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Abstract

A unidirectionallink existsin an ad-hocnetworkwhena
nodeB is within the transmissiorrange of anothernode A
while nodeA cannotdirectly hearnodeB. However a reverse
routefromB to A mightexist, by goingthroughmultiplenodes.
Unidirectionallinks mayexistin anadhocnetworkdueto vari-
ation in transmissiorpower of differentnodes,noiseor other
signalpropagationphenomenandhetepgeneityin transmis-
sion hardware of nodesin the network. In this paper we sta-
tistically analyzethe connectivityof ad hoc networksin the
presenceof unidirectionallinks. e geneate several random
topologiesemployingwo modelsand studythe connectivityof
the sub-gaphsformedby including unidirectionallinks of dif-
ferentreverse-outelengths We observdromthis analysisthat
the connectivityhas a heavy-taildistribution and that using
only bidirectionallinks could causepartitionsin the network.
This analysisalso showsthat the inclusion of unidirectional
links with shortreverse-outes(2-3 hops)is oftensuficientto
restoe goodconnectivityin unidirectionalnetworks.

Keywords: unidirectional, routing, connectivity ad hoc net-
work.

1 Intr oduction

A networkof mobilenodesusingpeerto-peercommunica-
tion andwithoutafixedcommunicationnfrastructuras called
anad hocnetwork Thelack of infrastructureallows suchnet-
worksto be deployedquickly. Hence,they arevery usefulin
disasterrecovery, collaboratve work, rescueoperationsand
military suneillance. However, the nodesin an ad hoc net-
work aretypically limited by power, memory bandwidthand
computatiorcapabilities.

An enablingtechnologyis the ability of wirelessnetwork
cardsto transmitat differentpower levels. Allowing thesede-
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vicesto transmitat lower power levelswould help to prolong
their lifetime. In most foreseeablesrvironments,hand-held
devices,laptopsrunningon batterypower, laptophookedto a
power supply basestationtransmittersareall interactingde-
viceswith inherentlydifferentpower supplies. It is adwanta-
geousfor thesedevicesto operateat their own optimal power
for communication Further it is advantageouso allow these
devicesto lowertheirtransmissiompowerin avery denseervi-
ronmentto decreaseongestiorandto increaseheirtransmis-
sionpowerin asparseervironmentto increaseconnecivity.

A fundamentaproblemof allowing nodesto transmitwith
differenttransmissiorpowersis the creationof unidirectional
links in the network. For example,if nodeA is transmittingat
higherpower thanothernodesandnodeB is within thetrans-
missionrangeof node A while node A cannothearnode B,
thelink A — B is unidirectional.Evenwhennodesaretrans-
mitting at the samepower, unidirectionalinks maybe created
dueto increasecollisionsor noiseaffecting packetreception
atonenodemorethananotherUnidirectionallinks createdoy
thesecausesreoftenlocal andtransient.

The presenceof unidirectionallinks severely affects the
functionality of an ad hoc network at variouslayers. In the
media-acces$ayer, congestionavoidance schemessuch as
RTS-CTSand other servicessuch as link-statussensingare
severely hampered. Hop-level acknavledgmentsat the link
layer cannotbe directly sentto the upstreamnodeof a uni-
directionallink. In networklayer routing protocols,the effi-
cient operationof route discovery is severely impaired. Ad-
ditional route discoveriesmay have to be initiated to forward
routereplies.EvenprotocolssuchasAODV [5] thatchoosdo
ignoreunidirectionallinks are no longerefficient unlessthey
areableto accuratelyidentify the unidirectionallinks. Other
protocolssuchasDSR[3] have to useexpensve mechanisms
(multi-hop acknavledgments)}o maintainrouteswith unidi-
rectionallinks.

However, the mostimportantimpactof unidirectionallinks
is in the connectvity of the ad hocnetwork. In this paperwe
examinetheimpactof unidirectionalinks onthisfundamental
property We performa statisticalanalysisby randomlygener
atingseveraltopologieswith widely distributedparametersf



transmissiompower, nodedensityandnumberof nodes Wein-

troduceunidirectionalinks basedn two models:theP-model
that introducesunidirectionallinks randomlyaccordingto a

probability distribution function and the D-modelthat intro-

duceaunidirectionalinks by varyingthetransmissiomangeof

thenodes.Our analysisof the connecwity of thesetopologies
providesinterestingobsenationsthatcanbe usedto guidethe
designof routing stratgjiesto handleunidirectionalnetworks.
To the deployersof ad hoc networks,it providesdirectionsto

minimizetheimpactof unidirectionallinks on existing strate-
gies.

In Section2 we describethe efforts by othersto studythe
impactof unidirectionallinks to routing protocolsandin Sec-
tion 3 we definethetermsusedin this paper Theextensie sta-
tistical analysisof topologieswith unidirectionallinks is pre-
sentedn Sectiond. We concludethe paperin Section5.

2 RelatedWork

Severaltechniquesave beenexploredto supporthandling
of unidirectionallinks in routing protocols. Ad hoc On de-
mandDistanceVectorrouting protocol, AODV [7], hasbeen
extendedo work in anasymmetrimetworkby identifyingand
ignoring the unidirectionallinks. Asymmetriclinks are de-
tectedasthey areencounteredndregisteredin ablack list [5]
in orderto be ignoredin the future. A shortcomingof the
blacklistapproactis thatit excludesunidirectionallinks, per
hapscausingnetwork disconnection.Dynamic SourceRout-
ing protocol, DSR[3], is designedo operatein the presence
of unidirectionallinks. Separateliscosery andmaintenancés
performedfor both the forward andthe reverseroutebetween
the sourceandthe destination.Multi-hop link level acknavl-
edgementaresentby maintainingreverseroutefor every link
in an active route. Therehasbeenlittle work on quantifying
the costsof unidirectionalinks in adhocnetworks.

Discovery and maintenancef reverseroutesis a popular
techniqueto supportunidirectionallinks in routing protocols.
A proactve link-state routing protocol that employsreverse
routesis describedn [1]. This protocolbuilds and maintains
aninclusivecyclefor eachunidirectionallink. The inclusive
cycleis formedby theunidirectionallink andits reverseroute.
Thelink-stateupdatesarethensentalongthesereverseroutes.
The SubRoutingLayer, SRL [8], providesa bidirectionalab-
stractionof an asymmetricnetworkto the routing protocols.
SRL employsa locally proactie distancevectoralgorithmto
discover and maintainreverseroutesefficiently for unidirec-
tionallinks. Routingprotocolscanusemary servicegrovided
by SRL suchasneighbordiscorery, multi-hop acknavledge-
mentsand reverseroute forwardingto performroutingin an
asymmetrimetwork. Theefficieng/ of theseschemeslepends
on the lengthof the reverseroutes. SRL is very efficient for
maintainingshortreverseroutes(2-3 hops). One of the key
obsenationsmadein this paperis that shortreverseroutesare
oftensufficientto obtaingoodconnectvity in asymmetrimet-
works.

Eventhoughseveraltechniqueso supportroutingin asym-
metric networkshave beenexplored, an in-depthanalysisof
the impact of unidirectionallinks to the connectity of the
networkhasnot beenadequatelyperformedto the bestof our
knowledge. In [6], the authorsqualitatively examine several
problemsassociateavith distancevectorroutingin the pres-
enceof unidirectionallinks. In particulat they shav thatthe
sizeof routingmessagesxchangedvouldincreasdrom O(n)
to O(n?), wheren is the sizeof thenetwork.In this paperwe
restrictoursehesto a quantitatie analysisof connectvity in
the presencef unidirectionallinks anddo not examineother
impactson routingprotocols.

In [4] an analysissimilar to oursis presented.However,
theauthorsonly discusshe connectvity of the unidirectional
networksin comparisorwith the sub-graptthatis connected
completelywith bidirectionallinks. In this paper we present
an analysisof the connectity of differentcateyoriesof sub-
graphdormedby theinclusionof unidirectionalinks with dif-
ferentreverseroutelengths. We analyzea wider classof sce-
nariosandata muchgreaterdepth,which enablesisto make
importantobsenationsthatimprove the efficiency of unidirec-
tional routing protocols.

In [2] the authorspresentan empirical study of broadcast
protocolsin alarge scalemulti-hopwirelessnetworks.Exper
imentsperformedoy deployingl85sensomnodesn a uniform
grid indicatea high incidenceof asymmetryevenwhenall the
nodestransmitat the samepower. In particular the authors
in [2] reportthat5%to 15%o0f links wereunidirectionalduring
their experiments.Clearly, in the presencef heterogeneityn
transmissionpower this scenariccouldbe furtheraggraated.

Theseobsenationssuggesthat presencef unidirectional
links is a significantproblemin real life and efficient mech-
anismsare neededo handlethem. In this paper we explore
how asymmetryaffectsthe connectvity of a network.

3 Notationsand Definitions

The topology of a networkis consideredo be a directed
graph,D = (V, E), whereV is thesetof nodesn thenetwork
and F' the setof links in the network. A link A — B exists
betweentwo nodesA and B if B is within the transmission
rangeof A. A link A — B € FE is saidto be bidirectionalif
B — A € F andunidirectionalif B — A ¢ E. Thereverse
routeof alink A — B is definedasthe shortesdirectedpath
from B to A andthelengthof this shortespathis thereverse
routelengthof thelink. If no suchpathexists betweenB and
A thenthe reverseroute andthe reverseroute length are not
defined. Thus,a bidirectionallink would have a reverseroute
lengthof 1 hop. If the networkis strongly connectedthen
every link would have areverse-route.

We categjorizethelinks in the networkbasedn thereverse
routelengthparameter A link with reverseroutelengthr is
saidto beanr-link. Thus1-links representhe setof all bidi-
rectionallinks in the network. The r-graph of a networkis



definedasthe sub-graptconsistingonly of the links with re-
verserouteof lengthatmostr. By thisdefinition,thecc-graph
of the networkwould consistof all the links that have a re-
verseroute. Hence,eachcomponentn the co-graphwould
be stronglyconnected.The 1-graph of a networkwould only
includethe bidirectionallinks andhencerepresenthe routing
structureusedby routing protocols[5] that route only using
the bidirectionallinks. We also usethe term bi-graph asan
alternateo 1-graphin this paper

4 Topology Analysis of Unidir ectional Net-
works

In thissectionwe studytheimpactof thepresencef unidi-
rectionallinks onnetworkcharacteristicsSinceit is difficult to
performrigid mathematicabnalysisand obtain usefulclosed
form expressionswe resortto performingsimulationsn order
to statisticallyanalyzenetworktopologies.

We generaterandomtopologieswith unidirectionallinks
and analyzethem for relevant network propertiesincluding
connectvity in the presenceand absenceof unidirectional
links. Eachof thesetopologiesrepresentsan instantaneous
shapshobf a dynamically varying network. This elaborate
statisticalanalysisof severaltopologiesoffersseveralvaluable
insightsfor efficientroutingin unidirectionalnetwork.

Severaltopologiesarerandomlygenerateavith parameters
commonlyusedin simulationsof routing protocols(basedon
defaultparametersf Glomosim[9]). Eachtopologyconsists
of 100nodesplacedin asquardield randomlywith a uniform
probability distribution. The areaof the squarefield is varied
by changingthe densityof the nodes.The densityof nodesis
varied startingfrom 30 nodes/sq.km. to 100 nodeskm? in
stepsof 10. We also performedsimilar trials with rectangu-
lar fieldsandtheresultsobseredwerequalitatively similar to
whatis presentedhere.

The links betweenthe nodesare establishedasedon two
models. In the first model, eachnodeis assignech rangeof
220m((this correspondso the nominaltransmissiorrangeof
WavelLan radios), generatinga bidirectionaltopology Each
bidirectionallink is then cornvertedinto a unidirectionallink
with a probability P, which is varied on a linear scalefrom 0
to 0.4 in stepsof 0.05. This so calledP-modeltries to mimic
topologieswith unidirectionalinks dueto noise collisionsand
otherfactors.

The secondmodel, the D-mode| generates morerealis-
tic topologyby assigningdifferenttransmissiomangego each
node. We do this by defininga metric called diversity The
diversity, D, of atopologyis definedasthedifferencebetween
the maximumand minimumtransmissiomangef the nodes
in the network. Accordingto this model eachnodewas as-
signeda transmissiorrangepickedrandomly(uniform distri-
bution) from the interval [N — £, N + 2], whereN is the
nominalrangesetto 220m. Thusa diversity of 0 produces
topologywith only bidirectionallinks. We vary the value of

the diversity betweenOm and 320min stepsof 40m. In or-

der to simulateradioswith continuousand discretestepsof

transmissiorranges,we variedthe granularityin picking the
transmissiomangesrom 1mto 60m. However, this produced
nonoticeablalifferencen theresults.

For eachsetof parameterglescribedabose we randomly
generateb00 topologiesand analyzethem statistically The
following sub-sectionglescribethe obserations madefrom
thisanalysis.In the graphghataredescribedelow, eachdata
pointcorrespond#o oneexperimentwith 500trials of random
topologies.The error barsplottedin the graphshowv the 99%
confidencenterval of the values. We repeatedheseexperi-
mentwith 50,200,and400nodesn thetopologyfor thesame
valuesof densitybut foundthatthe averageconnectity is the
sameasthatfor 100nodesat eachdensity
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Figure 1. Average distrib ution of r-links in the network. P-
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Figure 2. Average distrib ution of r-links in the network. D-
model, density = 50 nodes/km?

Link Distribution Statistics

The first propertyof topologywe discussis the aggr@ate
link characteristicfor the differenttopologies.

The graphsshawn in Figures1 and 2 showv the percent-
ageof r-links in the networkfor differentvaluesof r in the
P-modelandD-modelrespectiely for topologieswith density
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Figure 4. Average distrib ution of 3-links in the network. D-
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of 50 nodeskm?. TheparametersgjiversityD andprobability
P, of therespectire modelsareplottedonthex-axis. They-axis
shavs the cumulative contribution of the links (in percentage)
with eachvalueof reverseroutelengthto the total numberof
links with reverseroutesin thetopology Thecontributionof r-
linksfor r > 4 is negligible andhencenotshovnin thegraphs.

Let usfirst obsene the percentagef bidirectionallinks (1-
links) in the topology The graphin Figure 1 shows a linear
decreasén the percentagef 1-links from 100%to 62%asP
variesfrom 0 to 0.4. This is expectedbecauseén the P-model
we convertedbidirectionallinks to unidirectionalwith proba-
bility P. Thevalueat P equalto 0.4is slightly morethan60%
becauséhelinkswith noreverserouteareexcluded.Thegraph
in Figure2 shavs the contribution of bidirectionallinks in the
D-model. We notice a decreasdrom 100%to 66% asD in-
crease$rom Omto 320malthoughit is notlinear.

The importantobsenation to be madefrom thesegraphs
however is the contritution of links with small» (» < 3) to
the network. Both the modelsindicate that the contribution
of r-links decreasesharplywith increasingr. The graphsin
Figures3 and4 plot the averagecontribution of 3-links (i.e.,
reverseroute lengthlessthan4) for threedifferentdensities.
Thesegraphsindicatethatfor both models,up to 97% of the
links have very short(i.e., < 3) reverseroutelengthfor density

above 40 nodeskm?.
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Figure 6. Average number of connected components in the
bi-graph. D-model.

Connectivity Statistics

We next examinethe mostimportantcharacteristiof the
network, namelyconnectity. The graphsin Figures5 and
6 plot the averagenumberof connectedcomponentsn the
bi-graphof the topologiesagainstparameter® andD of the
two modelsrespectrely. It canbe obsered from Figure 6
that the averagenumberof connectedcomponentsncreases
asthe diversity increasesfrom about?2 to 11 for a densityof
50 nodeskm?®. Similarly, the averagenumberof connected
componentincreasewith increasingvaluesof probabilityin
Figure5. Clearly this increasein the numberof connected
componentss lower at higherdensity Neverthelessa very
high densityis requiredto ensuregoodbidirectionalconnec-
tivity for all thescenarios.

Thegraphsin Figures7 and8 show the averagesizeof the
largestconnecteaomponendf the bi-graphfor thetwo mod-
els at differentdensities. Thesegraphsindicatea generalde-
creasen thelargestcomponenat high diversity, For example,
at a densityof 50 nodes/sq.kmthe averagesize of the largest
componentropsfrom about97 to 82. This amountgo a de-
creaseof about15%in the sizeof thelargestcomponentThe
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decreases significantlygreatein theP-modektomparedo the
D-model. Thereasorfor thisis thatasbidirectionallinks are
corvertedto unidirectionalinks in theP-model thetotal num-
ber of links in the network decreasesConsequentlyat high
probabilitiesthe networkgetsmoreandmoredisconnected.

We next takea detailedview of the statisticsby looking at
the distribution of thesevalues. The graphsin Figures9(a)
to 9(c) plot the frequeng distribution (histogram)of the size
of the largestcomponentn the r-graph(r = 1, 2, 3) of the
500 randomlygeneratedopologieswith diversity 200mand
density50 nodeskm?. Thex-axis givesthesizeof thelargest
componen(recallthateachtopologyhas100nodes)while the
y-axis shaws the frequeng, thatis, the numberof topologies
with the correspondingizefor thelargestcomponent.

The graphin Figure9(a) indicatesheary clusteringof val-
uestowardstheright implying thatthe sizeof thelargestcom-
ponentis very high (90s) almostalways. However, the dis-
cerningfeatureof thegraphis theheavy tail of the distribution
growing to very low sizesfor thelargestcomponentThis sug-
gestghatoccasionallytheunidirectionalinks play avery vital
rolein theconnectvity of thenetwork. Thefrequeng distribu-
tion for the P-model(notincludeddueto similarity of results)
shavs aheary tail distribution aswell.

Figure 8. Average size of the largest connected component
in the bi-graph. D-model.

The graphsin Figures9(b) and 9(c) displaythe histogram
of the sizeof largestcomponentn the 2-graphand3-graphof
thetopologiesanalyzed.Thevaluescanbe seento shift to the
right as r increasesshawving that the connectity improves
significantlywhen 2-links are included. Inclusion of 3-links
alsoincreaseshe connectvity of the networkalthoughnot as
much. More importantly the tail in the distribution is lighter
indicatingthatthe standardieviation of the sizeof the largest
componengetssmallerasr increases.

The overall effect canbe clearly seenin the graphsin Fig-
ure10(a)andFigure10(b), which showv the averagevaluesof
the size of the largestconnecteccomponenftor differentval-
uesof r in the P-modelandD-model,respectiely. Thevalues
shavn arenormalizedo theaveragesizeof thelargestcompo-
nentin the co-graph. Theimprovementin connectity in the
2-graphcomparedo the bi-graphcanbe obseredto be quite
significant. Theaveragesizeof thelargestcomponenbf the 3-
graphis atleast97%in the D-modeland95%in the P-model.
Theimprovementin the connecwity in ther-graphsor » > 3
becomesnsignificant.

Thegraphsn Figure10(c)andFigure10(d)plot thetrends
of the normalizedaveragesize of the largestcomponenbf 3-
graphin the P-modeland D-model. At densitiesgreaterthan
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50 nodeskm?, thesevaluesare very closeto that of the co-
graph(97%for D-model). This leadsto animportantobsena-
tion thatignoringthelinks with long reverseroutes(> 3) only
mawginally affectsthe connecwity of the network. Evenat a
low densityof 40 nodeskm?, thesizeof thelargestcomponent
in the 3-graphis quite high. Thenormalizedsizeof thelargest
componentinitially decreasesvith diversity but startsto in-
creaseat highervaluesof diversity Whenthediversityis large
the network getsmore disconnectedmaking the size of the
largestcomponentn the co-graphsmall,aswell asdecreasing
theimportanceof unidirectionalinks with longreverseroutes.

Average Distance Statistics

The graphsin Figuresl1(a)and11(b)displaythe average
lengthof routesin numberof hopsin r-graphdor differentval-
uesof r in P-modelandD-modelat adensityof 50 nodeskm?
Thereis anincreasen the averagedistanceof the bi-graphas
unidirectionallinks are introducedin both the models. The
decreasn the averagedistanceof the P-modelat high proba-
bilities is becaus®f theincreasen numberof connectedom-
ponentgseeFigureb).

In both the models,the averagedistanceof the 2-graphis
lower thanthat of bi-graph. Including the 2-links decreases
theaverageroutelengthby at most1 hop. This is becauséhe
unidirectionallinks canbe usedfor transmissiorwhenthere

NI

90% -

M 4-graph
O 3-graph
— A 2-graph
@ 1-graph

80% -

graph

70%

normalized size of largest component of r-

(o] 40 80 120 160 200 240 280 320
diversity in transmission range (m)

Figure10(b): Averagesizeof the largestconnecteaomponenin
r-graph.D-model,density= 50 nodeskm?
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arereverseroutes,avoiding the establishmenof longerbidi-
rectionalroutes(this would not happerwith blacklistAODV).
However, including r-links with » > 2 doesnot seemto make
ary significantdifferenceto this metric. This is expectedbe-
causeahe contritutionof r-links to the connectity is maginal
for higherr. In the D-model,the averagedistanceof the 2-
graph(and3-graph)canbe seento decreasén generalasthe
diversityincreases.This canbe explainedby the presencef
morelong-reachinghodesasthediversityincreasesThenodes
with greatervaluesof transmissiorradiuscan reachfurther,
therebydecreasinghe averagedistancan the network. How-
ever, thebi-graphis notableto takeadvantageof this.

5 Conclusion

In this paper we performstatisticalanalysisof topologies
representinginidirectionalad hoc networksand quantify the
impactof unidirectionallinks on the connectity of the net-
work.

The statisticalanalysisof thetopologiesgeneratedndicate
thatthe presencef unidirectionallinks couldsignificantlyaf-
fectthe connectwity of the bi-graphandthatmostof the uni-
directionallinks in a randomgraphwould have shortreverse
routes(2-3 hops). Furthermore the connecwity itself is a
heavy tail distribution andcansuddenlychangefrom goodto
worsein real-life dueto mobility. However, by includingonly
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the unidirectionallinks with shortreverseroutes(2-3 hops),
theconnectvity canbe significantlyimproved.

The obsenationsstatedabore also provide good intuition
to the developersof routing protocols. The mostcommonap-
proachto tacklethe presencef unidirectionallinks hasbeen
to detectthem somehav andthenignorethem. Suchan ap-
proachis takenby AODV [5], a popularrouting protocolfor
ad hoc networks. Several methodsto enableAODV to avoid
unidirectionalinks aredescribedn [4]. However, avery high
densityof nodes(300 nodeskm? in [4]) may be requiredto
achieve goodbidirectionalconnectity in thepresencef uni-
directionalinks. OtherprotocolssuchasDSR[3] aredesigned
to route packetsven alongthe unidirectionallinks. However,
they incur the expense®f maintaininglong reverseroutesfor
someof theseunidirectionalinks. Theobsenrationsin this pa-
per suggesthat a more efficient routing protocolwould only
employ unidirectionallinks with short reverseroutes,asin
SRL [8], andonly whenreally requiredto usethem (this dy-
namicSRL schemas thefocusof our currentresearch).

The importantobsenationsfrom the analysisin this paper
providesgoodintuition for the developersanddeployersf ad
hocnetworks.Thetopologiesanalyzedn this papethave been
randomly dravn by changingvarious parametersn a wide
range. Thesetopologiesrepreseninstantaneousnapshot®f
thenetworkandthevariationwith time in the mobile network
canbeapproximatedy a seriesof snapshotsThusthe obser
vationsmadein this paperapplyto awide variety of scenarios
encountereth mobileadhocnetworks.
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