
Controlled Transactional Consistency for Web Caching

Technical Report — Wednesday 1st October, 2014

Ittay Eyal Ken Birman Robbert van Renesse

Cornell University

Abstract
In-memory read-only caches are widely used in cloud in-
frastructure to reduce access latency and to reduce load
on backend databases. Operators view coherent caches
as impractical at genuinely large scale and many client-
facing caches are updated in an asynchronous manner
with best-effort pipelines.

Existing incoherent cache technologies do not support
transactional data access, even if the backend database
supports transactions. We propose T-Cache, a cache that
supports read-only transactions despite asynchronous
and unreliable communication with the database. We
also define cache-serializability, a variant of serializabil-
ity that is suitable for incoherent caches, and prove that
with unbounded resources T-Cache implements it. With
limited resources, T-Cache allows the system manager to
choose a trade-off between performance and consistency.

Our evaluation shows that T-Cache detects many in-
consistencies with only nominal overhead. We use syn-
thetic workloads to demonstrate the efficacy of T-Cache
when data accesses are clustered and its adaptive reac-
tion to workload changes. With workloads based on the
real-world topologies, T-Cache detects 43− 70% of the
inconsistencies and increases the rate of consistent trans-
actions by 33−58%.

1 Introduction

Internet services like online retailers and social networks
store important data sets in large distributed databases.
Until recently, technical challenges have forced such
large-system operators to forgo transactional consis-
tency, providing per-object consistency instead, often
with some form of eventual consistency. However, re-
cent backend systems [9, 4, 11, 10] support transactions
with guarantees such as snapshot isolation and even full
transactional atomicity.

Our work begins with the observation that, at present,
it can be difficult for client-tier applications to leverage

the transactions that the databases provide: their reads
are satisfied primarily from incoherent cache. The ben-
efits of caching are twofold. First, it reduces database
load, thereby enabling higher throughput. Second, the
caches are typically placed close to the clients, permit-
ting low latency.

The problem centers on the asynchronous style of
communication used between the database and the geo-
distributed caches. Any approach requiring a high
rate of round-trips to an authoritative backend database
would cause unacceptable latency. A cache must re-
spond instantly, and asynchronous updates rule out
cache coherency schemes that would require the backend
database to promptly invalidate or update cached objects,
or even to track the locations at which cached objects re-
side. We define a variant of serializability called cache-
serializability that is suitable for incoherent caches.

We then present T-Cache, a novel caching scheme that
gives the application more control over consistency with-
out changing the asynchronous coupling between caches
and backend databases. We do this by storing depen-
dency information with the cached objects, allowing the
cache (or the application) to identify possible inconsis-
tencies without contacting the database. The user can
achieve a desired level of consistency by adjusting the
size of this dependency data: more dependency data
leads to increased consistency.

Our solution works particularly well for workloads
where data accesses are clustered, which is common
in today’s large-scale systems. To demonstrate the ef-
ficacy of the proposed scheme, we created a proto-
type implementation and exposed it to workloads based
on graphically-structured real-world data, such as those
seen in social-networking situations. The method detects
43−70% of the inconsistencies and can increase the ra-
tio of consistent transactions by 33−58%, both with low
overhead. We construct synthetic workloads and observe
how T-Cache reacts to different clustering levels and how
it adapts as clusters change.

ar
X

iv
:1

40
9.

83
24

v1
 [

cs
.D

C
]

 2
9

Se
p

20
14

To explain T-Cache’s perfect behavior with perfectly
clustered workloads we prove a related claim — we
show that with unbounded resources T-Cache imple-
ments cache-serializability.

In summary, the contributions of this work are:

1. Definition of cache-serializability, a variant of seri-
alizability suitable for incoherent caches.

2. The T-Cache architecture, which allows trading off
efficiency and transaction-consistency in large scale
cache deployments.

3. Evaluation of T-Cache with synthetic workloads,
demonstrating its adaptivity and sensitivity to clus-
tering.

4. Evaluation of T-Cache with workloads based on
graphically-structured real-world data demonstrat-
ing detection rates of 43−70% and consistency im-
provements of 33−58% with low overhead.

5. Proof that T-Cache with unbounded resources im-
plements cache-serializability.

2 Motivation

Two-tier structure Large Internet services store vast
amounts of data. Online retailers such as Amazon and
eBay maintain product stocks and information, and so-
cial networking sites such as Facebook and Twitter main-
tain graphical databases representing user relations and
group structures. For throughput, durability, and avail-
ability, such databases are sharded and replicated.

The vast majority of accesses are read-only (e.g., Face-
book reports a 99.8% read rate [7]). To reduce database
load and to reduce access latency, these companies em-
ploy a two-tier structure, placing layers of cache servers
in front of the database (see Figure 1).

The caches of primary interest to us are typically sit-
uated far from the backend database systems — to re-
duce latency, companies place caches close to clients.
Timeouts are used to ensure that stale cached objects will
eventually be flushed, but to achieve a high cache hit ra-
tio, timeout values are generally large. To obtain rea-
sonable consistency, the database sends an asynchronous
stream of invalidation records or cache updates, often us-
ing protocols optimized for throughput and freshness and
lacking absolute guarantees of order or reliability.

Indeed, it is difficult to make this invalidation mech-
anism reliable without hampering database efficiency.
The issues are many. First, the databases are large, resid-
ing on many servers, possibly geo-replicated. Databases
use locks prudently in order to maximize concurrency.
To the extent that the database keeps track of the caches
that hold a copy of each object, it may be possible to send

Figure 1: The common two-tiered structure. Clients per-
form read-only transactions by accessing caches, which
receive their values by reading from the database (solid
lines). Update transactions go directly to the database
(double lines). Subsequent cache invalidations can be
delayed or even lost due to race conditions.

an invalidation, but tracking the state of caches is compli-
cated and hence if they are used at all, such systems view
invalidations as a kind of hint. They could be delayed
(e.g., due to buffering or retransmissions after message
loss), not sent (e.g., due to an inaccurate list of locations),
or even lost (e.g., due to a system configuration change,
buffer saturation, or because of races between reads, up-
dates, and invalidations). A missing invalidation obvi-
ously leaves the corresponding cache entry stale. Pitfalls
of such invalidation schemes are described in detail by
Nishita et al. [22] and by Bronson et al. [7].

DB Transactional consistency The complexity of im-
plementing geo-scale databases with strong guarantees
initially led companies to abandon cross-object consis-
tency altogether and make do with weak guarantees such
as per-object atomicity or eventual consistency. In effect,
such systems do repair any problems that arise, eventu-
ally, but the end-user is sometimes exposed to inconsis-
tency. For some applications this is acceptable, and the
approach has been surprisingly successful. In today’s
cloud, relaxed consistency is something of a credo.

But forgoing transactional consistency can result in
undesired behavior of a service. Consider a buyer at an
online site who looks for a toy train with its matching
tracks just as the vendor is adding them to the database.
The client may see only the train in stock but not the
tracks because the product insertion transaction would
often be broken into two or more atomic but independent
subtransactions. In a social network, an inconsistency
with unexpected results can occur if a user x’s record says
it belongs to a certain group, but that group’s record does

not include x. Web albums maintain picture data and ac-
cess control lists (ACLs) and it is important that ACL
and album updates are consistent (the classical example
involves removing one’s boss from the album ACL and
then adding unflattering pictures).

While many of these systems make do with weak con-
sistency, there are certainly problems. But beyond this is
a whole class of applications (such as medical ones, self-
driving vehicles, management of smart buildings or the
smart power grid, etc.) for which stronger consistency
would appear to be an important requirement. To sup-
port such applications, there has been a wave of recent
innovations within the backend, offering scalable object
stores that can efficiently support transactions through
snapshot isolation and even full atomicity [9, 4, 11, 10].
Our challenge is to extend the guarantees of these sys-
tems to the end-user rather than confining them primarily
to the back-end database and nearby applications.

Caches cause problems As noted, today’s consistency
solutions are limited to the database backend. Even when
the database itself is consistent, the vast majority of op-
erations are read-only transactions issued by edge clients
and are at high risk of observing inconsistent state in the
cache. The outright loss of cache invalidations emerges
as an especially significant problem if transactional con-
sistency is required. An acceptable solution for a con-
sistent cache must maintain the performance properties
of the existing caching tier. First, we need to maintain
the shielding role of the cache: the cache hit ratio should
be high. Second, a read-only cache access should com-
plete with a single client-to-cache round-trip on cache
hits. This prohibits coherent cache solutions such as [26].

3 Architecture

Since the cache is required to respond immediately to the
client on hits, and the database-cache channel is asyn-
chronous, we decided to employ a transactional consis-
tency that is weaker than the full ACID model. In our
approach, read-only transactions and update transactions
that access the same cache are guaranteed an atomic ex-
ecution, but read-only transactions that access different
caches may observe different orderings for independent
update transactions.

Definition 1 (Cache serializability). For every execu-
tion σ , every partial execution that includes all update
transactions in σ and all read-only transactions that go
through a single cache server, is serializable.

Since it is impossible to achieve cache serializabil-
ity with bounded caches and asynchronous communi-
cation with the DB, our solution seeks to approximate

it. Our idea starts with an observation: in many sce-
narios, objects form clusters with strong locality prop-
erties. Transactions are likely to access objects that are,
in some sense, close to each other. For retailers this
might involve related products, for social networks the
set of friends, for geographical services physical prox-
imity, and for web albums the ACL objects and the pic-
tures assigned to them. Moreover, in some cases applica-
tions explicitly cluster their data accesses to benefit from
improved parallelism [31]. The resulting transactions ac-
cess objects from a single cluster, although there will also
be some frequency of transactions that access unrelated
objects in different clusters.

Our solution requires minor changes to the database
object representation format, imposing a small and con-
stant memory overhead (that is, independent of the
database size and the transaction rate). This overhead
involves tracking and caching what we refer to as de-
pendency lists. These are bounded-length lists of object
identifiers and the associated version numbers, each rep-
resenting some recently updated objects upon which the
cached object depends.

A bounded-sized list can omit dependency informa-
tion required to detect inconsistencies, hence it is im-
portant to use a bound large enough to capture most of
the relevant dependencies. At present we lack an auto-
mated way to do this: we require the developer to tune
the length so that the frequency of errors is reduced to
an acceptable level, reasoning about the trade-off (size
versus accuracy) in a manner we discuss further below.
Intuitively, dependency lists should be roughly the same
size as the size of the workload’s clusters.

Our extensions offer a transactional interface to the
cache in addition to the standard read/write API. In many
cases, our algorithm detects and fixes inconsistent read-
only transactions at the cache with constant complexity.
It does so by either aborting the transaction (which can
then be retried), or invalidating a cached object which
can then force a read from the database (similar to han-
dling cache misses). When the dependency lists fail to
document a necessary dependency, an application might
be exposed to stale values.

Because we have in mind client-side applicatons that
are unlikely to validate against the back-end, for many of
our intended uses some level of undetected inconsistency
can slip past. However, because the developer would of-
ten be able to tune the mechanism quite accurately, dur-
ing steady-state operation of large applications, the rate
of unnoticed inconsistencies could be extremely low.

With clustered workloads we will demonstrate that
it is sufficient to store a small set of dependencies to
detect most inconsistencies. We also investigate work-
loads where the clustered access pattern is less strongly
evident; here, our approach is less effective even with

longer dependency list lengths. Thus our solution is not
a panacea, but, for applications matched to our assump-
tions, can be highly effective.

3.1 Database
We assume that the database tags each object with a ver-
sion number specific to the transaction that most recently
updated it, and that there is a total ordering on version
numbers. The version of a transaction is chosen to be
larger than the versions of all objects accessed by the
transaction. The database stores for each object o a list
of k dependencies (do

1 ,v
o
1),(d

o
2 ,v

o
2), . . .(d

o
k ,v

o
k). This is a

list of identifiers and versions of other objects that the
current version of o depends on. A read-only transaction
that sees the current version of o must not see object di
with version smaller than vi.

When a transaction t with version vt touches objects
o1 and o2, it updates both their versions and their depen-
dency lists. Subsequent accesses to object o1 must see
object o2 with a version not smaller than vt . Moreover,
it inherits all of the l dependencies of o2 (where l is the
length of o2’s dependency list). So the dependency list
of o1 becomes

(do1
1 ,vo1

1),(do1
2 ,vo1

2), . . .(do1
k ,vo

k),

(o2,vt),(d
o2
2 ,vo2

2),(do2
3 ,vo2

3), . . .(do2
l ,vo2

l) .

When a transaction is committed, this update is done
for all objects in the transaction at once. Given a read
set readSet, and a write set writeSet, containing tuples
comprised of the keys accessed, their versions and their
dependency lists, the database aggregates them to a sin-
gle full dependency list as follows

full-dep-list←
⋃

(key,ver,depList)∈
readSet∪writeSet

{(key,ver)}∪depList .

This list is pruned to match the target size using LRU,
and stored with each write-set object. A list entry can be
discarded if the same entry’s object appears in another
entry with a larger version. Nevertheless, were their
lengths not bounded, dependency lists could quickly
grow to include all objects in the database.

3.2 Cache
In our scheme, the cache interacts with the database
in essentially the same manner as for a consistency-
unaware cache, performing single-entry reads (no locks,
no transactions) and receiving invalidations as the
database updates objects. Unlike consistency-unaware
caches, the caches read from the database not only the
object’s value, but also its version and the dependency
list.

To its clients, the extended cache exports a transac-
tional read-only interface. Client read requests are ex-
tended with a transaction identifier and a last-op flag

read(txnID, key, lastOp) .

The transaction identifier txnID allows the cache to rec-
ognize reads belonging to the same transaction. The
cache responds with either the value of the requested ob-
ject, or with an abort if it detects an inconsistency be-
tween this read and any of the previous reads with the
same transaction ID. We do not guarantee that inconsis-
tencies will be detected. The lastOp allows the cache
to garbage-collect its transaction record after responding
to the last read operation of the transaction. The cache
will treat subsequent accesses with the same transaction
ID as new transactions.

To implement this interface, the cache maintains a
record of each transaction with its read values, their ver-
sions, and their dependency lists. On a read of keycurr,
the cache first obtains the requested entry from memory
(cache hit), or database (cache miss). The entry includes
the value, version vercurr and dependency list depListcurr.
The cache checks the currently read object against each
of the previously read objects. If a previously read ver-
sion is older than expected by the current read’s depen-
dencies

∃k,v,v′ : v > v′∧ (k,v) ∈ depListcurr∧
(k,v′) ∈ readSet ∪writeSet , (1)

or the current read is older than expected by the depen-
dencies of a previous read

∃v : v > vcurr∧ (keycurr,v) ∈ readSet ∪writeSet , (2)

an inconsistency is detected. Otherwise the cache returns
the read value to the client.

Upon detecting an inconsistency, the cache can take
one of three paths:

1. ABORT: abort the current transaction. Compared to
the other approaches, this has the benefit of affect-
ing only the running transaction and limiting collat-
eral damage.

2. EVICT: abort the current transaction and evict the
violating (too-old) object from the cache. This ap-
proach guesses that future transactions are likely to
abort because of this object.

3. RETRY: check which is the violating object. If it
is the currently accessed object (Equation 2), treat
this access as a miss and respond to it with a value
read from the database. If the violating object was
returned to the user as the result of a read earlier in
the transaction (Equeation 1), evict the stale object
and abort the transaction.

Figure 2: Experimental setup. Update clients ac-
cess database, which sends invalidations to the cache.
Read-only clients access cache. Consistency monitor
(experiment-only element) receives all transactions and
rigorously detects inconsistencies for statistics.

4 Experimental Setup

To evaluate the effectiveness of our scheme, we imple-
mented a prototype. To study the properties of the cache,
we only need a single column (shard) of the system,
namely a single cache backed by a single database server.

Figure 2 illustrates the structure of our experimen-
tal setup. A single database implements a transactional
key-value store with two-phase commit. A set of cache
clients perform read-only transactions through a single
cache server. The cache serves the requests from its local
storage if possible, or reads from the database otherwise.

On startup, the cache registers an upcall that can be
used by the database to report invalidations; after each
update transaction the database asynchronously sends in-
validations to the cache for all objects that were mod-
ified. A ratio of 20% of the invalidations, chosen uni-
formly at random, are dropped by the experiment; this is
extreme and would only be seen in the real world under
conditions of overload or when the system configuration
is changed.

Both the database and the cache report all completed
transactions to a consistency monitor, created in order to
gather statistics for our evaluation. This server collects
both committed and aborted transactions and it maintains
the full dependency graph. It performs full serialization
graph testing [5] and calculates the rate of inconsistent
transactions that committed and the rate of consistent
transactions that were unnecessarily aborted.

Our prototype does not address the issue of cache evic-
tion when running out of memory. In our experiments,
all objects in the workload fit in the cache, and eviction
is only done if there is a direct reason, as explained be-
low. Had we modeled them, evictions would reduce the

cache hit rate, but could not cause new inconsistencies.
We evaluate the effectiveness of our transactional

cache using various workloads and varying the size of
the dependency lists maintained by the cache and the
database. For the cases considered, short dependency
lists suffice (up to 5 versions). An open question for
further study is whether there are workloads that might
require limited but larger values.

As a baseline for comparison, we also implemented
a timeout-based approach: it reduces the probability of
inconsistency by limiting the life span of cache entries.
We compare this method against our transactional cache
by measuring its effectiveness with a varying time-to-live
(TTL) for cache entries.

In all runs, both read and update transactions ac-
cess 5 objects per transactions. Update clients access the
database at a rate of 100 transactions per second, and
read-only clients access the cache at a rate of 500 trans-
actions per second.

Our experiment satisfies all read-only transactions
from the cache, while passing all update transactions di-
rectly to the backend database. Each cache server is un-
aware of the other servers — it has its own clients and
communicates directly with the backend database. The
percentage of read-only transactions can be arbitrarily
high or low in this situation: with more caches, we can
push the percentage up. Our simulation focuses on just a
single cache—it would behave the same had there been
many cache servers.

5 Evaluation

T-Cache can be used with any transactional backend and
any transactional workload. Performance for read-only
transactions will be similar to non-transactional cache
access: the underlying database is only accessed on
cache misses. However, inconsistencies may be ob-
served.

First, we will use synthetic workloads so we can eval-
uate how much inconsistency can be observed as a func-
tion of the amount of clustering in the workload. This
also allows us to look at the dynamic behavior of the
system, when the amount of clustering and the cluster-
ing formation change over time.

Next, we will look at workloads based on Amazon’s
product co-purchasing and Orkut’s social network to see
how much inconsistency T-Cache can detect as a func-
tion of dependency list length, and compare this with a
TTL-based approach. We are also interested in overhead,
particularly the additional load on the backend database
that could form if the the rate of cache misses increases.

Section 3.2 presented three strategies for responding
to inconsistency detection. For both the synthetic and

realistic workloads, we compare the efficacy of the three
strategies.

5.1 Synthetic Workloads

Synthetic workloads allow us to understand the efficacy
of T-Cache as a function of clustering. For the exper-
iments described here, we configured T-Cache with a
maximum of 5 elements per dependency list.

It might be possible for unnecessary aborts to occur.
Dependency lists might come to contain irrelevant de-
pendencies that could lead to aborts although there is no
dependency. However, throughout the experiments, the
rate of unnecessary aborts has been negligible.

Section 5.1.1 describes synthetic workload generation.
Section 5.1.2 measures how many inconsistencies we can
detect as a function of clustering and Section 5.1.3 con-
siders clustering changes over time. Section 5.1.4 com-
pares the efficacy of various approaches to dealing with
detected inconsistencies.

5.1.1 Synthetic Workload Generation

Our basic synthetic workload is constructed as follows.
We use 2000 objects numbered 0 through 1999. The ob-
jects are divided into clusters of size 5: 0−4,5−9,10−
14, . . . , and there are two types of workloads. In the first,
clustering is perfect and each transaction chooses a sin-
gle cluster and chooses 5 times with repetitions within
this cluster to establish its access set. In the second type
of workloads access is not fully contained within each
cluster. When a transaction starts, it chooses a cluster
uniformly at random, and then picks 5 objects as follows.
Each object is chosen using a bounded Pareto distribu-
tion starting at the head of its cluster i (a product of 5).
If the pareto variable plus the offset results in a number
outside the range (i.e., larger than 1999), the count wraps
back to 0 through i−1.

5.1.2 Inconsistency Detection as a Function of α

We start by exploring the importance of the cluster struc-
ture by varying the α parameter of the Pareto distribu-
tion. We vary the Pareto α parameter from 1/32 to 4. In
this experiment we are only interested in detection, so we
choose the ABORT strategy.

Figure 3 shows the ratio of inconsistencies detected
by T-Cache compared to the total number of potential in-
consistencies. At α = 1/32, the distribution is almost
uniform across the object set, and the inconsistency de-
tection ratio is low — the dependency lists are too small
to hold all relevant information. At the other extreme,
when α = 4, the distribution is so spiked that almost all
accesses of a transaction are within a cluster, allowing for

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01 0.1 1 10

D
e
te

ct
e
d

 I
n
co

n
si

st
e
n
ci

e
s

[%
]

Pareto alpha parameter (log)

Figure 3: Ratio of inconsistencies as a function of α .

perfect inconsistency detection. We note that the rate of
detected inconsistencies is so high at this point that much
of the load goes to the backend database and saturates it,
reducing the overall throughput.

5.1.3 Convergence

So far we have considered behavior with static clusters,
that is, over the entire run of each experiment accesses
are confined to the same (approximate) clusters. Ar-
guably, in a real system, clusters change slowly, and so
if T-Cache converges to maintain the correct dependency
lists as clusters change, our setup serves as a valid quasi-
static analysis.

In this section, we investigate the convergence of T-
Cache when clusters change over time. The dependency
lists of the objects are updated using LRU, so the depen-
dency list of an object o tends to include those objects
that are frequently accessed together with o. Dependen-
cies in a new cluster automatically push out dependen-
cies that are now outside the cluster.

Cluster formation

To observe convergence, we perform an experiment
where accesses suddenly become clustered. Initially ac-
cesses are uniformly at random from the entire set (i.e.,
no clustering whatsoever), then at a single moment they
become perfectly clustered into clusters of size 5. Trans-
actions are aborted on detecting an inconsistency. We
use a transaction rate of approximately 500 per second.
The database includes 1000 objects.

Figure 4 shows the percentage of transactions that
commit and are consistent (at the bottom), the percent-
age of transactions that commit but are inconsistent (in
the middle), and the percentage of transactions that abort
(at the top). Before t = 58s access is unclustered, and as
a result the dependency lists are useless; only few incon-
sistencies are detected, that is, about 26% of the trans-
actions that commit have witnessed inconsistent data. At

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160

T
ra

n
sa

ct
io

n
 R

a
te

 [
tx

n
/s

e
c]

Time [sec]

Aborted
Inconsistent

Consistent

Clustered access

Figure 4: Convergence of T-Cache. Before time t = 58s
accesses are uniformly at random. Afterward, accesses
are clustered.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800

In
co

n
si

st
e
n
cy

 R

a
ti

o
 [

%
]

Time [sec]

Figure 5: Perfectly clustered synthetic workload where
the clusters shift by 1 every 3 minutes, marked by vertical
lines.

t = 58s, accesses become perfectly clustered. As desired,
we see fast improvement of inconsistency detection. The
inconsistency rate drops as the abort rate rises — this is
desired as well. The overall rate of consistent committed
transactions drops because the probability of conflicts in
the clustered scenario is higher.

Drifting Clusters

To illustrate more realistic behavior, we use clustered ac-
cesses that slowly drift. Transactions are perfectly clus-
tered, as in the previous experiment, but every 3 minutes
the cluster structure shifts by 1 (0− 4,5− 9,10− 14→
1− 4,5− 10,11− 15, and wrapping back to zero after
1999). Figure 5 shows the results. After each shift, the
objects’ dependency lists are outdated. This leads to a
sudden increased inconsistency rate that converges back
to zero, until this convergence is interrupted by the next
shift.

 0

 20

 40

 60

 80

 100

ABORT EVICT RETRY

R
a
ti

o
 o

f
 T

ra
n
sa

ct
io

n
s

[%
]

Behavior on Inconsistency Detection

 Consistent
 Inconsistent
 Aborted

Figure 6: The efficacy of T-Cache as a function of
the strategy taken for handling detected inconsistencies.
ABORT detects 55% of the uncommitable tranasctions,
and EVICT and RETRY reduce the rate of uncommitable
transactions to about 25%.

5.1.4 Detection vs. Prevention

Section 3.2 presented three possible strategies for the
cache to deal with inconsistency detection: (1) aborting
the transaction (ABORT), (2) aborting and evicting value
(EVICT), and (3) read-through when possible as in cache
miss, abort otherwise (RETRY). We will now compare
their efficacies.

We use the approximate clusters workload with 2000
objects, a window size of 5, a Pareto α parameter of 1.0,
and the maximum dependency list size is set to 5.

Figure 6 illustrates the results. For each strategy, the
lower portion of the graph is the ratio of committed trans-
actions that are consistent, the middle portion is commit-
ted transactions that are inconsistent, and the top portion
is aborted transactions.

The abort strategy provides a significant improvement
over a normal, consistency-unaware cache, as the strat-
egy detects and aborts over 55% of all inconsistent trans-
actions that would have been committed. But the other
strategies make further improvements. EVICT reduces
uncommittable transactions to 28% of its value with
ABORT. This indicates that violating (too-old) cache en-
tries are likely to be repeat offenders: they are too old
for objects that are likely to be accessed together with
them in future transactions, and so it is better to evict
them. RETRY reduces uncommittable transactions fur-
ther to about 23% of its value with ABORT.

5.2 Realistic Workloads

We now evaluate the efficacy of T-Cache with workloads
based on two sampled topologies from the online retailer
Amazon and the social network Orkut. Section 5.2.1 de-
scribes how we generated these workloads. Section 5.2.2
measures the efficacy of T-Cache on these workloads as

a function of maximum dependency list size, and com-
pares this to a strategy based on TTLs. Section 5.2.3
compares the efficacy of the three strategies of dealing
with detected inconsistencies.

5.2.1 Workload Generation

We generated two workloads based on real data:

1. Amazon: We started from a snapshot of Amazon’s
product co-purchasing graph taken early 2003 [15].
Each product sold by the online retailer is a node
and each pair of products that were purchased in a
single user session is an edge. The original graph
contains more than 260,000 nodes.

2. Orkut: For the second, we used a snapshot of the
friendship relations graph in the Orkut social net-
work, taken late 2006 [21]. In this graph, each user
is a node and each pair of users that have a friend
relationship is an edge. The original graph contains
more than 3,000,000 nodes.

Because the sampled topologies are large and we only
need to simulate a single “column” of the system for our
purposes — one database server and one cache server —
we down-sample both graphs to 1000 nodes. We use
a technique based on random walks that maintains im-
portant properties of the original graph [16], specifically
clustering which is central to our experiment. We start by
choosing a node uniformly and random and start a ran-
dom walk from that location. In every step, with prob-
ability 15%, the walk reverts back to the first node and
start again. This is repeated until the target number of
nodes have been visited. Figure 7(a) and (b) show a fur-
ther down-sampling to 500 nodes to provide some per-
ception of the topologies. The graphs are visibly clus-
tered, the Amazon topology more so than the Orkut one,
yet well-connected.

Treating nodes of the graphs as database objects, trans-
actions are likely to access objects that are topologically
close to one another. For the online retailer, it is likely
that objects bought together are also viewed and updated
together (e.g., viewing and buying a toy train and match-
ing rails). For the social network, it is likely that data of
befriended users are viewed and updated together (e.g.,
tagging a person in a picture, commenting on a post by a
friend’s friend, or viewing one’s neighborhood).

Therefore, we generate a transactional workload that
accesses products that are topologically close. Again,
we use random walks. Each transaction starts by pick-
ing a node uniformly at random and takes 5 steps of a
random walk. The nodes visited by the random walk are
the objects the transaction accesses. Update transactions
first read all objects from the database, and then update

all objects at the database. Read transactions read the
objects directly from the cache.

5.2.2 Efficacy and Overhead

In this section we evaluate T-Cache using the workloads
described above. We found that the abort rate is negli-
gible in all runs. Efficacy is therefore defined to be the
ratio of inconsistent transactions out of all commits.

The overhead of the system is twofold. First, depen-
dency list maintenance implies storage and bandwidth
overhead at both the database and the cache, as well as
compute overhead for dependency list merging at the
server and consistency checks at the cache. However, the
storage required is only for object IDs and versions, not
content, and both updates and checks are O(1) in the
number of objects in the system and O(k2) in the size
of the dependency lists, which is limited to 5 in our ex-
periments.

The second and potentially more significant overhead
is the effect on cache hit ratio due to evictions and hence
the database load. Since cache load is significantly larger
than database load (2 orders of magnitude for Face-
book [7]), even a minor deterioration in hit ratio can yield
a prohibitive load on the backend database. Figure 7c
shows the experiment results. Each data point is the re-
sult of a single run.

We vary the dependency list size and for each value
run the experiment for the two workloads and measure
the average values of these metrics. T-Cache is able
to reduce inconsistencies significantly. For the retailer
workload, a single dependency reduces inconsistencies
to 56% of their original value, two dependencies reduce
inconsistencies to 11% of their original value, and three
to less than 7%. For the social network workload, with 3
dependencies fewer than 7% of the inconsistencies re-
main.

In both workloads there is no visible effect on cache hit
ratio, and hence no increased access rate at the database.
The reduction in inconsistency ratio is significantly bet-
ter for the retailer workload. Its topology has a more
clustered structure, and so the dependency lists hold
more relevant information.

Next we compared our technique with a simple ap-
proach in which we limited the life span (Time To Live,
TTL) of cache entries. Here inconsistencies are not de-
tected, but their probability of being witnessed is reduced
by having the cache evict entries after a certain period
even if the database did not indicate they are invalid.

We run a set of experiments similar to the T-Cache
ones, varying cache entry TTL to evaluate the effi-
cacy of this method in reducing inconsistencies and the
corresponding overhead. Compared to T-Cache, Lim-
iting TTL has detrimental effects on cache hit ratio,

(a) Product Affinity (Amazon) (b) Social Network (Orkut)

 10
 15
 20
 25
 30
 35
 40

 0 1 2 3 4 5

In
co

n
si

st
e
n
cy

 R
a
ti

o
 [

%
]

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

H
it

 R
a
ti

o

 50

 100

 150

 200

 250

 0 1 2 3 4 5

D
B

 A
cc

e
ss

 R
a
te

 n
o
rm

e
d

 [
%

/s
e
c]

Cache Entry TTL [sec] (log, reverse)

Product Affinity
Social Network

(c) Transactional Cache

 5
 10
 15
 20
 25
 30
 35
 40

 30 50 100
 200

 400
 800

 1600
 3200

 6400

In
co

n
si

st
e
n
cy

 R
a
ti

o
 [

%
]

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 30 50 100
 200

 400
 800

 1600
 3200

 6400

H
it

 R
a
ti

o

 50

 100

 150

 200

 250

 30 50 100
 200

 400
 800

 1600
 3200

 6400

D
B

 A
cc

e
ss

 R
a
te

 n
o
rm

e
d

 [
%

/s
e
c]

Cache Entry TTL [sec] (log, reverse)

Product Affinity
Social Network

(d) Limited Cache Entry TTL

Figure 7: Experiments with workloads based on a web retailer product affinity topology and a social network topology
illustrated in (a) and (b). Transactional cache (c) compared against the alternative of reducing cache entry time-to-
live (d). Data points are medians and error bars bound the 10 and 90 percentiles.

 0

 20

 40

 60

 80

 100

ABORT

EVICT

RETRY

ABORT

EVICT

RETRY

R
a
ti

o
 o

f
T
ra

n
sa

ct
io

n
s

[%
]

 Consistent
 Inconsistent
 Aborted

OrkutAmazon

Figure 8: The efficacy of T-Cache as a function of the
inconsistency handling strategy for realistic workloads.

quickly increasing the database workload. By increasing
database access rate to more than twice its original load
we only observe a reduction of inconsistencies of about
10%. This is more than twice the rate of inconsistencies
achieved by T-Cache for the retailer workload and only
slightly better than the rate of inconsistencies achieved
by T-Cache for the social network workload; and with
twice the additional load on the database.

5.2.3 Detection vs. Prevention

Figure 8 compares the efficacy of the ABORT, EVICT
and RETRY policies with the Amazon and Orkut work-
loads. In these experiments we use dependency lists of
length 3. Just as with the synthetic workload, evicting
conflicting transactions is an effective way of invalidat-
ing stale objects that might cause problems for future
transactions.

The effects are more pronounced for the well-clustered
Amazon workload. With the Amazon workload, ABORT
is able to detect 70% of the inconsistent transactions,
whereas with the less-clustered Orkut workload it only
detects 43%. In both cases ABORT reduces uncom-
mittable transactions considerably, relative to their value
with ABORT — 20% with the Amazon workload and
36% with Orkut. In the Amazon workload, RETRY fur-
ther reduces this value to 11% of its value with ABORT.

6 Consistency

As demonstrated in Section 5.1.3, T-Cache appears to
converge to perfect detection when stable clusters that
are as large as its dependency lists. In such a scenario,
the dependency lists are large enough to describe all rel-
evant dependencies. To show that this indeed leads to
perfect detection we prove the following theorem.

Theorem 1. T-Cache with unbounded cache size
and unbounded dependency lists implements cache-
serializability.

Since we assume that the transactional DB is serial-
izable, the operations in an execution of update transac-
tions σupdate can be serialized as some serial execution π .
The next claim trivially follows from the definition of the
database dependency list specification:

Claim 1. If π is a serialization of the update transac-
tions of an execution σupdate, then, at every step in π , the
version dependencies of every object match those stored
in its dependency list.

To prove Theorem 1, we first describe a routine for
placing a read-only transaction from a cache server in a
serialization of a subset of σ , to form a serialization of
both the update transaction and the read-only transaction.

6.1 Permutation routine
Let σ be an execution of the T-Cache system, and
denote by σupdate the projection of σ on the set of
database update transactions. Transaction T reads ob-
jects o1,o2, . . . ,on with versions v1,v2, . . . ,vn, respec-
tively. Take any serialization π of σupdate (one exists
according to Claim 1) and consider the first time when
all the objects the transaction reads are at a version at
least as large as the versions that T reads. At this time at
least one object read by T , the last written according to
π , has the correct version, but others might not. Assume
WLOG that the last version written is vn of object on at
step t of π . Denote by t ′ the latest time at which a wrong
version (not the one read by T) is written, and assume
WLOG it is version vn−1 + k of object on−1 (rather than
the desired version vn−1) for some k ≥ 1.

We now describe a single step of the routine. Consider
the transactions between t ′ and t (inclusive). Divide these
transactions into three sets:

Set 1 Transactions dependent on the transaction at t ′ (in-
cluding t ′).

Set 2 Transactions on which t is dependent (including t).

Set 3 Transactions that do not belong to either group.

The following Lemma states that there is no depen-
dency among objects in sets 1 and 2, and hence there is
no intersection between the sets.

Lemma 1. Sets 1 and 2 are independent.

Proof. If they were dependent, then version vn of ob-
ject on depends on version vn−1 + k of object on−1, and
this dependency is reflected in their T-Cache dependency

lists, because they are unbounded. However, transac-
tion T has read version vn−1 of object on−1, which is
older than vn−1 +k. The read of the stale version vn−1 of
on−1 would have been detected by T-Cache and the trans-
action would have been aborted. Therefore the assump-
tion is wrong, and the sets are indeed independent.

Set 3, perhaps an empty set, is unrelated to sets 1 and 2
by definition. We therefore switch sets 1 and 2, and
place set 3 right after them, maintaining a serialization
of σupdate.

For example, consider the following serialization: (Xi
denotes a transaction X in set i):

A1 B3 C1 D1 E3 F2 G2

After the permutation, we obtain:

A1 C1 D1 F2 G2 B3 E3

Performing this permutation is one step of the rou-
tine. We repeat this step forming a series of permuta-
tions. Each permutation is a serialization of σupdate, and
each permutes a range of the transactions with respect to
the previous step. In each step the right end of the range
is earlier than in the previous step, as one or more of the
objects is closer to the value read by T . Eventually we
therefore reach a permutation where at the chosen time
all read objects are at their correct versions. We place
T there to obtain the desired serialization of the update
transactions and T .

6.2 T-Cache Consistency
We proceed to prove Theorem 1.

Proof. Let σ be an execution of the T-Cache system,
and denote by σupdate the projection of σ on the set of
database update transactions. Denote by T1,T2, . . . ,Tm a
set of read-only transactions performed through a single
T-Cache server.

If the read sets of two transactions include the same
object o, we say the one that read a larger version of o
depends on the other. All transactions access the same
cache, and the cache is unbounded. Therefore, values are
only replaced by newer versions, so it is easy to see that
there are no cycles such that two transactions depend on
one another. The dependency graph therefore describes a
partial order of the read-only transactions, and we choose
an arbitrary total ordering that respects this partial order.
Assume WLOG the order is T1,T2, . . . ,Tm.

We take an initial arbitrary serialization π0 of σ and
permute it according to the route above to place T1, the
first read-only transaction. The result is a permutation π ′1
that includes T1. Then, we take all transactions that pre-
cede T1 in π ′1 although T1 does not depend on them, and
place them after T1. We call this permutation π1.

Next we place T2 by permuting π1. If T2 can be placed
immediately after T1, we place it there to form π2. If T2 is
independent of T1 then all its preceding transactions (ac-
cording to the dependency graph) are unrelated to T1 and
are therefore located after it. The permutations required
are therefore after T1’s location. Finally, if T2 depends on
T1, all relevant update transactions are located after T1 in
π1, and therefore the permutations required are all after
T1’s location. Since in all cases the permutations are af-
ter T1’s location in π1, they do not affect the correctness
of T1’s placement. We take the resulting permutation that
we call π ′2, and move all transactions that neither T2 nor
T1 depend on to right after T2. The resulting permutation
is π2.

We repeat this process until we place all read-only
transactions, forming πm. This is a serialization of the
update transactions in σ and all read-only transactions
that accessed the same cache. We have therefore shown
that in any execution of T-Cache the update transac-
tions can be serialized with read-only transactions that
accessed a single cache, which means that T-Cache im-
plements cache serializability.

7 Related Work

Scalable Consistent Databases Recent years have
seen a surge of progress in the development of scalable
object stores that support transactions. Some systems
such as [18, 27, 17, 30] export novel consistency def-
initions that allow for effective optimizations. Several
recent systems implement full fledged atomicity while
preserving the system’s scalability with a wide variety
of workloads. Google’s Spanner utilizes accurate clock
synchronization. Tango [4] by Balakrishnan et al. is con-
structed on top of the scalable Corfu [3] log. Eyal et
al. [11] utilize a large set of independent logs. Escriva
et al. [10] use DHT-based locking. Zhang et al. [33] use
lock chains and assume transactions are known in ad-
vance. These methods all scale well and in many cases
allow databases to accept loads similar to those handled
by non-transactional databases. Nevertheless, they are
not expected to disrupt the prevailing two-tier structure;
caches remain invaluable.

Consistent Caching Much work has been done on cre-
ating consistent caches for web servers [8, 32, 34, 1, 23],
distributed file systems [13, 29], Key-Value Stores [20,
7, 22] and higher level objects [12, 2]. Such systems
consider only one object at a time, and only individual
read and write operations, as they do not support a trans-
actional interface. There are few if any multi-object or
multi-operation consistency considerations. These sys-
tems generally try to avoid staleness through techniques

such as Time-To-Live (TTL), invalidation broadcasts,
and leases. Our work considers multi-object transac-
tional consistency of cache access.

Transactional Caching Early work on scalable
database caching mostly ignored transactional consis-
tency [19]. Since then, work has been done on creating
consistent caches for databases. TxCache [26] extends a
centralized database with support for caches that provide
snapshot isolation semantics, albeit the snapshots seen
may be stale. To improve the commit rate for read-only
transactions, they use multiversioning, where the cache
holds several versions of an object and enables the cache
to choose a version that allows a transaction to commit.
This technique could also be used with our solution.
Perez-Sorrosal et al. [24, 25] also support snapshot
isolation, but can be used with any backend database,
including ones that are sharded and/or replicated.
JBossCache [28] provides a transactionally consistent
cache for the JBoss middleware. Both JBossCache
and [14] support transactions on cached Enterprise
JavaBeans. [6] allows update transactions to read stale
data out of caches and provide bounds on how much
staleness is allowed. These techniques require fast
communication between the cache and the database for
good performance. In contrast, in our work caches are
asynchronously updated (or invalidated), which is how
caches currently work in large multi-regional clouds.

8 Future Directions

The dependency list sizes for all objects in T-Cache are
currently all of the same maximum length. This may
not be optimal. For example, if the workload accesses
objects in clusters of different sizes, objects of larger
clusters call for longer dependency lists. Once appro-
priate real workloads are available, it may be possible
to improve performance by dynamically changing per-
object dependency list sizes, balancing between objects
to maintain the same overall space overhead. Another
option is to explore an approach in which each type of
object would have its own dependency list bound; this
could work well if a system has multiple classes of ob-
jects, all clustered but with different associated clustering
properties.

At present, T-Cache is semantics-agnostic and treats
all objects and object relations as equal, using an LRU
policy to trim the list of dependencies. However, there
may be cases in which the application could explicitly
inform the cache of relevant object dependencies, and
those could then be treated as more important and re-
tained, while other less important ones are managed by
some other policy such as LRU. For example, in a web
album the set of pictures and their ACL is an important
dependency whereas occasional tagging operations that

relate pictures to users may be less important. It may
be straightforward to extend the cache API to allow the
application to specify such dependencies and to modify
T-Cache to respect them.

9 Conclusion
Existing large-scale computing frameworks make heavy
use of edge caches to reduce client latency, but this form
of caching has not been available for transactional appli-
cations. We believe this is one reason that transactions
are generally not considered to be a viable option in ex-
tremely large systems.

We defined cache-serializability, a variant of serializ-
ability that is suitable for incoherent caches. We then
presented T-Cache, an architecture for controlling trans-
action consistency with caches. The system extends the
edge cache by allowing it to offer a transactional inter-
face. We believe that T-Cache is the first transaction-
aware caching architecture in which caches are updated
asynchronously. In particular, a lookup request only re-
quires a round-trip to the database in case there is a cache
miss — there is no additional traffic and delays to ensure
cache coherence.

T-Cache associates dependency information with
cached database objects, while leaving the interaction be-
tween the backend systems and the cache otherwise un-
changed. This information includes version identifiers
and bounded-length dependency lists. With this modest
amount of additional information, we show that incon-
sistency can be greatly reduced or even completely elim-
inated in some cases.

T-Cache is intended for clustered workloads, and those
arise naturally in social networks, product relationships,
mobile applications with spatial locality, and so on. Our
experiments demonstrate T-Cache to be effective in re-
alistic workloads based on datasets from Amazon and
Orkut. Using dependency lists of size 3, T-Cache de-
tected 43−70% of the inconsistencies, and was also able
to increase consistent transaction rate by 33−58% with
only nominal overhead on the database. Our experiments
with synthetic workloads showed that T-Cache’s efficacy
depends on the clustering level of the workload. T-Cache
adapts to dynamically changing workloads where clus-
ters change over time.

Due to resource limitations T-Cache maintains only a
short dependency list, which is naturally imperfect and
does not include all dependencies. We proved that when
resources are unbounded, T-Cache’s algorithm imple-
ments cache-serializability.

References

[1] M.H.S. Attar and M.T. Ozsu. Alternative archi-
tectures and protocols for providing strong consis-
tency in dynamic web applications. World Wide
Web Journal, 9(3):215–251, 2006.

[2] R. Bakalova, A. Chow, C. Fricano, P. Jain, N. Ko-
dali, D. Poirier, S. Sankaran, and D. Shupp. Web-
Sphere dynamic cache: Improving J2EE applica-
tion experience. IBM Systems Journal, 43(2), 2004.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan
Prabhakaran, Ted Wobber, Michael Wei, and
John D Davis. Corfu: A shared log design for flash
clusters. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’12),
pages 1–14, 2012.

[4] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wob-
ber, Ming Wu, Vijayan Prabhakaran, Michael Wei,
John D Davis, Sriram Rao, Tao Zou, and Aviad
Zuck. Tango: Distributed data structures over a
shared log. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles, pages 325–
340. ACM, 2013.

[5] Philip A Bernstein. Concurrency control and re-
covery in database systems, volume 370. Addison-
Wesley, New York, 1987.

[6] Philip A. Bernstein, Alan Fekete, Hongfei Guo,
Raghu Ramakrishnan, and Pradeep Tamma.
Relaxed-currency serializability for middle-tier
caching and replication. In International Confer-
ence on Management of Data (SIGMOD), pages
599–610, 2006.

[7] Nathan Bronson, Zach Amsden, George Cabrera,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Fer-
ris, Anthony Giardullo, Sachin Kulkarni, Harry C
Li, et al. TAO: Facebook’s distributed data store
for the social graph. In USENIX Annual Technical
Conference, pages 49–60, 2013.

[8] J. Challenger, A. Iyengar, and P. Dantzig. A scal-
able system for consistently caching dynamic web
data. In Proc. INFOCOM 99, March 1999.

[9] James C Corbett, Jeffrey Dean, Michael Ep-
stein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, et al. Spanner: Googles
globally distributed database. ACM Transactions
on Computer Systems (TOCS), 31(3):8, 2013.

[10] Robert Escriva, Bernard Wong, and Emin Gün
Sirer. Warp: Multi-key transactions for key-value
stores. Technical report, Dept. of Computer Sci-
ence, Cornell University, 2013.

[11] Ittay Eyal, Ken Birman, Idit Keidar, and Robbert
van Renesse. Ordering transactions with predic-
tion in distributed object stores. In Proc. of the 7th
Workshop on Large-Scale Distributed Systems and
Middleware (LADIS’13), 2013.

[12] Steven D. Gribble, Eric A. Brewer, Joseph M.
Hellerstein, and David Culler. Scalable, distributed
data structures for internet service construction.
In Proceedings of the 4th Conference on Sympo-
sium on Operating System Design & Implementa-
tion (OSDI’00), volume 4. USENIX Association,
2000.

[13] Christopher Angel Kent. Cache Coherence in Dis-
tributed Systems. PhD thesis, Purdue University,
August 1986.

[14] A. Leff and J.T. Rayfield. Improving application
throughput with enterprise JavaBeans caching. In
International Conference on Distributed Comput-
ing Systems (ICDCS), 2003.

[15] Jure Leskovec, Lada A Adamic, and Bernardo A
Huberman. The dynamics of viral marketing. ACM
Transactions on the Web (TWEB), 1(1):5, 2007.

[16] Jure Leskovec and Christos Faloutsos. Sampling
from large graphs. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 631–636. ACM,
2006.

[17] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguica, and Rodrigo Rodrigues.
Making geo-replicated systems fast as possible,
consistent when necessary. In 10th USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI ’12), 2012.

[18] Wyatt Lloyd, Michael J. Freedman, Michael
Kaminsky, and David G. Andersen. Don’t settle for
eventual: Scalable causal consistency for wide-area
storage with COPS. In Proc. 23rd ACM Symposium
on Operating Systems Principles (SOSP 11), Octo-
ber 2011.

[19] Qiong Luo, Sailesh Krishnamurthy, C. Mohan,
Hamid Pirahesh, Honguk Woo, Bruce G. Lind-
say, and Jeffrey F. Naughton. Middle-tier database
caching for e-business. In International Conference
on Management of Data (SIGMOD), pages 600–
611, 2002.

[20] Memcached. Memcached: a distributed memory
object caching system. http://memcached.org.

[21] Alan Mislove, Massimiliano Marcon, Krishna P
Gummadi, Peter Druschel, and Bobby Bhattachar-
jee. Measurement and analysis of online social net-
works. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement (IMC’07),
pages 29–42. ACM, 2007.

[22] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan
McElroy, Mike Paleczny, Daniel Peek, Paul Saab,
David Stafford, Tony Tung, and Venkateshwaran
Venkataramani. Scaling Memcache at Facebook.
In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’13), pages 385–
398, Lombard, IL, 2013. USENIX.

[23] Oracle. Oracle web cache. http://www.oracle.
com/technetwork/middleware/webtier/

overview.

[24] Francisco Perez-Sorrosal, Marta Patino-Martinez,
Ricardo Jimenez-Peris, and Bettina Kemme. Con-
sistent and scalable cache replication for multi-tier
J2EE applications. In Proc. of Middleware’07,
2007.

[25] Francisco Perez-Sorrosal, Marta Patiño-Martinez,
Ricardo Jimenez-Peris, and Bettina Kemme. Elas-
tic SI-Cache: consistent and scalable caching in
multi-tier architectures. The International Jour-
nal on Very Large Data Bases (VLDB Journal),
20(6):841–865, 2011.

[26] Dan R.K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transac-
tional consistency and automatic management in an
application data cache. In 9th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI ’10), volume 10, pages 1–15, 2010.

[27] Yair Sovran, Russell Power, Marcos K. Aguilera,
and Jinyang Li. Transactional storage for geo-
replicated systems. In Proc. 23rd ACM Symposium
on Operating Systems Principles (SOSP 11), Octo-
ber 2011.

[28] Manik Surtani and Bela Ban. JBoss Cache. http:
//jbosscache.jboss.com.

[29] Amin M. Vahdat, Paul C. Eastham, and Thomas E.
Anderson. Webfs: A global cache coherent file
system. Technical report, UC Berkeley, December
1996.

[30] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang
Wang, Navid Yaghmazadeh, Lorenzo Alvisi, and
Prince Mahajan. Salt: Combining ACID and BASE
in a distributed database. In 11th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’14), 2014.

[31] Wenlei Xie, Guozhang Wang, David Bindel, Alan
Demers, and Johannes Gehrke. Fast iterative graph
computation with block updates. In Proc. of
the VLDB Endowment (PVLDB), volume 6, pages
2014–2025, September 2013.

[32] H. Yu, L. Breslau, and S. Shenker. A scalable
web cache consistency architecture. SIGCOMM
Computer Communications Review, 29(4):163–
174, 1999.

[33] Yang Zhang, Russell Power, Siyuan Zhou, Yair
Sovran, Marcos K Aguilera, and Jinyang Li. Trans-
action chains: achieving serializability with low la-
tency in geo-distributed storage systems. In Pro-
ceedings of the 24th ACM Symposium on Operating
Systems Principles, pages 276–291. ACM, 2013.

[34] H. Zhu and T. Yang. Class-based cache manage-
ment for dynamic web content. In Proc. INFOCOM
01, 2001.

http://memcached.org
http://www.oracle.com/technetwork/middleware/webtier/overview
http://www.oracle.com/technetwork/middleware/webtier/overview
http://www.oracle.com/technetwork/middleware/webtier/overview
http://jbosscache.jboss.com
http://jbosscache.jboss.com

	1 Introduction
	2 Motivation
	3 Architecture
	3.1 Database
	3.2 Cache

	4 Experimental Setup
	5 Evaluation
	5.1 Synthetic Workloads
	5.1.1 Synthetic Workload Generation
	5.1.2 Inconsistency Detection as a Function of
	5.1.3 Convergence
	5.1.4 Detection vs. Prevention

	5.2 Realistic Workloads
	5.2.1 Workload Generation
	5.2.2 Efficacy and Overhead
	5.2.3 Detection vs. Prevention

	6 Consistency
	6.1 Permutation routine
	6.2 T-Cache Consistency

	7 Related Work
	8 Future Directions
	9 Conclusion

