the store, if the
corresponding key does not exist, or updates its value if it
already exists. Then we modeled the state on which such
operations act, which depends on the desired durability level:
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Fig. 4: Average throughput for different payload sizes and number of subscribers.

the NoStore store does not have an actual state, as updates fade
after application delivery. The Transient store keeps the last
n received updates in main memory, as well as the Persistent
store which additionally backs them up in persistent storage.
For reasons of brevity,we will focus on the Volatile case.

Zero-copy data path. Once the stores were defined, we
mapped the standard DDS interface onto them as seen in Fig.
2. As a first step the publisher registers the generating function
by calling DataWriter.write. Internally, DerechoDDS
calls the put operation to update the topic value on the
corresponding store, which in turn will ask Derecho a free
memory buffer. When the buffer is available, Derecho requests
that the user-supplied message generation logic build the
message (step 2), after which it can push the message remotely
via Derecho multicast (step 3). On reception, the Derecho core
notifies DerechoDDS of the update. The middleware places in
a topic-specific variable a pointer to the received message,
and then invokes the subscriber’s listener (step 4). Within the
listener, the user-provided logic retrieves the value (step 5).

Consistency QoS. Our new QoS policy, Consistency, allows
users to enhance the maximum DDS consistency level from
eventual to atomic. Consistency offers two possible values.
The eventual setting selects for the standard OMG behavior,
while the atomic option selects for SMR guarantees. Recall
that Derecho itself has two forms of multicast: a weakly

reliable one, and an atomic option. Accordingly, it suffices for
DerechoDDS to employ the appropriate primitive, as seen in
Table I. If eventual consistency is selected, DerechoDDS will
deliver any update to the relevant subscribers as soon as it
is available. In contrast, for atomic consistency, DerechoDDS
selects the Derecho atomic multicast, which will delay delivery
until the SMR obligations of totally ordered, fault-tolerant
delivery can be assured. As such, the latency costs of the
atomic option are of particular interest, and we evaluate them
carefully in the next section.

V. EXPERIMENTAL EVALUATION

We now assess the performance of DerechoDDS. Our goal
is to demonstrate that not only do the added consistency
guarantees not harm performance when compared with weak
consistency, but also that DerechoDDS can match the perfor-
mance limits of the hardware in the atomic mode, and can ride
out periods when the network briefly becomes fully saturated.
We believe that this opens the door to use of SMR even in
today’s most demanding mission-critical scenarios.

All our tests were performed on the CloudLab platform
[13], which offers on-demand bare metal nodes. We used 8
physical hosts, each equipped with a ten-core Intel E5-2640v4
2.4 GHz processor, 64GB memory, and a dual-port Mellanox
ConnectX-4 25 Gbps NIC.
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Fig. 5: Throughput of the critical traffic flow under different network conditions
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Fig. 6: Impact of bursts of low-importance traffic on a critical traffic flow.

A. Latency and Throughput

We begin with a performance comparison of DerechoDDS
against four DDS implementations that we selected for their
widespread adoption in the community. Two are mature prod-
ucts: RTI Connext 6.0 [7] (the only non-open-source option)
and Adlink Opensplice Community 6.9 [14]. The other two
are emerging implementations, Eclipse Cyclone DDS 0.7 [15]
and eProsima FastDDS 2.3 [16]. Our comparison includes
a latency and a throughput test, each repeated at least 5
times for different payload sizes and for different numbers of
subscribers. The single publisher and the subscribers are all
on different nodes to stress the network performance. We used
volatile durability, reliable reliability, and UDP multicast as
the transport protocol to obtain a consistency level equivalent
to the eventual consistency of DerechoDDS on RDMA.

The latency test is a simple ping-pong application designed
to highlight any overhead in the DDS send and receive
pipeline. Performed on a dedicated network, this test measures
the round-trip time (RTT) of every sample published on a
“ping” topic and received by a remote subscriber which sends
it back to the publisher. In case of multiple subscribers, the first
“pong” message is considered. We run this test for 60 seconds,
disabling sample batching and using a keep-last-1 history. With
small messages in a single subscriber scenario (Fig. 3a), Dere-
choDDS in eventual consistency mode exhibits approximately
50% higher latency than the best UDP-based alternatives, even
though it still performs better than some of the products. On
average, the strong consistency guarantee adds another 40%

performance penalty for those sizes. These numbers could
be substantially improved with a careful optimization of our
prototypical implementation, as RDMA is incredibly sensitive
even to tiny delays. But this pattern only holds up to 4KB.
With message sizes higher than 8KB, the situation is reversed:
even the atomic mode has a 2x lower median latency than
the alternatives: This is where the true potential of RDMA
emerges, as protocol-induced delays becomes negligible. If
we scale the 8KB case to more subscribers (Fig. 3b), we see
that the performance advantage is substantially preserved for
the eventually consistent case, but that DerechoDDS with its
atomic guarantee incurs a delay while waiting to ensure that
the SMR properties have been achieved. This delay rises to as
much as 1ms, but then stabilizes and remains constant as the
number of subscribers is increased from 4 to 7.

The throughput test asks whether each DDS can fully
saturate available bandwidth when a publisher continuously
updates a topic with one remote subscriber: a crucial capability
on high-speed networks. Fig. 4 plots the results. We observe
that FastDDS is much slower than the others. This product
lacks data batching, putting it at a substantial disadvan-
tage. DerechoDDS on RDMA almost saturates the available
bandwidth for bigger message sizes, a result impossible to
obtain when using UDP and the reliable QoS: the traditional
networking stack cannot handle such a high throughput, so
many packets are lost and the retransmission cost increases.
We also observe that the atomic mode in DerechoDDS does
not suffer an excessive overhead, and for 64KB payload size it
is still 2.3x faster than the best existing DDS implementation.



B. Reliability

This experiment compares DerechoDDS with RTI Connext
(fastest among the four DDS products). One publisher writes
small (128 byte) critical updates with reliable QoS. Dere-
choDDS always runs in reliable mode, but is additionally
configured with atomic consistency. We picked a constant data
publishing rate of 60K samples per second, which guarantees
that no UDP packets are lost by RTI Connext, and publish
for 10s. Both DDS products deliver all messages within 11s
(solid lines in Fig. 5).

Next, we introduce a second publisher and a second remote
subscriber on the same network. These produce and consume
low-importance data, expressed using the best-effort reliability
for RTI Connext and eventual consistency for DerechoDDS.
In our first experiment, we configure the second producer to
generate a steady rate of background traffic designed to fully
saturate the network link when both publishers are running
at once (dashed lines). We see that DerechoDDS obtains a
reduced share of the network, requiring 16 seconds to complete
the transmissions, but then is finished. In contrast, RTI exceeds
the peak network capacity, causing some packets to be dropped
because of congestion. In reliable QoS mode, these must later
be retransmitted, so we see a series of retransmission requests
(blue bars) and a second wave of deliveries, ending after 20s.

As a final experiment we reconfigure our second publisher
to be bursty: it pauses for 2s, then sends rapidly for 1s. Fig.
6 plots the results. RTI Connext sends at full speed regardless
of network load, causing a high rate of lost packets, so the
subscriber issues many retransmission requests and the total
test time once again jumps from 11s to 20s. DerechoDDS runs
at a slightly lower bandwidth but with no loss: the RDMA
hardware has a built-in mechanism that only transmits data
when the receiver is ready for the incoming bytes. Fig. 5a
shows that although the data rate of the critical flow drops from
60K to 40K packets per second, the experiment completes in
16 seconds, 20% faster than for RTI.

We should note that RTI connect offers a proprietary API
with which the application can explicitly throttle its rate of
publications. A knowledgeable user could configure the two
DDS applications (critical and background) to prevent loss in
this experiment. We did not evaluate this option because it
is not automated: the application designer must anticipate the
congestion conditions and specify the peak rate of transmission
for each topic.

VI. CONCLUDING REMARKS

As smart NIC hardware costs drop, operating systems
evolve to support kernel-bypassing techniques, and lock-free
zero-copy computing gain adoption, it is time to revisit the
OMG DDS QoS options to support stronger consistency and
fault-tolerance guarantees that were omitted in past standard-
ization work due to concerns about overheads. DerechoDDS
is a new OMG-compliant DDS solution, available in open-
source, that addresses this limitation. Our evaluation shows
that even in its strongest QoS configuration, DerechoDDS
is highly efficient, equaling or exceeding the bandwidth of

existing DDS products while also reducing latency. The work
reported here should be understood as a snapshot: we are
continuing to extend DerechoDDS. Near term goals include
support for “external” clients with non-RDMA links to the
platform, efficient operation over 5G networking devices using
the DPDK standard (perhaps, via the URDMA package).
There is also a great deal of interest in Time Sensitive Net-
working (TSN). In the longer term, we are extremely interested
in applications that combine the DDS model with AI and
ML code, particularly under tight deadlines and demanding
performance conditions.
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