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Abstract

The scheduling of tasks in multiprocessor real-time systems has attracted many researchers
in the recent past. Tasks in these systems have deadlines to be met, and most of the real-
time scheduling algorithms use worst case computation times to schedule these tasks. Many
resources will be left unused if the tasks are dispatched purely based on the schedule produced
by these scheduling algorithms, since most of the tasks will take lesser time to execute than
their respective worst case computation times. Resource reclaiming refers to the problem of
reclaiming the resources left unused by a real-time task when it takes lesser time to execute
than its worst case computation time. Several resource reclaiming algorithms such as Basic,
Early Start and RV algorithms have been proposed in the recent past. But very little atten-
tion is paid in these to the strategy by which the scheduler can better utilize the benefits of
reclaimed resources. In this paper, we propose an estimation strategy which can be used along
with a particular class of resource reclaiming algorithms (like Early Start and RV algorithms)
by which the scheduler can estimate the minimum time by which any scheduled but unexecuted
task will start or finish early, based solely on the start and finish times of tasks that have started
or finished execution. We then propose an approach by which dynamic scheduling strategies,
which append or reschedule new tasks into the schedules, can use this estimation strategy to
achieve better schedulability. Extensive simulation studies are carried out to investigate the
effectiveness of this estimation strategy versus its cost.

1 Introduction

Their capability for high performance and reliability is seeing multiprocessors emerging as a powerful

computing tool for safety-critical real-time applications such as nuclear plant control and avionic

control [1]. The problem of multiprocessor scheduling, which is determining when and where a given

task executes, has attracted considerable research in the past [1-11]. Two classes of scheduling

algorithms have emerged - static and dynamic. In static algorithms, the assignment of tasks to

processors and the time at which the tasks start execution are determined a priori [7, 8]. Static

algorithms are often used to schedule periodic tasks with hard deadlines which are known a priori.

The advantage is that if a solution is found, one can be sure that all deadlines will be guaranteed.
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Figure 1: System Model

However, this approach is not applicable to aperiodic tasks whose arrival times and deadlines are

not known a priori. Scheduling such tasks in a multiprocessor real-time system requires dynamic

scheduling algorithms. In dynamic scheduling, when new tasks arrive, the scheduler dynamically

determines the feasibility of scheduling these new tasks without jeopardizing the guarantees that

have been provided for the previously scheduled tasks [9-11].

In general, for predictable execution which is essential in a real-time system, schedulability

analysis must be done before tasks’ start execution. For schedulability analysis, tasks’ worst case

computation times must be taken into account. A feasible schedule is generated if the timing,

precedence, and resource constraints of all the tasks can be satisfied, i.e., if the schedulability

analysis is successful. Tasks are dispatched according to this feasible schedule.

Dynamic scheduling algorithms can be either distributed or centralized. In a distributed dy-

namic scheduling scheme, tasks arrive independently at each processor. The local scheduler at the

processor determines whether or not it can satisfy the constraints of the incoming task. If so, the

task is accepted, otherwise the local scheduler tries to find another processor to accept the task.

In a centralized scheme, all the tasks arrive at a central processor called the scheduler, from where

they are distributed to other processors in the system for execution. In this paper, we will assume

a centralized scheduling scheme. The communication between the scheduler and the processors is

through dispatch queues (DQs). Each processor has its own dispatch queue. This organization,

shown in Fig 1, ensures that the processors always find some tasks in the dispatch queues when

they finish the execution of their current tasks. The scheduler runs in parallel with the processors,

scheduling the newly arriving tasks, and periodically updating the dispatch queues. The scheduler

has to ensure that the dispatch queues are always filled to their minimum capacity (if there are

tasks left with it) for this parallel operation. This minimum capacity depends on the worst case

time required by the scheduler to reschedule its tasks upon the arrival of a new task [12, 13]. The

schedule constructed by the scheduler is assumed to be stored in a set of schedule queues (or SQs,

one queue per processor), presumably in the scheduler’s memory itself. The dispatch queues are

updated by the scheduler from these schedule queues just before the invocation of the scheduling

algorithm or when they become empty so that the processors can execute tasks in parallel with the

scheduler’s running.
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The worst case computation times, deadlines, and the constraints of the tasks are taken into

account by the scheduler to arrive at a feasible schedule [14]. However, at run time, the actual

time taken by a task to execute may be smaller than its worst case computation time because of

data-dependent loops and conditional statements. Moreover, task deletion could take place when

extra tasks are initially scheduled to account for fault tolerance. When no faults occur, there is

no necessity for these temporally redundant tasks to be executed and hence they can be deleted.

Hence, executing the tasks strictly based on the starting times specified in the feasible schedule leads

to a lot of resources remaining unused. Resource reclaiming is required to utilize the resources1 left

unused by a task when it executes less than its worst case computation time, or when a task is

deleted from the current schedule.

1.1 Motivation and Objectives

Any resource reclaiming algorithm should possess the properties of correctness, bounded complexity,

and effectiveness [13]. The correctness condition ensures that there are no run-time anomalies. Run-

time anomalies are said to occur when a task that is scheduled to meet its deadline in the feasible

schedule misses the deadline during actual execution. The bounded complexity requirement states

that the cost of resource reclaiming should be independent of the number of tasks in the schedule,

so that it can be incorporated into the worst case computation times of the tasks. Effectiveness of a

resource reclaiming algorithm aims at improving the guarantee ratio, which is defined as the ratio of

the number of tasks guaranteed to the number of tasks arrived. The larger the amount of resource

reclaimed by the reclaiming algorithm, the better will be the guarantee ratio (or schedulability of

the system).

The earliest work [13] considered resource reclaiming in multiprocessor real-time systems with

independent tasks having resource constraints. Two algorithms, Basic reclaiming and Early Start

were proposed. [12] presents the RV algorithm which extends the task model presented in [13] to

include precedence constraints among tasks. The resource reclaiming algorithm is run at the end

of a task’s execution. All these algorithms satisfy the bounded complexity requirement. It has

also been shown that the RV algorithm reclaims more resources than the Early Start and Basic

reclaiming algorithms, in that order.

To realize the full use of reclaiming in increasing the schedulability in a dynamic system, the

processors should report the reclaimed resource time to the scheduler. The scheduler should be able

to utilize this time efficiently in achieving a higher schedulability. One approach is to use the holes

(idle processor time intervals in the schedule) created due to reclaiming by immediately scheduling

new tasks into them. However, this involves considerable processor-scheduler communication over-

head and it may not always be possible to find tasks to fill these holes. Another approach reported

in [13] makes sure that the resource time reclaimed simultaneously on all the processors is used by

the scheduler. However, such an occurrence is rare. Also, we can intuitively say that this approach

is a rather pessimistic way of estimation. The paper on the RV algorithm [12] makes no mention

about how processors running the RV algorithm can report reclaimed time to the scheduler. Thus

the gain from the reclaiming algorithms is mostly realized only when the last scheduled task (of a

task set) on a processor actually finishes execution, and the time reclaimed so far is reported to the

scheduler.

In this paper, we present a simple approach to estimate the minimum time by which unexecuted

1resource refers to processor and other system resources.
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events i.e., task start and finish, in a schedule will occur earlier than their scheduled times based on

the time reclaimed on different processors in the executed schedule until that time. This strategy

will be seen to be superior to that in [13]. This strategy can be used with either the Early Start or

RV algorithms. Through this strategy, the scheduler will be able to predict the early finish of tasks

much earlier even before these tasks have been started. The second objective of this paper is to

develop an algorithmic approach by which a class of dynamic scheduling algorithms namely, those

which append their schedules to already guaranteed schedules, like the Spring scheduling algorithm,

can utilize this estimation to achieve better schedulability. Of course, the prime considerations to be

kept in mind while developing any such strategy would be to not violate any of the four properties

of resource reclaiming algorithms and to see whether the cost of the new addition is worth the

increase in schedulability.

The rest of the paper is organized as follows. In the next section, we describe the background:

first the task model we are using, then (informally) the three existing resource reclaiming algorithms.

In section 3, we present our estimation technique and in section 4 the proposed scheduling strategy.

The simulation results and their analysis appear in section 5. Finally, we summarize our work in

section 6.

2 Background

In this section, we first describe the task model we will be using. Then we present an informal

description of the three existing resource reclaiming algorithms.

2.1 Task Model

In the rest of the paper, we shall be using the following task model.

1. Tasks are aperiodic, i.e., task arrival times are not known a priori. Every task Ti has the

attributes: arrival time (ai), worst case computation time (ci), and deadline (di). The ready

time of a task is equal to its arrival time.

2. The actual computation time of a task is denoted as c̄i. This is the actual time taken by the

task to execute at run-time. The difference (ci− c̄i) is due to the execution of data dependent

loops, conditional statements in the task code and architectural features of the system.

3. Tasks may also have resource constraints. The foremost example of a resource that a task

might require is a processor. A task might need some other resources such as data structures,

variables, and communication buffers for its execution. Every task can have two types of

accesses to a resource: (a) exclusive access, in which case, no other task can use the resource

with it or (b) shared access, in which case, it can share the resource with another task (The

other task also should be willing to share the resource). We say that a resource conflict exists

between two tasks Ti and Tj if one of these tasks cannot share the resources it requires, with

the other. This resource conflict between Ti and Tj is denoted as Ti � Tj. If the system has

r resources, the resources required by a given task is an r-tuple ((R1, m1) . . . (Rr, mr)), where

each mi (1 ≤ i ≤ r) is one of EXCLUSIVE, SHARED, and NOT-REQUIRED.
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4. Tasks may have precedence constraints. If there is a precedence relation from task Tj to task

Ti, then Tj has to finish its execution before the beginning of Ti. We denote this precedence

relation from Tj to Ti as Tj ≺ Ti.

5. Tasks are non-preemptable.

6. The multiprocessor system has (m+1) processors of which one processor performs the schedul-

ing and the remaining processors execute the tasks. Each processor runs the resource reclaim-

ing algorithm at the completion of a task on it. The processors communicate through shared

memory.

2.2 Existing Work on Resource Reclaiming

Here we give a brief description of the three algorithms namely Basic, Early Start and the RV

algorithm which are the best known algorithms for the resource reclaiming problem.

2.2.1 Basic Reclaiming Algorithm

The idea behind the Basic reclaiming algorithm is to see at the end of each task’s execution whether

all the processors are idle. If so, the entire rest of the schedule can be moved forward by min(i=1...m){
Scheduled start time of next task on processor pi }−[CurrentT ime] and started early by this value.

This approach has a complexity of O(m) per task finish.

2.2.2 Early Start Algorithm

In this algorithm, whenever a task finishes execution, it checks the dispatch queues of all idle

processors. If the next task Tpi scheduled on a currently idle processor pi is such that all tasks

scheduled to finish before Tpi have already finished execution by now (t = CurrentT ime), Tpi is

started immediately. The motivation here is to avoid passing. Passing is said to occur in a system

when a task Ti starts execution before another task Tj that is scheduled to finish execution before Ti

was originally scheduled to start. It is clear that no passing would mean that no resource/precedence

constraints among the tasks are violated. In other words, the Early Start algorithm avoids passing

and ensures that no two non-overlapping tasks in the pre-run schedule overlap in the post-run

schedule [13]. For example, Fig 2a shows a pre-run schedule for a set of tasks and Fig 2b the

post-run schedule for the same with tasks executing for a time less than the worst case scheduled

time. Fig 2c shows the post-run schedule when the Early Start algorithm is used on the pre-run

schedule of Fig 2a. The Early Start approach has a complexity of O(m2) per task finish. Although

the Basic approach has a complexity of O(m) only, Early Start reclaims more resources than the

Basic approach [13].

2.2.3 Restriction Vector Algorithm

Here, the scheduler builds a restriction vector (RV) for each task Tj that it schedules. The RV is

an m-component vector (m being the number of processors), where each entry RVj(pi) is the last

task scheduled prior to Tj on processor pi which has a resource conflict or precedence relation with

Tj . When a task finishes execution, the processor runs the RV algorithm. It checks the first task

in the DQs (dispatch queues) of all idle processors and starts that task immediately if all the tasks

in its RV have finished execution. The RV algorithm thus is a more refined version of the Early
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Figure 2: (a) Pre-run schedule (b) Post-run schedule without resource reclaiming and (c) Post-run

schedule with Early Start algorithm, for a task set

Start Algorithm as it allows a task Tj to pass a task Tk as long as Tk has no resource/precedence

conflicts with Tj . [12] presents a comparison by simulation of the three algorithms for various system

parameters. Note that the Early Start Algorithm is a special case of the RV algorithm when the

scheduler uses a look-back window of size one while constructing the RVs. The RV algorithm has

a complexity of O(m2) per task finish, which is the same as that of early Start. However, RV is a

more general case of the Early Start approach and therefore reclaims more resources than the Early

Start approach [12].

3 Proposed Estimation in Resource Reclaiming

In this section, we first present an abstracted view of the Early Start and RV algorithms by setting

forth two properties which are common to the way both algorithms work. Following this, we present

our estimation strategy which will use these two properties.

3.1 Properties of the Early Start and RV Algorithms

Property RR1: We assume that the resource reclaiming algorithm runs as follows. (a) For every

scheduled task Ti, there exists an array PTi[1 . . .m] where PTi[j] stands for the last task scheduled

on processor pj that is scheduled to finish execution before Ti can start execution and also has

a resource/precedence conflict with Ti. The aim of the PT arrays is to capture the resource and

precedence constraints among tasks as they are scheduled. For example, for task T2 in figure 2(a),

if T4 has a resource or precedence conflict with it, then PT4[2] = T4, otherwise PT4[2] = T3. (b)

When a task finishes execution on a processor, the processor checks every idle processor pj and

decides whether the next task Ti scheduled on pj can be executed by checking the execution status

of tasks in PTi[1 . . .m]. If all tasks in PTi[1 . . .m] have finished execution (other than this task),

Ti is started immediately.

Note that this implies that the only way a task can start execution is when some other task
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finishes execution and runs the resource reclaiming algorithm. The Early Start and RV algorithms

satisfy the property RR1, but the Basic Algorithm does not. In the Early Start algorithm, PTi[j]

is the immediately preceding non-overlapping task on pi that is scheduled to finish execution before

Ti’s start time. In the RV algorithm, PTi[1 . . .m] is nothing but the RV of Ti. These PT arrays are

constructed in such a way that a resource reclaiming algorithm running according to Property RR1

will not lead to any resource/precedence conflicts and will thus avoid run-time anomalies [12, 13].

In both Early Start2 and RV algorithms, the PT arrays are constructed by the scheduler. Note

that following property RR1 ensures avoidance of runtime anomalies and thus resource/precedence

conflicts.

Property RR2: The finishing of a task Ti, and the starting of the tasks chosen by the resource

reclaiming algorithm run at the end of Ti, occur simultaneously. That is, the time taken by the

resource reclaiming algorithm run by the processor at every task Ti’s end is taken to be a part of

Ti’s computation time itself.

3.2 The Estimation Strategy

Definition 1: A schedule is a set of tasks scheduled in one invocation of the scheduler and put into

the schedule queues at once. For example, Fig 2a is one schedule.

Consider a pre-run schedule, as in Fig 2a, created by the scheduler. This is executed by the

processors with some resource reclaiming algorithm to give a post-run schedule (Fig 2c is the

post-run schedule with Early Start algorithm). The aim of the estimation strategy in a dynamic

scheduling environment is to inform or report to the scheduler, at any time, the minimum amount

by which the rest of the scheduled but unexecuted tasks in a schedule will start/finish early [13].

This is achieved by maintaining a variable Reclaim del which denotes the above said minimum

(predicted) time. The scheduler takes this variable into account while scheduling newly arriving

task sets. Thus the scheduler is more likely to accept tasks with tighter deadlines as the scheduler

assumes that already scheduled tasks are guaranteed to finish at least Reclaim del earlier than they

are scheduled to. The problem here is the strategy involved in updating Reclaim del so that its

definition holds true, i.e., the rest of the tasks in the schedule do finish early by at least Reclaim del.

One way to do this, as described in [13], is for the processors to set Reclaim del, when all

the processors become idle, to the minimum amount by which the next scheduled tasks will start

early. Let us call this the simultaneous approach. When implemented with the Basic Reclaiming

algorithm, this strategy accurately predicts the amount, at any time, by which the rest of the

scheduled but unexecuted tasks will start/finish early. This is because the Basic algorithm moves

the whole schedule forward by this minimum amount when all processors are idle. However, when

this strategy is used with Early Start, Reclaim del does not accumulate a large value as quickly as

the Basic algorithm does in a short time. But in the long run it does reach a larger value than the

Basic algorithm as Early Start is a better reclaiming algorithm [13]. This is illustrated in Table 1

which shows the values of Reclaim del when the pre-run schedule of Fig 2a is run according to

the Basic and Early Start algorithms (second and third rows of table respectively). Note that the

Early Start algorithm ultimately accumulates a greater value of Reclaim del than Basic algorithm

but accumulates it more towards the end. On the other hand, the Basic algorithm may finally

2Early Start algorithm can also be implemented without using PT arrays.
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Time 0 125 150 175 250 275 300 375
Simultaneous time reclaimed on

all processors-Basic algorithm as in [13] 0 0 25 25 25 25 50 50
Simultaneous time reclaimed on

all processors-Early Start algorithm as in [13] 0 0 25 25 25 25 25 125
M(t) = minm

i=1{[Scheduled start/finish time of last seen task
on pi at time t - its actual start/finish time]} 0 0 25 25 50 125 125 125

Table 1: The values of Reclaim del at each task completion using Basic algorithm and Early Start

with and without estimation for the example in Fig 2.

accumulate a lower Reclaim del value but it accumulates it throughout the schedule’s execution.

In our estimation strategy, which follows, we propose a way of maintaining the value of Reclaim del

so that the prediction is much faster than when the simultaneous approach of [13] is used.

Consider a variable M(t) = minm
i=1{[Scheduled start/finish time of last seen task on processor

pi at time t - its actual start/finish time]}. This variable is maintained as follows. An array

M arr[1..m] is used (in global memory). When a task Tj starts or finishes on a processor pi at

time t the processor does two things. First it updates M arr[i] (by pi) to the value of [Scheduled

start/finish time of Tj - actual start/finish time of Tj ]. pi then finds the minimum of {M arr[i] | 1 ≤
i ≤ m} and sets M(t) to this value.

Let us examine the values of M(t) at different times during the execution of the pre-run schedule

in Fig 2a using Early Start algorithm. We observe that M(t) (fourth row of Table 1) increases faster

than the Reclaim del of the simultaneous approach (third row of Table 1) although both finally

reach the same value.

Suppose we could prove formally that after time t, the rest of the scheduled but unexecuted

tasks in the schedule will finish early by at least M(t) (we will do this in Theorem 1). Then, using

M(t) as Reclaim del would be a better prediction strategy than the simultaneous approach as M(t)

would increase much faster. Thus, in a way, we will be incorporating the quickness of predictability

that the simultaneous approach shows when used with the Basic algorithm, into the Early Start

algorithm. Note that M(t) is equal to Reclaim del at all times when the Basic algorithm is used

i.e., this strategy boils down to the simultaneous approach when it is used with the Basic algorithm.

In the rest of the paper, we will be dealing with the application of our estimation strategy to the

Early Start and RV algorithms only, using properties RR1 and RR2. Now we formally prove a

lemma needed for Theorem 1.

Definition 2: sti and fti denote the start and finish times of the task Ti in the feasible schedule

S, whereas, st′i and ft′i denote the actual start and finish times of the task Ti when it executes,

as depicted in the post-run schedule S ′. proc(Ti) denotes the processor on which task Ti has been

scheduled.

Lemma 1.1: The actual start time of any task Tj, st′j = max{ft′l | Tl ∈ PTj [1 . . .m]}.

Proof: By the definition of PT and property RR1, it is clear that st′j ≥ max{ft′l | Tl ∈ PTj[1 . . .m]}.
Let Tk be the last task to finish execution among all the tasks in PTj[1 . . .m]. The resource re-

claiming algorithm run at the end of Tk’s execution will find proc(Tj) to be idle. This is because
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PTj[proc(Tj)], which is actually the task scheduled on proc(Tj) just before Tj , has finished execu-

tion. Also, all other tasks in PTj[1 . . .m] would have finished execution by ft′k. Hence by properties

RR1 and RR2, Tk will start Tj immediately. Thus st′j = ft′k = max{ft′l | Tl ∈ PTj[1 . . .m]}. �

Definition 3: Let S be the schedule of a set of tasks. The set of m processors is said to have totally

started (executing) the schedule S if ∀i, 1 ≤ i ≤ m, pi has started (perhaps finished) the execution

of at least one task belonging to S. When at least one of the processors pi finishes executing all the

tasks of S scheduled on pi, S is said to have ended. When a schedule S has been started by the

system and has not yet ended, we say that it is being executed by the system.

Theorem 1: Consider a set of tasks T scheduled onto m processors as S in such a way that one

or more task is scheduled on each processor, and a resource reclaiming algorithm which guarantees

correctness that is, no run-time anomalies, and satisfies assumptions RR1 and RR2. Let MS(t) =

minm
i=1{[Scheduled start/finish time of last seen task on pi at time t - its actual start/finish time]}

(note that MS(t) = 0 until schedule S starts). If the schedule has totally started (definition 2), the

following holds:

(a) MS(t) is monotonically non-decreasing with t, and

(b) at any time t after the start of schedule S, all unexecuted events of S will occur at least MS(t)

earlier than scheduled as in S.

Proof : Note that MS(t) can be updated only at the beginning or end of a task’s execution. As

we are considering a system with resource reclaiming obeying RR1 and RR2, the only event which

changes the value of MS(t) during the execution of schedule S is the finishing of a task Ti, its

running the resource reclaiming algorithm leading to the (early) start of tasks on some of the idle

processors. These events occur simultaneously by property RR2.

As MS(t) = 0 until S starts, for t = minimum start time of a task of S, (b) is true.

Let the value of MS(t) at some time t during the execution of schedule S be M1. This means

that for processors which are not idle, the tasks currently in execution on them have started at least

M1 earlier than their scheduled start time. These tasks will thus finish at least M1 earlier than

their scheduled finish time because ftj − ft′j ≥ stj − st′j . Thus, from time t, all events on currently

executing tasks will occur at least M1 early.

No task will start execution until one of the currently executing tasks finishes (consequence of

Property RR1). Consider the first task Tk, among the tasks being executed at time t , that might

finish its execution at a later time. As ftk − ft′k ≥ stk − st′k, the update of MS(t) at the end of Tk

can only change its value to some M2 ≥ M1. Also, Tk runs the resource reclaiming algorithm and

chooses a set of tasks from idle processors at that time, for starting immediately. For any such task

Ti chosen to start by Tk, st′i = ft′k and sti ≥ ftk ⇒ sti − st′i ≥ M2. Thus any such task Ti updates

MS(t) to a value M3 ≥ M2.

Thus brings us again to a state in the system where all currently executing tasks have started

at least M1 early (actually M3 early, but anyway M3 ≥ M1) and will thus have all events in them

occurring at least M1 early. As all tasks in S are anyway going to be chosen to start sometime in

the future, we can use the same above argument recursively (or inductively) on all un-started tasks

at time t to say that all events in the system occurring at a time after t will occur at least as early

as MS(t) = M1. Thus (b) is proved.

Also, as the only event that affects MS(t) can only increase it to a higher value (as we have
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shown above: M3 ≥ M2 ≥ M1), MS(t) is monotonically non-decreasing. Thus (a) is proved. �

4 Proposed Scheduling Strategy

Now we seek to answer the question: how a dynamic scheduling algorithm can utilize the reclaimed

time(MS(t)). To see this, we have to examine how dynamic scheduling algorithms work. There

are three broad classes of dynamic scheduling algorithms depending on the manner in which they

schedule newly arriving tasks into the system while not jeopardizing the guarantees of already

scheduled tasks :

1. Algorithms which attempt to fill in holes in the schedule with newly arrived tasks. These

holes might be created due to resource reclaiming.

2. Algorithms which do not fill in holes but try to schedule the new tasks so that they can be

appended to the end of current schedule. The algorithm might

(a) Append: Construct a separate schedule for the newly arrived tasks and then append the

schedule to the schedule queues.

(b) Reschedule: Remove some of the tasks from the schedule end, which have not yet started

execution, reschedule them with the new tasks and then append the schedule to the schedule

queues as in Spring scheduling algorithm [13, 14]

We shall first look at how algorithms of type 2 can be made to utilize MS(t) to achieve better

schedulability.

Broadly, algorithms of type 2 work as follows. When a new set of tasks are to be scheduled,

the scheduler might decide to reschedule some of the already scheduled tasks . It removes some

of the last scheduled-to-finish tasks from the schedule queues (SQs) - by this, we mean that the

scheduler comes from the end of the schedule in the SQs, removing tasks Ti (which have not yet

started execution) for rescheduling according to decreasing sti, until some criteria are satisfied (such

as, maximum number of tasks that can be rescheduled, etc.). The idea behind this is to schedule

the newly arrived tasks earlier if they have tight laxities (and hence deadlines). Also, the scheduler,

being in a real-time system, will have to decide the latest (worst case) time at which it can append

the new schedule to the SQs. At that time (or whenever the scheduler arrives at final schedule

with possible rejection of tasks) the scheduler appends the new schedule to SQs. If it has failed to

schedule any of the new tasks, it leaves the old schedule intact in the SQs. To guarantee that these

tasks will still meet their deadline in the event of a such a failure, the obvious condition that the

scheduler will have to satisfy is:

Assumption Sch1: The scheduled start time of any of the tasks the scheduler chooses to resched-

ule should be later than the worst case time for the scheduler to append the new schedule to the SQs.

Now, with a schedule S in the SQs, how does the scheduler construct a schedule S ′ for a new

set of arriving tasks ? Once some tasks have been removed from the schedule S in the SQs for

rescheduling, the scheduler calculates ProcAvT imeS′[1 . . .m], where ProcAvT imeS′[i] stands for

the scheduled finish time of the last task on processor pi not chosen for rescheduling (the subscript
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S ′ stands for the fact that this information is going to be used in scheduling S ′). Also the scheduler

needs to see the part of the schedule on all processors for time t ≥ min(ProcAvT imeS′[1 . . .m]).

We shall call this the end-jack of the schedule in the SQs. The scheduler can now use these two

parameters to schedule the tasks using an appropriate scheduling heuristic. Some examples of

heuristics are the least-laxity first heuristic and earliest-deadline first heuristic [14].

Definition 4: For a set of tasks T , SchGetT ime(S) and SchPutT ime(S) refer to the start and

end time of the scheduling algorithm which constructs the schedule S for T . The schedule S is thus

appended into the SQs at time t = SchPutT ime(S).

Assume that the set of m processors is executing a schedule S. Now, when a new set of tasks

(includes newly arrived tasks and those that have been chosen for rescheduling) are considered for

scheduling, the scheduler starts an invocation to construct a new schedule S ′. The scheduler can

utilize Theorem 1 by assuming that any unexecuted event (here the only events we are interested

in are task start and end times) in a schedule S supposed to occur at time t′ will occur at least

MS(SchGetT ime(S ′)) earlier. Thus, for example, it can safely assume that the end-jack of the

schedule S will move forward by at least MS(SchGetT ime(S ′)). Thus it will be able to schedule

the new set of tasks that much early and the chances of scheduling the new tasks are more because

of this extra reclaimed time. The PT arrays for tasks in S ′ are also constructed by considering this

offsetting.

Fig 3 shows an example of this. The first schedule S (tasks 1 to 6) is put into the SQs at time

t = 0 (fig 3a). At t = 11, MS(t = 11) = 2 and at this time, a new set of tasks (a-f) arrives (fig 3b).

The scheduler predicts that the last tasks in S , 3 and 6, will both finish early by at least 2 time

units. It thus considers the end-jack to be displaced by MS(t = 11) = 2 time units (right bottom

corner of fig b) and uses this in scheduling the new set of tasks. It is able to utilize the value of

MS(t = 11) = 2 to schedule the new tasks earlier. If for example, the deadline of task a had been

40, then not using the value of MS(t = 11) would have led to its rejection by the scheduler whereas

using it has resulted in its successful scheduling. The final schedule is added to the SQs at t = 19

(fig 3c).

This means that some of the tasks in S ′ may be scheduled to start earlier than the scheduled

finish times of tasks in S(pre-run schedule) with which they have resource/precedence constraints.

There is thus an overlapping of the two schedules. The overlapping of schedules S and S ′ should

not lead to run-time anomalies when S ′ starts execution. In the following theorem, we prove the

important result that if the PT relations are followed by the resource reclaiming algorithm (i.e.,

Property RR1), no run-time anomalies occur during the run-time transition from schedule S to S ′.
Further, we prove that the estimation strategy can be extended to tasks of S ′ also, i.e, tasks of

schedules other than the currently being executed schedule can also be guaranteed to start early by

a value determined from MS(t) and some other parameters.

Assumption Sch2: For any schedule S ′, at time t = SchPutT ime(S ′), the scheduler executes the

resource reclaiming algorithm.

The purpose behind this is that any task Tj in S ′ for which all tasks in PTj[1 . . .m] are in S and

have finished execution by SchPutT ime(S ′), can be started immediately at t = SchPutT ime(S ′).
This will add only an O(m) term to the scheduler’s execution time.
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Figure 3: Example

Theorem 2: Consider a schedule Si currently under execution by the system. We denote MSi
(t)

as Mi(t), SchGetT ime(Si+1) as SchGetT ime(i + 1) and ProcAvT imeSi+1
[j] as ProcAvT imei+1[j].

At t = SchGetT ime(i + 1), let Mold be the value of Mi(t). The scheduler uses this value of Mold

in scheduling Si+1 and in constructing the PT arrays for tasks in Si+1. If we denote the start and

end times of a schedule S as ST (S) and ET (S), respectively and MS(ET (S)) = M ′ , ( ≥ Mold by

Theorem 1), then all events in Si+1 will start early by at least

(a) M ′ − Mold if SchPutT ime(i + 1) ≤ max(ProcAvT imei+1[1 . . .m]) − (M ′ − Mold)

(b) max(ProcAvT imei+1[1 . . .m]) − SchPutT ime(i + 1) if

SchPutT ime(i + 1) > min(ProcAvT imei+1[1 . . .m]) − (M ′ − Mold)

Further, all precedence/resource constraints among the tasks are obeyed and no run-time anoma-

lies occur.

Proof: We first make the following observations.

1. No tasks of Si+1 can start execution on any processor until schedule Si ends - this means that

just before the first task of Si+1 starts execution, we can state that all tasks of Si will finish

at least M ′ earlier than their scheduled finish times (by Theorem 1).

2. For any task Ti in Si+1, st′i = max{SchPutT ime(i + 1), max{ft′j | Tj ∈ PTj[1 . . .m]}}.
3. There is at least one task Tj ∈ Si+1 such that PTj[1 . . .m] ∩ Si+1 = φ; this is the task with

the least scheduled start time in Si+1.

4. The resource reclaiming algorithm run by the scheduler at t = SchPutT ime(i + 1) does not

cause any PT relations to be violated.

(a) The first set of tasks chosen (by the resource reclaiming algorithm run at the end of a task of

Si) to start from Si+1 will be tasks Tj of the type {Tj | PTj [1 . . .m] ∪ Si+1 = φ}. As the tasks in

PTj[1 . . .m] will finish at least M ′ earlier than their scheduled finish time (Theorem 1) and Mold of

this M ′ has been taken into account in the scheduling of Tj , from (1) and (2) the first set of tasks

chosen to start from Si+1 will start at least M ′ −Mold earlier than their scheduled start time. This
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argument can be easily extended to all tasks Tk in Si+1 as all tasks in PTk[1 . . .m] will finish at

least M ′ − Mold earlier than their scheduled finish times. Hence (a) is proved.

(b) SchPutT ime(i + 1) > min(ProcAvT imei+1[1 . . .m]) − (M ′ − Mold) implies that some task(s)

of Si+1 may start before SchPutT ime(i + 1) (consider a task with start time scheduled as

min(ProcAvT imei+1)), which is not possible. The difference from (a) is that the schedule Si+1 is

put into the SQs later than the predicted start time of some of the tasks in it.

Notice first that SchPutT ime(i+1) > min(ProcAvT imei+1[1 . . .m])− (M ′ −Mold) means that

Si has ended before t = SchPutT ime(i + 1). For all Tj ∈ Si+1, stj ≥ min(ProcAvT imei+1[1 . . .m].

If there is any task Tj ∈ Si+1 such that PTj[1 . . .m] ∪ Si+1 = φ and all tasks in PTj[1 . . .m] have

finished execution by t = SchPutT ime(i + 1), the resource reclaiming algorithm will start such

a task at t = SchPutT ime(i + 1). As stj ≥ min(ProcAvT imei+1[1 . . .m]), Tj will start at least

min(ProcAvT imei+1[1 . . .m]) − SchPutT ime(i + 1) earlier than

stj(i.e., stj − st′j ≤ min(ProcAvT imei+1[1 . . .m]) − SchPutT ime(i + 1).

Extending this argument to all tasks in Si+1 (as all tasks in Si will finish at least M ′ earlier than

their scheduled start time and M ′−Mold < min(ProcAvT imei+1[1 . . .m])−SchPutT ime(i+1)), we

can say that all events in Si+1 will occur at least min(ProcAvT imei+1[1 . . .m])−SchPutT ime(i+1)

earlier than their scheduled times.

If the resource reclaiming algorithm run by the scheduler at t = SchPutT ime(i + 1) does

not start any task of Si+1, then applying the same argument as (a), we can say that all tasks

in Si+1 will start at least M ′ − Mold earlier than their scheduled start times. As M ′ − Mold >

min(ProcAvT imei+1[1 . . .m]) − SchPutT ime(i + 1), all events in Si+1 will occur at least

min(ProcAvT imei+1[1 . . .m]) − SchPutT ime(i + 1) earlier than their scheduled times.

Note that as we have maintained the correctness of the PT relations constructed by the sched-

uler, all tasks execute correctly i.e., no precedence/resource constraints are violated. �

We thus see that the estimation can be extended to two schedules in the SQs without jeopardizing

the PT relations. Consider again the example of Fig 3. At any time t ≤ SchGetT ime(S ′) = 11,

from Theorem 1, we can say that all unexecuted events in the SQs will occur at least MS(t) earlier

than their scheduled times. At any time t > 11 we can say from Theorem 1 that all unexecuted

events of S are guaranteed to occur at least MS(t) early, and from Theorem 2 that all unexecuted

events of S ′ are guaranteed to occur early by at least

min(MS(ET (S)) − MS(SchGetT ime(S ′)), max(ProcAvT imeS[1..m] − SchPutT ime(S ′))

Thus, a dynamic scheduling algorithm using the append/reschedule approach can utilize the

’minimum’ heuristic (Theorem 1) to schedule a set of tasks earlier.

However, in the general case, we may have the SQs of the system containing a series of task

schedules Sp..SM (Sp being the one currently under execution). The strategy presented so far

has to be extended to take care of complications such as a number of schedules being totally

removed for rescheduling along with a newly arriving set if tasks and predicting the early finish

of tasks in all schedules Sp..SM . The approach used is similar to the one suggested in [13]. We

present a simplified version of the strategy here. A variable M(t) is maintained, denoting the
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minimum early start/finish time of unexecuted tasks of the last schedule added to the SQs (here

SM). At the SchPutT ime of the next new task set (SM+1), M(t) has to be updated using an

expression similar to equation (1). This is because a part of M(t) has already been taken into

accounting the scheduling of SM+1. For example, in Fig 3, the values of M(t) at different times are

as follows:M(t = 0) = 0; M(t = 11) = 2; M(t = 19) = 7 − 2 = 5. Note that at t = 19, 5 reflects

the minimum predicted execution of events of S ′. Further, an array OldReclaim dels[MAX] is

maintained where OldReclaim dels[j] is set to the value of M(SchGetT ime(j)). Then it can be

proved that at any time t, we can predict that all unexecuted events in schedule Sj (p ≤ j ≤ M)

will occur at least
∑M

k=j+1 OldReclaim dels[k] + M(t) earlier than they are scheduled to. Thus the

scheduler can predict the early execution of events in any of the schedules Sp..SM .

How can an algorithm that uses resource reclaiming by filling holes in the schedule (i.e., algo-

rithms of type 1) utilize this strategy ? Such algorithms can benefit from Theorem 1 by being able

to schedule the new tasks into holes which need not necessarily be visible in the schedule. It could

schedule new tasks to start at a later time in the schedule by using the estimation. For example, in

Fig 2c, if a task arrived T8 at t = 250, the scheduler could schedule it on p2 at t = 250 or t = 425

(when T7 would have finished, according to the estimation), or on p1 at t = 325 (when T2 would have

finished or t = 450 (when T6 would have finished) or later, depending on the task characteristics

and in such a way as to not violate the guarantees of already scheduled tasks.

4.1 Added Complexity of Estimation

At the end of a task Tj’s execution on processor pi, it updates M arr[i] (this takes O(1)), then

sets M(t) to the minimum among M arr[1] . . .M arr[m] (this takes O(m) time). Thus the added

complexity of the Estimation approach is O(m) per task finish. As Early Start and RV both run in

time O(m2) per task finish, adding Estimation to them does not increase their complexity. Main-

taining OldRelcaimdels[k] takes time O(1) per scheduler invocation - this does not add any extra

complexity as long as at least one task is scheduled (or rescheduled) per scheduler invocation. The

Estimation approach thus does not increase the complexity of the resource reclaiming algorithms.

5 Simulation Studies

To evaluate the effectiveness of the proposed reclaiming estimation on the schedulability of a system

already using resource reclaiming, we conducted extensive simulation studies. In these simulation

studies, we study the effect of the estimation, when used with a resource reclaiming algorithm (either

Early Start or RV), on the schedulability of a dynamic multiprocessor system. In other words, we

compared the schedulability of the system when it used just the resource reclaiming algorithm

with its schedulability when it used the estimation strategy in addition to the resource reclaiming

algorithm. We decided to use the RV algorithm as the Early Start algorithm is a special case of it (as

explained in section 2.2.3). As such, the relative trends seen in our simulation results between the

RV algorithm with estimation and without estimation, can be expected to be similar to the trends

between Early Start algorithm with and without estimation. The dynamic scheduling algorithm

was the Spring scheduling algorithm [13, 14], which is a rescheduling algorithm, with an integrated

heuristic that takes deadline and resource and precedence constraints of a task into account. The

simulation parameters used in these studies are shown in Table 2. The values indicated for the

parameters in the table are used in all the following graphs unless otherwise stated.
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In order to ensure a wide applicability of the experimental results, in our simulation studies, we

varied the task and system parameters to a wide range values instead of choosing them based on

particular applications and/or architecture(s). Our experiments might have been more meaning-

ful if application-dependent parameters (e.g., task deadline) were not linked to system-dependent

parameters (e.g., task computation time). However, such a study would also have the drawback

of having limited scope i.e., applicability only to a specific class of applications implemented on a

given system architecture.

The tasks were generated using the above parameters as follows.

• The worst case computation time (ci) of a task (Ti) is chosen uniformly between MinComp-

Time and MaxCompTime. The cost due to reclaiming = (RecCost × NumProcs) is added

to ci. The cost of estimation, when used, is added as (RDelCost × NumProcs) to this.

• The actual execution time (c̄i) of a task at run-time is determined using a multiplicative factor

aw-ratio (actual to worst case computation ratio) on ci. aw-ratio is chosen uniformly between

min-aw-ratio and max-aw-ratio.

• The deadlines of the tasks are chosen using a laxity chosen uniformly between min-laxity and

max-laxity. The deadline of Ti is chosen as (laxity×Maxtask×MaxCompTime+MinCompTime
2

+ai)

• The resource requirements of Ti are determined by UseP and ShareP.

• The precedence constraints among the tasks arriving at the scheduler at a time are chosen

based on a parameter P which is = number of precedence links in the task graph
number of tasks in the precedence graph .

• An average of 10 tasks arrive at the scheduler. The average inter-arrival time of these task

sets is TaskFreq with Poisson distribution with λ = 1/TaskFreq.

• NumProcs is the number of processors. K, the window lookahead in the Spring scheduling

algorithm is chosen to be 4.

The performance metric used is the guarantee ratio which defined as the ratio of number of tasks

found schedulable by an algorithm to the number of tasks considered for scheduling. The simulation

considers dynamic task arrival only. Pre-run tasks are not considered. As a result, the guarantee

ratio refers to the acceptance ratio for dynamically arriving tasks. Each point in the performance

curves (fig 4) is the average of several simulation runs each with 1000 tasks with a 95% confidence

level. In Figs 4, ’RV-EST’ and ’RV-NO-EST’ stand for RV resource reclaiming with estimation and

without estimation, respectively.

In all the curves, in general, RV-EST gives a higher schedulability than RV-NO-EST. This is

because the former is able to predict or estimate the reclaimed time much earlier and is thus able

to aid the scheduler in accepting more tasks.

Fig 4a shows the effect of varying NumProcs in the system from 2 to 10. As the number of

processors rises, both approaches show an increasing guarantee ratio, which saturates and then

begins to decline slowly. The rise is a result of more resources (processors) being available for

scheduling. The saturation is the point where the laxity restricts the schedulability of the tasks and

no increase in the number of processors has any effect on the schedulability. The slow decline is due

to the reclaiming cost increasing with the number of processors and an added estimation cost in the

case of the estimation algorithm. For the system parameters chosen, as NumProcs rises, the gap
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Parameter Explanation Values used

wcc max Task’s maximum worst case computation time 50
wcc min Task’s minimum worst case computation time 30

task graph density (P ) (number of links in task graph)/(number of tasks) 0.85
a value of 0.0 indicates independent tasks.

UseP Probability of a task using a given resource 0.5
ShareP Probability of a task using a given resource in SHARED mode 0.5
RecCost Cost of RV algorithm per processor 1.0
RDelCost Cost of estimation per processor 1.0
max laxity Maximum laxity 1.5
min laxity Minimum laxity 1.3

max aw ratio Maximum actual to worst case computation ratio 0.65
min aw ratio Minimum actual to worst case computation ratio 0.60
NumProcs Number of processors 6
TaskFreq Average period of a task arrival at scheduler 225

Table 2: Simulation Parameters

between RV-NO-EST and RV-EST narrows and above some value of NumProcs, RV-EST performs

worse than RV-NO-EST as the cost of estimation becomes high. However, note that this occurs in

a region where the performance of the reclaiming algorithm (RV-NO-EST) itself is declining. In an

actual real-time system running in such a region, the option of reclaiming itself is not likely to be

used because of the high cost.

Fig 4b shows the effect of varying the average TaskFreq from 75 to 475. At high task arrival rates

(TaskFreq = 0 to 100), RV-EST performs as bad as RV-NO-EST as the tasks arrive too quickly

for the reclaimed time to be useful. As TaskFreq rises, RV-EST starts performing better than RV-

NO-EST. But at low arrival rates (TaskFreq ≥ 350), the low load allows the scheduler to schedule

almost all the arriving tasks and the reclaimed time does not add anything to the schedulability,

thus resulting in RV-NO-EST coming up to perform as well as RV-EST.

Fig 4c shows the effect of varying the average wcc-min in the system from 5 to 30. wcc-max is

always chosen to be 50. Both algorithms show a declining guarantee ratio as the wcc-min goes up

with RV-NO-EST performing progressively worse than RV-EST. This is because the laxity of tasks

becomes tighter as wcc min increases. Fig 4d shows the effect of varying the average min aw ratio

in the system from 0.3 to 0.9. max-aw-ratio is always chosen to be 0.05 more than min aw ratio.

Both algorithms show a declining guarantee ratio as the aw ratio goes up. This is obviously because

the reclaimable time decreases as aw ratio increases increasing run-time load.

Fig 4e shows the effect of varying the average laxity from 0.5 to 1.9. The min laxity and

max laxity values varied keeping max laxity = min laxity + 0.2. The laxity values shown on

the graph is the average of min laxity and max laxity at that point. At low values of laxity, RV-

NO-EST performs as well as RV-EST because the low deadline (tight laxity) of tasks causes the

scheduler to reject most of the tasks. There is no effect of the reclaimed time on the schedulability.

However, as laxity rises, RV-EST starts performing better than RV-NO-EST. Both algorithms show

an increasing guarantee ratio as laxity rises, which then saturates. The rise is a result of increasing

task deadlines. The saturation is the point where the resource constraints restrict the schedulability

of the tasks.
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Fig 4f shows the effect of varying UseP from 0.0 to 1.0. The value of ShareP is fixed. Both RV-

EST and RV-NO-EST show a declining guarantee ratio with UseP’s rise because of the increasing

resource constraints. Fig 4g shows the effect of increasing the precedence constraints on the tasks.

A value of 0 stands for tasks without precedence constraints. A higher value of Graph density

indicates more precedence relations among the tasks. For this experiment, TaskFreq is set to 125.

Throughout this experiment, the same task load is maintained on the system. Only the precedence

constraints among arriving tasks are increased. As the graph density increases, the performance

of both RV-EST and RV-NO-EST fall but RV-EST stays above RV-NO-EST. This shows that all

the above results (graphs a-f) will hold at whatever the extent of precedence constraints among the

tasks.

6 Conclusions

Many real-time multiprocessor systems use resource reclaiming algorithms to utilize resources left

unused by a task when it finishes early or when it is deleted from a fault-tolerant schedule due

to fault-free operation. The Basic, Early Start, and RV algorithms are the best known algorithms

to the resource reclaiming problem. However, there is a lack of efficient approaches to report this

reclaimed time to the scheduler well in advance so that the scheduler can use this (reclaimed) time

for efficient scheduling of newly arriving tasks. In this paper, we have proposed an estimation

strategy which can be used along with a particular class of resource reclaiming algorithms (like

Early Start and RV algorithms) by which the scheduler can estimate the minimum time by which

any scheduled but unexecuted task will start or finish early, based solely on the start and finish

times of tasks that have started or finished execution. We then proposed an approach by which

dynamic scheduling strategies, which append or reschedule new tasks into the schedules, can use

this estimation strategy to achieve better schedulability. We have also shown that the proposed

estimation and scheduling lead to schedule (and hence task) executions that are correct i.e., never

result in run-time anomalies. Our simulation studies reveal that the proposed strategies significantly

improve the schedulability of the system for a wide range of task and system parameters.
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