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Abstract

A unidirectionallink exists in an ad-hocnetworkwhena
nodeB is within the transmissionrangeof anothernodeA
while nodeA cannotdirectlyhearnodeB. However, a reverse
routefromB to A mightexist,bygoingthroughmultiplenodes.
Unidirectionallinksmayexistin anadhocnetworkduetovari-
ation in transmissionpowerof differentnodes,noiseor other
signalpropagationphenomena,andheterogeneityin transmis-
sionhardware of nodesin the network. In this paper, westa-
tistically analyzethe connectivityof ad hoc networksin the
presenceof unidirectionallinks. We generate several random
topologiesemployingtwomodelsandstudytheconnectivityof
thesub-graphsformedby includingunidirectionallinksof dif-
ferentreverse-routelengths.Weobservefromthisanalysisthat
the connectivityhas a heavy-taildistribution and that using
only bidirectionallinks couldcausepartitionsin thenetwork.
This analysisalso showsthat the inclusion of unidirectional
links with short reverse-routes(2-3 hops)is oftensufficientto
restore goodconnectivityin unidirectionalnetworks.

Keywords: unidirectional,routing, connectivity, ad hoc net-
work.

1 Intr oduction

A networkof mobilenodesusingpeer-to-peercommunica-
tion andwithoutafixedcommunicationinfrastructureis called
anad hocnetwork. Thelackof infrastructureallowssuchnet-
worksto bedeployedquickly. Hence,they arevery usefulin
disasterrecovery, collaborative work, rescueoperationsand
military surveillance. However, the nodesin an ad hoc net-
work aretypically limited by power, memory, bandwidthand
computationcapabilities.

An enablingtechnologyis the ability of wirelessnetwork
cardsto transmitat differentpower levels. Allowing thesede-
�
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vicesto transmitat lower power levelswould help to prolong
their lifetime. In most foreseeableenvironments,hand-held
devices,laptopsrunningon batterypower, laptophookedto a
power supply, basestationtransmittersareall interactingde-
viceswith inherentlydifferentpower supplies. It is advanta-
geousfor thesedevicesto operateat their own optimalpower
for communication.Further, it is advantageousto allow these
devicesto lowertheir transmissionpowerin averydenseenvi-
ronmentto decreasecongestionandto increasetheir transmis-
sionpower in a sparseenvironmentto increaseconnectivity.

A fundamentalproblemof allowing nodesto transmitwith
differenttransmissionpowersis thecreationof unidirectional
links in thenetwork.For example,if node� is transmittingat
higherpower thanothernodesandnode� is within thetrans-
missionrangeof node � while node � cannothearnode � ,
thelink ����� is unidirectional.Evenwhennodesaretrans-
mitting at thesamepower, unidirectionallinks maybecreated
dueto increasedcollisionsor noiseaffectingpacketreception
atonenodemorethananother. Unidirectionallinks createdby
thesecausesareoftenlocalandtransient.

The presenceof unidirectional links severely affects the
functionality of an ad hoc networkat variouslayers. In the
media-accesslayer, congestionavoidanceschemessuch as
RTS-CTSand other servicessuchas link-statussensingare
severely hampered. Hop-level acknowledgmentsat the link
layer cannotbe directly sentto the upstreamnodeof a uni-
directionallink. In networklayer routing protocols,the effi-
cient operationof routediscovery is severely impaired. Ad-
ditional routediscoveriesmayhave to be initiated to forward
routereplies.EvenprotocolssuchasAODV [5] thatchooseto
ignoreunidirectionallinks areno longerefficient unlessthey
areableto accuratelyidentify the unidirectionallinks. Other
protocolssuchasDSR[3] have to useexpensive mechanisms
(multi-hop acknowledgments)to maintainrouteswith unidi-
rectionallinks.

However, themostimportantimpactof unidirectionallinks
is in theconnectivity of theadhocnetwork. In this paper, we
examinetheimpactof unidirectionallinks onthis fundamental
property. Weperforma statisticalanalysisby randomlygener-
atingseveral topologieswith widely distributedparametersof
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transmissionpower, nodedensityandnumberof nodes.Wein-
troduceunidirectionallinks basedontwo models:theP-model
that introducesunidirectionallinks randomlyaccordingto a
probability distribution function and the D-model that intro-
ducesunidirectionallinks by varyingthetransmissionrangeof
thenodes.Ouranalysisof theconnectivity of thesetopologies
providesinterestingobservationsthatcanbeusedto guidethe
designof routingstrategiesto handleunidirectionalnetworks.
To thedeployersof adhocnetworks,it providesdirectionsto
minimizetheimpactof unidirectionallinks on existing strate-
gies.

In Section2 we describethe efforts by othersto studythe
impactof unidirectionallinks to routingprotocolsandin Sec-
tion 3 wedefinethetermsusedin thispaper. Theextensivesta-
tistical analysisof topologieswith unidirectionallinks is pre-
sentedin Section4. Weconcludethepaperin Section5.

2 RelatedWork

Several techniqueshave beenexploredto supporthandling
of unidirectionallinks in routing protocols. Ad hoc On de-
mandDistanceVectorroutingprotocol,AODV [7], hasbeen
extendedto work in anasymmetricnetworkby identifyingand
ignoring the unidirectionallinks. Asymmetric links are de-
tectedasthey areencounteredandregisteredin a black list [5]
in order to be ignored in the future. A shortcomingof the
blacklistapproachis that it excludesunidirectionallinks, per-
hapscausingnetworkdisconnection.DynamicSourceRout-
ing protocol,DSR [3], is designedto operatein the presence
of unidirectionallinks. Separatediscovery andmaintenanceis
performedfor both theforwardandthereverseroutebetween
thesourceandthedestination.Multi-hop link level acknowl-
edgementsaresentby maintainingreverseroutefor every link
in an active route. Therehasbeenlittle work on quantifying
thecostsof unidirectionallinks in adhocnetworks.

Discovery andmaintenanceof reverseroutesis a popular
techniqueto supportunidirectionallinks in routingprotocols.
A proactive link-state routing protocol that employsreverse
routesis describedin [1]. This protocolbuilds andmaintains
an inclusivecycle for eachunidirectionallink. The inclusive
cycle is formedby theunidirectionallink andits reverseroute.
Thelink-stateupdatesarethensentalongthesereverseroutes.
TheSubRoutingLayer, SRL [8], providesa bidirectionalab-
stractionof an asymmetricnetwork to the routing protocols.
SRL employsa locally proactive distancevectoralgorithmto
discover andmaintainreverseroutesefficiently for unidirec-
tionallinks. Routingprotocolscanusemany servicesprovided
by SRL suchasneighbordiscovery, multi-hop acknowledge-
mentsandreverseroute forwardingto performrouting in an
asymmetricnetwork.Theefficiency of theseschemesdepends
on the lengthof the reverseroutes. SRL is very efficient for
maintainingshort reverseroutes(2-3 hops). Oneof the key
observationsmadein this paperis thatshortreverseroutesare
oftensufficient to obtaingoodconnectivity in asymmetricnet-
works.

Eventhoughseveraltechniquesto supportroutingin asym-
metric networkshave beenexplored,an in-depthanalysisof
the impact of unidirectionallinks to the connectivity of the
networkhasnot beenadequatelyperformedto thebestof our
knowledge. In [6], the authorsqualitatively examineseveral
problemsassociatedwith distancevectorrouting in the pres-
enceof unidirectionallinks. In particular, they show that the
sizeof routingmessagesexchangedwouldincreasefrom 	�
���
to 	�
������ , where � is thesizeof thenetwork.In this paper, we
restrictourselvesto a quantitative analysisof connectivity in
thepresenceof unidirectionallinks anddo not examineother
impactson routingprotocols.

In [4] an analysissimilar to ours is presented.However,
theauthorsonly discusstheconnectivity of theunidirectional
networksin comparisonwith the sub-graphthat is connected
completelywith bidirectionallinks. In this paper, we present
ananalysisof the connectivity of differentcategoriesof sub-
graphsformedby theinclusionof unidirectionallinks with dif-
ferentreverseroutelengths.We analyzea wider classof sce-
nariosandat a muchgreaterdepth,which enablesus to make
importantobservationsthatimprovetheefficiency of unidirec-
tionalroutingprotocols.

In [2] the authorspresentan empiricalstudyof broadcast
protocolsin a largescalemulti-hopwirelessnetworks.Exper-
imentsperformedby deploying185sensornodesin a uniform
grid indicatea high incidenceof asymmetryevenwhenall the
nodestransmitat the samepower. In particular, the authors
in [2] reportthat5%to 15%of links wereunidirectionalduring
their experiments.Clearly, in thepresenceof heterogeneityin
transmissionpower thisscenariocouldbefurtheraggravated.

Theseobservationssuggestthatpresenceof unidirectional
links is a significantproblemin real life andefficient mech-
anismsareneededto handlethem. In this paper, we explore
how asymmetryaffectstheconnectivity of a network.

3 Notationsand Definitions

The topologyof a network is consideredto be a directed
graph,����
�������� , where � is thesetof nodesin thenetwork
and � the setof links in the network. A link ����� exists
betweentwo nodes� and � if � is within the transmission
rangeof � . A link ��� �"!#� is saidto bebidirectionalif
�$� ��!%� andunidirectionalif �&�'�)(!*� . The reverse
routeof a link ��� � is definedastheshortestdirectedpath
from � to � andthelengthof this shortestpathis thereverse
routelengthof thelink. If no suchpathexistsbetween� and
� thenthe reverserouteand the reverseroute lengtharenot
defined.Thus,a bidirectionallink would have a reverseroute
lengthof 1 hop. If the network is strongly connected,then
every link wouldhave a reverse-route.

We categorizethelinks in thenetworkbasedon thereverse
routelengthparameter. A link with reverseroutelength + is
saidto bean r-link. Thus1-links representthesetof all bidi-
rectionallinks in the network. The r-graph of a network is



definedasthe sub-graphconsistingonly of the links with re-
verserouteof lengthatmost + . By thisdefinition,the , -graph
of the networkwould consistof all the links that have a re-
verseroute. Hence,eachcomponentin the , -graphwould
bestronglyconnected.The1-graphof a networkwould only
includethebidirectionallinks andhencerepresenttherouting
structureusedby routing protocols[5] that routeonly using
the bidirectionallinks. We alsousethe term bi-graph asan
alternateto 1-graphin thispaper.

4 Topology Analysis of Unidir ectional Net-
works

In thissection,westudytheimpactof thepresenceof unidi-
rectionallinksonnetworkcharacteristics.Sinceit is difficult to
performrigid mathematicalanalysisandobtainusefulclosed
form expressions,weresortto performingsimulationsin order
to statisticallyanalyzenetworktopologies.

We generaterandomtopologieswith unidirectionallinks
and analyzethem for relevant network propertiesincluding
connectivity in the presenceand absenceof unidirectional
links. Eachof thesetopologiesrepresentsan instantaneous
snapshotof a dynamicallyvarying network. This elaborate
statisticalanalysisof severaltopologiesoffersseveralvaluable
insightsfor efficient routingin unidirectionalnetwork.

Several topologiesarerandomlygeneratedwith parameters
commonlyusedin simulationsof routingprotocols(basedon
defaultparametersof Glomosim[9]). Eachtopologyconsists
of 100nodesplacedin a squarefield randomlywith a uniform
probabilitydistribution. Theareaof thesquarefield is varied
by changingthedensityof thenodes.Thedensityof nodesis
variedstartingfrom 30 nodes/sq.km. to 100 nodes/-/.0� in
stepsof 10. We alsoperformedsimilar trials with rectangu-
lar fieldsandtheresultsobservedwerequalitatively similar to
whatis presentedhere.

The links betweenthe nodesareestablishedbasedon two
models. In the first model,eachnodeis assigneda rangeof
220m(this correspondsto the nominaltransmissionrangeof
WaveLan radios),generatinga bidirectionaltopology. Each
bidirectionallink is then convertedinto a unidirectionallink
with a probabilityP, which is variedon a linear scalefrom 0
to 0.4 in stepsof 0.05. This so calledP-modeltries to mimic
topologieswith unidirectionallinksduetonoise,collisionsand
otherfactors.

The secondmodel, the D-model, generatesa morerealis-
tic topologyby assigningdifferenttransmissionrangesto each
node. We do this by defininga metric calleddiversity. The
diversity, D, of a topologyis definedasthedifferencebetween
themaximumandminimumtransmissionrangesof thenodes
in the network. Accordingto this modeleachnodewasas-
signeda transmissionrangepickedrandomly(uniform distri-
bution) from the interval 1 2�3$4 � �5276&4 �
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, whereN is the

nominalrangeset to 220m. Thusa diversityof 0 producesa
topologywith only bidirectionallinks. We vary the valueof

the diversity between0m and320m in stepsof 40m. In or-
der to simulateradioswith continuousand discretestepsof
transmissionranges,we variedthe granularityin picking the
transmissionrangesfrom 1m to 60m. However, this produced
nonoticeabledifferencein theresults.

For eachsetof parametersdescribedabove we randomly
generate500 topologiesand analyzethem statistically. The
following sub-sectionsdescribethe observationsmadefrom
thisanalysis.In thegraphsthataredescribedbelow, eachdata
pointcorrespondsto oneexperimentwith 500trialsof random
topologies.Theerrorbarsplottedin thegraphshow the99%
confidenceinterval of the values. We repeatedtheseexperi-
mentwith 50,200,and400nodesin thetopologyfor thesame
valuesof densitybut foundthattheaverageconnectivity is the
sameasthatfor 100nodes,ateachdensity.
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Figure 1. Average distrib ution of r-links in the network. P-
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model, density = 50 nodes/ -/.9�

:<;>=@?�A%;�BDCFEG;�HJIKCF;MLN=$OKCDP�CF;BQCF;R/B

The first propertyof topologywe discussis the aggregate
link characteristicsfor thedifferenttopologies.

The graphsshown in Figures1 and 2 show the percent-
ageof r-links in the network for differentvaluesof + in the
P-modelandD-modelrespectively for topologieswith density
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model.

of 50nodes/-/.9� . Theparameters,diversityD andprobability
P, of therespectivemodelsareplottedonthex-axis.They-axis
shows thecumulative contributionof thelinks (in percentage)
with eachvalueof reverseroutelengthto the total numberof
linkswith reverseroutesin thetopology. Thecontributionof r-
links for +TSVU is negligible andhencenotshown in thegraphs.

Let usfirst observe thepercentageof bidirectionallinks (1-
links) in the topology. The graphin Figure1 shows a linear
decreasein thepercentageof 1-links from 100%to 62%asP
variesfrom 0 to 0.4. This is expectedbecausein theP-model
we convertedbidirectionallinks to unidirectionalwith proba-
bility P. Thevalueat P equalto 0.4 is slightly morethan60%
becausethelinkswith noreverserouteareexcluded.Thegraph
in Figure2 shows thecontributionof bidirectionallinks in the
D-model. We noticea decreasefrom 100%to 66% asD in-
creasesfrom 0mto 320malthoughit is not linear.

The importantobservation to be madefrom thesegraphs
however is the contribution of links with small + ( +XWZY ) to
the network. Both the modelsindicatethat the contribution
of r-links decreasessharplywith increasing+ . The graphsin
Figures3 and4 plot the averagecontribution of 3-links (i.e.,
reverseroute length lessthan4) for threedifferentdensities.
Thesegraphsindicatethat for both models,up to 97%of the
linkshave veryshort(i.e., W#Y ) reverseroutelengthfor density

above 40nodes/-/. � .
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Figure 5. Average number of connected components in the
bi-graph. P-model.
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We next examinethe most importantcharacteristicof the
network,namelyconnectivity. The graphsin Figures5 and
6 plot the averagenumberof connectedcomponentsin the
bi-graphof the topologiesagainstparametersP andD of the
two modelsrespectively. It can be observed from Figure 6
that the averagenumberof connectedcomponentsincreases
asthediversity increases,from about2 to 11 for a densityof
50 nodes/-/.9� . Similarly, the averagenumberof connected
componentsincreaseswith increasingvaluesof probability in
Figure 5. Clearly, this increasein the numberof connected
componentsis lower at higherdensity. Nevertheless,a very
high densityis requiredto ensuregoodbidirectionalconnec-
tivity for all thescenarios.

Thegraphsin Figures7 and8 show theaveragesizeof the
largestconnectedcomponentof thebi-graphfor thetwo mod-
elsat differentdensities.Thesegraphsindicatea generalde-
creasein thelargestcomponentathighdiversity. For example,
at a densityof 50 nodes/sq.km,theaveragesizeof the largest
componentdropsfrom about97 to 82. This amountsto a de-
creaseof about15%in thesizeof thelargestcomponent.The
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Figure 9(a): Histogramof the size of the
largestcomponentin thebi-graph.Diversity
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Figure 9(b): Histogramof the size of the
largestcomponentin the 2-graph. Diversity
= 200m,density= 50 nodes/cedgf

Figure 9(c): Histogramof the size of the
largestcomponentin the 3-graph. Diversity
= 200m,density= 50 nodes/cedgf
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Figure 7. Average size of the largest connected component

in the bi-graph. P-model.

decreaseissignificantlygreaterin theP-modelcomparedto the
D-model. Thereasonfor this is thatasbidirectionallinks are
convertedto unidirectionallinks in theP-model,thetotalnum-
ber of links in the networkdecreases.Consequently, at high
probabilitiesthenetworkgetsmoreandmoredisconnected.

We next takea detailedview of thestatisticsby looking at
the distribution of thesevalues. The graphsin Figures9(a)
to 9(c) plot the frequency distribution (histogram)of the size
of the largestcomponentin the r-graph( +h�jiD��kG��Y ) of the
500 randomlygeneratedtopologieswith diversity 200mand
density50 nodes/-/.0� . Thex-axisgivesthesizeof thelargest
component(recallthateachtopologyhas100nodes)while the
y-axisshows the frequency, that is, the numberof topologies
with thecorrespondingsizefor thelargestcomponent.

Thegraphin Figure9(a) indicatesheavy clusteringof val-
uestowardstheright implying thatthesizeof thelargestcom-
ponentis very high (90s) almostalways. However, the dis-
cerningfeatureof thegraphis theheavy tail of thedistribution
growing to very low sizesfor thelargestcomponent.Thissug-
geststhatoccasionallytheunidirectionallinks playaveryvital
rolein theconnectivity of thenetwork.Thefrequency distribu-
tion for theP-model(not includeddueto similarity of results)
showsaheavy tail distribution aswell.

20

30

40

50

60

70

80

90

100

0 40 80 120 160 200 240 280 320
diversity in transmission range (m)

siz
e 

of
 la

rg
es

t c
om

po
ne

nt
 in

 1
-g

ra
ph

40 nodes/sq.km
50 nodes/sq.km
70 nodes/sq.km

Figure 8. Average size of the largest connected component

in the bi-graph. D-model.

The graphsin Figures9(b) and9(c) displaythe histogram
of thesizeof largestcomponentin the2-graphand3-graphof
thetopologiesanalyzed.Thevaluescanbeseento shift to the
right as + increases,showing that the connectivity improves
significantlywhen2-links are included. Inclusionof 3-links
alsoincreasestheconnectivity of thenetworkalthoughnot as
much. More importantly, the tail in thedistribution is lighter
indicatingthat thestandarddeviation of thesizeof the largest
componentgetssmalleras + increases.

Theoverall effect canbeclearlyseenin thegraphsin Fig-
ure10(a)andFigure10(b),which show theaveragevaluesof
thesizeof the largestconnectedcomponentfor differentval-
uesof + in theP-modelandD-model,respectively. Thevalues
shownarenormalizedto theaveragesizeof thelargestcompo-
nentin the , -graph.The improvementin connectivity in the
2-graphcomparedto thebi-graphcanbeobservedto bequite
significant.Theaveragesizeof thelargestcomponentof the3-
graphis at least97%in theD-modeland95%in theP-model.
Theimprovementin theconnectivity in the + -graphsfor +TSlY
becomesinsignificant.

Thegraphsin Figure10(c)andFigure10(d)plot thetrends
of thenormalizedaveragesizeof the largestcomponentof 3-
graphin the P-modelandD-model. At densitiesgreaterthan
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Figure10(b):Averagesizeof thelargestconnectedcomponentin
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Figure10(d):Averagesizeof thelargestconnectedcomponentin
3-graph.D-model.

50 nodes/-/.0� , thesevaluesarevery closeto that of the , -
graph(97%for D-model).This leadsto animportantobserva-
tion thatignoringthelinks with longreverseroutes( SlY ) only
marginally affectsthe connectivity of the network. Even at a
low densityof 40nodes/-/.0� , thesizeof thelargestcomponent
in the3-graphis quitehigh. Thenormalizedsizeof thelargest
componentinitially decreaseswith diversity but startsto in-
creaseathighervaluesof diversity. Whenthediversityis large
the network getsmore disconnected,making the size of the
largestcomponentin the , -graphsmall,aswell asdecreasing
theimportanceof unidirectionallinks with longreverseroutes.

mn^K]�EFP�op]hA%;BQCDPK=qRr]sOKCDP�CF;�BDCF;�R/B

The graphsin Figures11(a)and11(b)displaythe average
lengthof routesin numberof hopsin r-graphsfor differentval-
uesof + in P-modelandD-modelatadensityof 50nodes/-/.0�
Thereis anincreasein theaveragedistanceof thebi-graphas
unidirectionallinks are introducedin both the models. The
decreasein theaveragedistanceof theP-modelat highproba-
bilities is becauseof theincreasein numberof connectedcom-
ponents(seeFigure5).

In both the models,the averagedistanceof the 2-graphis
lower than that of bi-graph. Including the 2-links decreases
theaverageroutelengthby at most1 hop. This is becausethe
unidirectionallinks canbe usedfor transmissionwhen there

arereverseroutes,avoiding the establishmentof longerbidi-
rectionalroutes(thiswouldnot happenwith blacklistAODV).
However, includingr-links with +tS�k doesnot seemto make
any significantdifferenceto this metric. This is expectedbe-
causethecontributionof r-links to theconnectivity is marginal
for higher + . In the D-model, the averagedistanceof the 2-
graph(and3-graph)canbeseento decreasein generalasthe
diversity increases.This canbeexplainedby the presenceof
morelong-reachingnodesasthediversityincreases.Thenodes
with greatervaluesof transmissionradiuscan reachfurther,
therebydecreasingtheaveragedistancein thenetwork.How-
ever, thebi-graphis notableto takeadvantageof this.

5 Conclusion

In this paper, we performstatisticalanalysisof topologies
representingunidirectionalad hoc networksandquantify the
impactof unidirectionallinks on the connectivity of the net-
work.

Thestatisticalanalysisof thetopologiesgeneratedindicate
thatthepresenceof unidirectionallinks couldsignificantlyaf-
fect theconnectivity of thebi-graphandthatmostof the uni-
directionallinks in a randomgraphwould have shortreverse
routes(2-3 hops). Furthermore,the connectivity itself is a
heavy tail distributionandcansuddenlychangefrom goodto
worsein real-life dueto mobility. However, by includingonly
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Figure 11(a): Averagedistanceof routesin r-graph. P-model,
density= 50 nodes/cGd�f

Figure11(b): Averagedistanceof routesin r-graph. D-model,
density= 50nodes/cedgf

the unidirectionallinks with short reverseroutes(2-3 hops),
theconnectivity canbesignificantlyimproved.

The observationsstatedabove alsoprovide good intuition
to thedevelopersof routingprotocols.Themostcommonap-
proachto tacklethe presenceof unidirectionallinks hasbeen
to detectthemsomehow and then ignorethem. Suchan ap-
proachis takenby AODV [5], a popularroutingprotocolfor
adhoc networks.Several methodsto enableAODV to avoid
unidirectionallinks aredescribedin [4]. However, a very high
densityof nodes(300 nodes/-/.9� in [4]) may be requiredto
achieve goodbidirectionalconnectivity in thepresenceof uni-
directionallinks. OtherprotocolssuchasDSR[3] aredesigned
to routepacketsevenalongtheunidirectionallinks. However,
they incur theexpensesof maintaininglong reverseroutesfor
someof theseunidirectionallinks. Theobservationsin thispa-
persuggestthat a moreefficient routingprotocolwould only
employ unidirectionallinks with short reverseroutes,as in
SRL [8], andonly whenreally requiredto usethem(this dy-
namicSRL schemeis thefocusof ourcurrentresearch).

The importantobservationsfrom theanalysisin this paper
providesgoodintuition for thedevelopersanddeployersof ad
hocnetworks.Thetopologiesanalyzedin thispaperhavebeen
randomlydrawn by changingvariousparametersin a wide
range.Thesetopologiesrepresentinstantaneoussnapshotsof
thenetworkandthevariationwith time in themobilenetwork
canbeapproximatedby a seriesof snapshots.Thustheobser-
vationsmadein thispaperapplyto a widevarietyof scenarios
encounteredin mobileadhocnetworks.
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