
76 April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

An innovative system offering

application developers an extensively

flexible group communication model

is described.

The emergence of process-group environ-
ments for distributed computing repre-
sents a promising step toward robustness
for mission-critical distributed applica-

tions. Process groups have a “natural’’ correspon-
dence with data or services that have been
replicated for availability or as part of a coherent
cache. They can be used to support highly available
security domains, and group mechanisms fit well
with an emerging generation of intelligent network
and collaborative work applications.

Yet there is little agreement concerning how
process groups should look or behave. The require-
ments that applications place on a group infrastruc-
ture can vary tremendously, and there may be
fundamental trade-offs between semantics and per-
formance. Even the most appropriate way to present
the group abstraction to the application depends on
the setting.

This article reports on the Horus system, which
provides an unusually flexible group communica-
tion model to application developers. This flexibili-
ty extends to system interfaces, the properties
provided by a protocol stack, and even the configu-
ration of Horus itself, which can run in user space,

Horus: A Flexible Group
Communication System

GroupCommunication
Robbert van Renesse, Kenneth P. Birman,

and Silvano Maffeis

in an operating system kernel or microkernel, or be
split between them.

Horus can be used through any of several appli-
cation interfaces. These include toolkit-styled inter-
faces, but also interfaces that hide group
functionality behind Unix communication system
calls and the Tcl/Tk programming language. The
intent is to slide Horus beneath an existing system
as transparently as possible, for example, to intro-
duce fault-tolerance or security without requir-
ing substantial changes to the system being hard-
ened [3].

Horus provides efficient support for the virtually
synchronous execution model. This model was intro-
duced by the Isis Toolkit [2], and has been adopted
with some changes by such systems as Transis [1],
Psync [10], Trans/Total [8], RMP [19], and Ram-
part [14]. The model is based on group membership
and communication primitives, and can support a
variety of fault-tolerant tools, such as for load-bal-
anced request execution, fault-tolerant computation,
coherently replicated data, and security.

Although often desirable, properties like virtual
synchrony may sometimes be unwanted, introduce
unnecessary overheads, or conflict with other objec-
tives, such as real-time guarantees. Moreover, the
optimal implementation of a desired group commu-
nication property sometimes depends on the run-
time environment. In an insecure environment, one
might accept the overhead of data encryption, but
wish to avoid this cost when running inside a fire-
wall. On a platform like the IBM SP2, which has reli-
able message transmission, protocols for message
retransmission would be superfluous.

Accordingly, Horus provides an architecture
whereby the protocol supporting a group can be
varied, at runtime, to match the specific require-
ments of its application and environment. It does
this using a structured framework for protocol com-
position, which incorporates ideas from such sys-
tems as the Unix “streams’’ framework [15] and the
x-kernel [11], but replaces point-to-point communi-
cation with group communication as the funda-
mental abstraction. In Horus, group
communication support is provided by stacking pro-
tocol modules that have a uniform interface, within
which each module has a separate responsibility. A
process group can be optimized by dynamically
including or excluding particular modules from its
protocol stack.

Horus also innovates by introducing run-time
configuration, group communication interfaces, full
thread-safety, and supporting messages that may
span multiple address spaces. Since Horus does not
provide general-purpose control operations, and
has one single address format, protocol layers can
be mixed and matched freely. In both streams and
the x-kernel, the different protocol modules supply
many different control operations, and design their
own address format, both severely limiting such con-
figuration flexibility

1
(see also [4]).

A Layered Process Group Architecture
We find it useful to think of Horus’s central protocol
abstraction as resembling a Lego block; the Horus
system is thus like a “box’’ of Lego blocks. Each type
of block implements a microprotocol that provides a
different communication feature. To promote the
combination of these blocks into macroprotocols
with desired properties, the blocks have standardized
top and bottom interfaces that allow them to be
stacked on top of each other at run time in a variety
of ways (see Figure 1). Obviously, not every sort of
protocol block makes sense above or below every
other sort. But the conceptual value of the architec-
ture is that where it makes sense to create a new pro-
tocol by restacking existing blocks in a new way,
doing so is straightforward [18].

Technically, each Horus protocol block is a soft-
ware module with a set of entry points for downcall
and upcall procedures. For example, there is a down-
call to send a message, and an upcall to receive a
message. Each layer is identified by an ASCII name
and registers its upcall and downcall-handlers at ini-
tialization time. There is a strong similarity between
Horus protocol blocks and object classes in an
object-oriented inheritance scheme, and readers
may wish to think of protocol blocks as members of
a class hierarchy.

To see how this works, consider the Horus
message_send operation. It looks up the message send

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 77

MBRSHIP

Application Programmer Interface

Application (group)

TOTAL

FC

FRAG

NAK

COM

PARCLD

CRYPT

STABLE

Figure 1. Group protocol layers can be
stacked at run time like Lego blocks and support
applications through one of several application
programming interfaces

1We note that a follow-on to the x-kernel project, called Consul [9], has over-
come some of these disadvantages by supporting sophisticated micro-proto-
cols between protocol modules and providing extra support for group
communication.

entry in the topmost block and invokes that function.
This function may add a header to the message and
will then typically invoke message_send again. This
time, control passes to the message send function in
the layer below it. This repeats itself recursively until
the bottommost block is reached and invokes a driver
to actually send the message.

The specific layers currently supported by Horus
solve such problems as interfacing the system to var-
ied communication transport mechanisms, over-
coming lost packets, encryption and decryption,
maintaining group membership, helping a process
that joins a group to obtain the state of the group,
merging a group that has partitioned, flow
control, etc., (see the sidebar “The Horus
Microprotocols”). Horus also includes tools
to assist in the development and debugging
of new layers.

Each stack of blocks is carefully shielded
from other stacks. It has its own prioritized
threads and has controlled access to avail-
able memory through a mechanism called
memory channels (see Figure 2). Horus has
a memory scheduler that dynamically
assigns the rate at which each stack can
allocate memory, depending on availa-
bility and priority, so that no stack can
monopolize the available memory. This is
particularly important inside a kernel or if
one of the stacks has soft real-time require-
ments.

Besides threads and memory channels, each stack
deals with three other types of objects: endpoints,
groups, and messages. The endpoint object models the
communicating entity. Depending on the applica-
tion, it may correspond to a machine, a process, a
thread, a socket, a port, and so on. An endpoint has
an address, and can send and receive messages. How-
ever, as we will see later, messages are not addressed
to endpoints, but to groups. The endpoint address is
used for membership purposes.

A group object is used to maintain the local proto-
col state on an endpoint. Associated with each group
object is the group address to which messages are sent,
and a view: a list of destination endpoint addresses
that are believed to be accessible group members.
Since a group object is purely local, Horus technical-
ly allows different endpoints to have different views of
the same group. An endpoint may have multiple
group objects, allowing it to communicate with dif-
ferent groups and views. A user can install new views
when processes crash or recover and can use one of
several membership protocols to reach some form of
agreement on views between multiple group objects
in the same group.

The message object is a local storage structure. Its
interface includes operations to push and pop pro-
tocol headers. Messages are passed from layer to
layer by passing a pointer and never need to be
copied.

A thread at the bottommost layer waits for mes-
sages arriving on the network interface. When a
message arrives, the bottommost layer (typically
COM) pops off its header and passes the message on
to the layer above it. This repeats itself recursively. If
necessary, a layer may drop a message or buffer it for
delayed delivery. When multiple messages arrive
simultaneously, it may be important to enforce an
order on the delivery of the messages. However,

78 April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

The Horus Microprotocols

H
orus provides a large collection of

microprotocols. Some of the most

important ones are:

COM: The COM layer provides the Horus group interface

to such low-level protocols as IP, UDP, and some ATM

interfaces.

NAK: This layer implements a negative-acknowledgment-

based-message-retransmission protocol.

CYCLE: Multimedia message dissemination.

PARCLD: Hierarchical message dissemination.

FRAG: Fragmentation/reassembly.

MBRSHIP: This layer provides each member with a list of

endpoints believed to be accessible. It runs a consensus

protocol to provide its users with a virtually synchronous

execution model.

FC: Flow control.

TOTAL: Totally ordered message delivery.

STABLE: This layer detects when a message has been

delivered to all destination endpoints and can be

garbage collected.

CRYPT: Encryption/decryption.

MERGE: Location and merging of multiple group

instances.

PARCLD

TOTAL

FC

MBRSHIP

FRAG

NAK

COM

MBRSHIP

FRAG

NAK

TOTAL

thread
scheduler

memory
scheduler

MERGE

COM

COM

FRAG

NAK

NAK

COM

FRAG

MBRSHIP

Figure 2. The Horus stacks are shielded from
each other and have their own threads and memo-
ry, each of which is provided through a scheduler

since each message is delivered using its
own thread, this ordering may be lost
depending on the scheduling policies
used by the thread scheduler. Therefore,
Horus numbers the messages and uses
event count synchronization variables [12]
to reconstruct the order where necessary.

Protocol Stacks
The microprotocol architecture of Horus would not
be of great value unless the various classes of process
group protocols that we might wish to support: per-
form well; share significant functionality; and can be
simplified by being expressed as stacks of layers. Our
experience in this regard has been very positive
[18].

For example, the stacks shown in Figure 2 all
implement virtually synchronous process groups. The
left-most stack provides totally ordered, flow-con-
trolled communication over the group membership
abstraction. The layers FRAG, NAK, and COM
respectively break large messages into smaller ones,
overcome packet loss using negative acknowledg-
ments, and interface Horus to the underlying trans-
port protocols. The adjacent stack is similar, but
provides weaker ordering and includes a layer that
supports “state transfer’’ to a process joining a group
or when groups merge after a network partition. To
the right is a stack that supports scaling through a
hierarchical structure in which each “parent” process
is responsible for a set of “child’’ processes. The dual

stack illustrated in this case represents a feature
whereby a message can be routed down one of sever-
al stacks, depending on the type of processing
required. Additional protocol blocks provide such
functionality as data encryption, packing small mes-
sages for efficient communication, and isochronous
communication (useful in multimedia systems).

For Horus layers to fit like Lego blocks, they each
must provide the same downcall and upcall interfaces.
A lesson learned from the x-kernel [11] is that if the
interface is not rich enough, extensive use will be
made of general-purpose control operations (similar
to ioctl), which reduces configuration flexibility. (Since
the control operations are unique to a layer, the Lego
blocks would not “fit’’ as easily.) The Horus Common
Protocol Interface (HCPI) therefore provides an exten-
sive interface that supports all common operations in
group communication systems, going beyond the func-
tionality of earlier layered systems, such as the x-kernel.
Furthermore, the HCPI is designed for multiprocess-
ing and is completely asynchronous and reentrant.

Broadly, the HCPI interfaces fall into
two categories. Those in the first group
are concerned with sending and receiving
messages and with the stability of mes-
sages.2 The second category of Horus
operations is concerned with member-
ship. In the down direction, it lets an
application or layer control the group
membership used by layers below it.

As upcalls, these report membership changes, com-
munication problems, and other related events to
the application.

While supporting the same HCPI, each Horus layer
runs a different protocol, each implementing a differ-
ent property. Although Horus allows layers to be
stacked in any order (and even multiple times), most
layers require certain semantics from layers below
them, imposing a partial order on the stacking. These
constraints have been tabulated. Given information
about the properties of the network transport service
and the properties provided by the application, it is
often possible to automatically generate the minimal
protocol stack that achieves a desired property [18].

Layered protocol architectures sometimes perform
poorly. Traditional layered systems impose an order
by which protocols process messages, limiting oppor-
tunities for optimization and imposing excessive over-
head. Clark and Tennenhouse have suggested that
the key to good performance rests in Integrated Layer
Processing (ILP) [4]. Systems based on the ILP princi-
ple avoid inter-layer ordering constraints and can per-

form as well as monolithically structured systems.
Horus is consistent with ILP; there are no intrinsic
ordering constraints on processing, so unnecessary
synchronization delays are avoided.

Using Horus to Build a
Robust Groupware Application
We have commented that Horus can be hidden
behind standard application programming interfaces.
A good illustration of how this is done arose when we
interfaced the Tcl/Tk graphical programming lan-
guage to Horus. A challenge posed by running systems
like Horus side by side with a package like X-windows
or Tcl/Tk is that such packages are rarely designed
with threads or group communication in mind. To

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 79

GroupCommunication

2It is common to say that a message is stable when processing has completed
and associated information can be garbage collected. Horus standardizes
the handling of stability information but leaves the actual semantics of sta-
bility to the user. Thus, an application for which stability means “logged to
disk’’ can share this Horus functionality with an application for which sta-
bility means “displayed on the screen.’’

While supporting the same Horus Common Protocol Interface,
each Horus layer runs a different protocol, each

implementing a different property.

avoid a complex integration task, we therefore chose
to run Tcl/Tk as a separate thread in an address space
shared with Horus. Horus intercepts certain system
calls issued by Tcl/Tk (see Figure 3), such as the Unix
open and socket system calls. We call this mechanism an
intercept proxy. The proxy redirects the system calls,
invoking Horus functions that create Horus process
groups and register appropriate protocol stacks at
run time. Subsequent I/O operations on these group
I/O sockets are mapped to Horus communication
functions.

To make Horus accessible within Tcl applica-
tions, two new functions were registered with the Tcl
interpreter. One creates endpoint
objects, and the other creates group
addresses. The endpoint object itself can
create a group object using a group
address. Group objects are used to send
and receive messages. Received messages
result in calls to Tcl code, which typically
interpret the message as a Tcl command.
This yields a powerful framework; a dis-
tributed, fault-tolerant, whiteboard appli-
cation can be built using only eight short
lines of Tcl code over a Horus stack of
seven protocols.

To validate our approach, we ported a
sophisticated Tcl/Tk application to
Horus. The Continuous Media Toolkit
(CMT) [16] is a Tcl/Tk extension that
provides objects that read or output audio
and video data. These objects can be
linked together in pipelines and are syn-
chronized by a logical timestamp object.
This object may be set to run slower or
faster than the real clock or even back-
ward. This allows stop, slow motion, fast

forward, and rewind functions to be implemented.
Architecturally, CMT consists of a multimedia

server process that provides video and audio. We
decided to replicate the server using a primary-back-
up approach where the backup servers stand by to
back up failed or slow primaries.

The original CMT implementation depends on
extensions to Tcl/Tk. These implement a
master/slave relationship between the machines, pro-
vide for a form of logical timestamp synchronization
between them, and support a real-time communica-
tion protocol called Cyclic UDP. The Cyclic UDP
implementation consists of two halves: a source
object that accepts multimedia data from
another CMT object (see Figure 4a); and a sink
object that produces multimedia data and passes it on
to another CMT object. The resulting system is dis-
tributed but intolerant of failures and does not allow
for multicast.

Using Horus, it was simple to extend CMT with
fault-tolerance and multicast capabilities. Five Horus
stacks were required. One of these is hidden from the
application and implements a clock synchronization
protocol [5]. It uses a Horus layer called MERGE to
ensure that the different machines will find each
other automatically (even after network partitions)
and employs the virtual synchrony property to rank
the processes, assigning the lowest-ranked machine

80 April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

TOTAL

FC

MBRSHIP

FRAG

NAK

COM

MBRSHIP

FRAG

NAK

TOTAL

MERGE

COM

COM

PARCLD

FRAG

NAK

NAK

COM

FRAG

MBRSHIP

Tcl/Tk

X-Library

Horus Intercept Proxy Horus Intercept Proxy

Shared debugger

Horus Socket Library

Unix Kernel

V R Fi 3

Figure 3. Unix system calls can be intercepted by
Horus using intercept proxies. These allow the
implementation of new socket domains in
user space, and permit us to link thread-unsafe
applications with the Horus system.

MPEG
SOURCE
OBJECT

MPEG
PRIORITIZER

OBJECT

SRC
HALF

OBJECT

DEST
HALF

OBJECT

MPEG
SINK

OBJECT

LTS SLAVELOGICAL
TIMESTAMP

TCP CONNECTION

UDP CONNECTION

MPEG
SOURCE
OBJECT

MPEG
PRIORITIZER

OBJECT

SRC
HALF

OBJECT

MPEG
SOURCE
OBJECT

MPEG
PRIORITIZER

OBJECT

SRC
HALF

OBJECT

SRC
HALF

OBJECT

SRC
HALF

OBJECT

SRC
HALF

OBJECT

MPEG
SINK

OBJECT

MPEG
SINK

OBJECT

MPEG
SINK

OBJECT

(Replicated Video Servers)

FIVE SUPER-IMPOSED HORUS GROUPS

(Client Workstations)

USES HORUS SYNCHRONIZED-CLOCK
FOR LOGICAL TIMESTAMP

AFTER HORUS

BEFORE HORUS
CONTINUOUS MEDIA TOOLKIT:

(a)

(b)

Figure 4. This figure shows an example of a video
service implemented using the Continuous Media
Toolkit. MPEG is a video compression standard. In (a),
a standard, fault-intolerant set-up is depicted. In (b),
Horus was used to implement a fault-tolerant ver-
sion that is also able to multicast to a set of clients.

to maintain a master clock on behalf of
the others. The second stack synchronizes
the speeds and offsets with respect to real-
time of the logical timestamp objects. To
keep these values consistent, it is neces-
sary that they be updated in the same
order. Therefore, this stack is similar to
the previous one, but includes a Horus
protocol block that places a total order on
multicast messages delivered within the group.3 The
third tracks the list of servers and clients. Using a
deterministic rule based on the process ranking
maintained by the virtual synchrony layer, one server
decides to multicast the video, and one server, usual-
ly the same, decides to multicast the audio. This setup
is shown in Figure 4b.

To disseminate the multimedia data, we used two
identical stacks, one for audio and one for video.
The key component in these is a protocol block that
implements a multimedia generalization of the
Cyclic UDP protocol. The algorithm is similar to
FRAG, but will reassemble messages that arrive out
of order and drop messages with missing fragments
(e.g., Application-Level Framing [4, 17]).

One might expect that a huge amount of recod-
ing would have been required to accomplish these
changes. However, all of the necessary work was
completed using 42 lines of Tcl code. An additional
160 lines of C code supports the CMT frame buffers
in Horus. Two new Horus layers were needed, but
were developed by adapting existing layers; they con-
sist of 1,800 lines of C code and 300 lines, respec-
tively (ignoring the comments and lines common to
all layers). Thus, with relatively little effort and little
code, a complex application (written with no expec-
tation that process group computing might later be
valuable) was modified to exploit the functionality
of Horus.

Electra
The introduction of process groups into CMT
required intimate knowledge of Horus and its inter-
cept proxies. Many potential users would not know
Horus well enough to do this, hence there was a
need to introduce Horus functionality in a more
transparent way. This goal evokes an image of “plug
and play’’ robustness and leads one to think
in terms of an object-oriented approach to group
computing.

The Common Object Request Broker Architecture
(CORBA) is emerging as a major standard for sup-
porting object-oriented distributed environments.
Object-oriented distributed applications that comply
with CORBA can invoke one another’s methods with
relative ease. Our work resulted in a CORBA-compli-
ant interface to Horus, which we call Electra [7]. Elec-

tra can be used without Horus, and vice
versa, but the combination represents a
more complete system.

In Electra, applications are provided
with ways to build Horus process groups
and to directly exploit the virtual syn-
chrony model. Moreover, Electra objects
can be aggregated to form “object
groups,’’ and object references can be

bound to both single objects and object groups. An
implication of the interoperability of CORBA imple-
mentations is that Electra object groups can be
invoked from any CORBA-compliant distributed
application, regardless of the CORBA platform on
which it is running, without special provisions for
group communication. This means that a service

can be made fault-tolerant without changing its
clients.

When a method invocation occurs within Electra,
object-group requests are detected and transformed
into multicasts to the member objects (see Figure 5).
Requests can be issued either in transparent mode,
where only the first arriving member reply is
returned to the client application, or in nontranspar-
ent mode, permitting the client to access the full set
of responses from individual group members. The
transparent mode is used by clients to communicate
with replicated CORBA objects, while the nontrans-
parent mode is employed with object groups whose
members perform different tasks.

Our work on Electra shows that group program-
ming can be integrated in a natural, transparent way
with popular programming methodologies. To the
degree that process-group computing interfaces and
abstractions represent an impediment to their use in
commercial software, technologies such as Electra

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 81

GroupCommunication

3This protocol differs from the Total protocol in the Trans/Total [8] project
in that the Horus protocol only rotates the token among the current set of
senders, while the Trans/Total protocol rotates the token among all mem-
bers.

Request/Reply

Request/
Reply

Request/Reply

CORBA
Object

CORBA
Object

CORBA
Object

Host A

Host B

Host C

Object Group

HORUS

CORBA
Object

Reference

Request Replies

Client Application

Figure 5. Object
group communication
in Electra

suggest a possible middle ground in which fault-tol-
erance, security, and other group-based mechanisms
can be introduced late in the design cycle of a sophis-
ticated distributed application.

Performance
We now focus on a major concern of our architec-
ture—the overhead of layering. We present the over-
all performance of Horus on a system of Sun Sparc10
workstations running SunOS 4.1.3, communicating
through a loaded Ethernet. We used two
network transport protocols: normal UDP,
and UDP with the Deering IP multicast exten-
sions (shown as “Deering’’).

To highlight some of the performance num-
bers: we achieved a one-way latency of 1.2ms
over an unordered virtual synchrony stack
(over ATM, it is currently 0.7ms), and, using a

totally ordered layer over the same stack, 7,500 1-byte
messages per second. Given an application that can
accept lists of messages in a single receive operation,
we can drive up the total number of messages per sec-
ond to over 75,000 using the Flow-Control (FC) layer,
which buffers heavily using the “message list’’ capabili-
ties of Horus [6]. We easily reached the Ethernet 1007
KB/sec. maximum bandwidth with a message size
smaller than 1 kilobyte.

Our performance test program has each member
do exactly the same thing: send k messages and wait for
k x (n – 1) messages of size s, where n is the number
of members. This way we simulate an application that
imposes a high load on the system while occasionally
synchronizing on intermediate results.

Figure 6 depicts the one-way communication laten-
cy of 1-byte Horus messages. As can be seen in the top
graph, hardware multicast is a big win, especially when
the message size goes up. In the bottom graph, we
compare FIFO to totally ordered communication. For
small messages we get a FIFO one-way latency of about
1.5ms and a totally ordered one-way latency of about
6.7ms. A problem with the totally ordered layer is that
it can be inefficient when senders send single messages
at random and with a high degree of concurrent send-
ing by different group members. With just one sender,
the one-way latency drops to 1.6ms.

Figure 7 shows the number of 1-byte messages per
second that can be achieved for three cases. For nor-
mal UDP and Deering UDP, the throughput is fairly
constant. For totally ordered communication, we see
that the throughput becomes better if we send more
messages per round (because of increased concurren-
cy). Perhaps surprisingly, the throughput also
becomes better as the number of members in the
group goes up. The reasons for this are:

• With more members, there are more senders.
• With more members, it takes longer to order mes-

sages, and thus more messages can be packed
together and sent out in single network packets.

• Our ordering protocol allows only one sender on
the network at a time, thus introducing flow control
and reducing collisions.

82 April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THE ACM

2
3

4
5

FIFO/Deering
FIFO/UDP

members

Total/Deering

25
21

17
13

9
5

1

7000

6000

5000

4000

3000

2000

1000

0

m

es
sa

ge
s

pe
r

se
co

n
d

m
essages per round

V R Fi 7

50

40

30

20

10

0
0

1024
2048

3072

4096 2
3

4
5

FIFO/UCP

FIFO/Deering

members

message size

la
te

n
cy

 (
m

s)

50

40

30

20

10

0
0

1024
2048

3072

4096 2
3

4
5

FIFO/Deering

members

message size

la
te

n
cy

 (
m

s)

Total/Deering

Figure 6. The top figure compares the one-way
latency of 1-byte FIFO Horus messages over
straight UDP and UDP with the Deering IP multicast
extensions. The bottom figure compares the per-
formance of total and FIFO order of Horus, both
over UDP multicast.

Figure 7. These graphs depict the mes-
sage throughput for virtually synchronous,
FIFO-ordered communication over normal
UDP and Deering UDP and for totally order-
ing communication over Deering UDP

Ongoing Work
Although the initial version of Horus is
nearing completion, significant challenges
remain. Broadly, we are interested in mov-
ing Horus to more advanced platforms,
such as stripped-down computing nodes
linked by ATM. For this purpose, we are
running Horus in the application’s address
space with I/O directly in and out of mes-
sage buffers allocated by the application. Based on pre-
liminary results, we anticipate that this configuration
of the system will expand our application domain to
parallel computing, high-performance I/O servers,
multimedia, and computer-supported collaborative
work. To enable these new types of applications, we are
extending Horus to support real-time features, and are
cooperating with the Transis project at the Hebrew
University to develop a group security architecture and
general-purpose tools for building robust applications
that are also secure and private [13].

Acknowledgments
We gratefully acknowledge the contributions of Yair
Amir, William Chan, Robert Cooper, Flaviu Cristian,
Danny Dolev, Roy Friedman, Sophia Georgiakaki,
Brad Glade, Barry Gleeson, Katie Guo, Takako Hick-
ey, Rebecca Isaacs, Dalia Malki, Michael Melliar-
Smith, Louise Moser, David Powell, Mike Reiter,
André Schiper, Gautam Thaker, Alexey Vaysburd,
and Werner Vogels. This work was supported by
grants from ARPA/ONR (N00014-92-J-1866), GTE,
IBM, Schweizer Nationalfonds, and Siemens-AG. The
Horus system is available at no fee for research use;
see the Horus project page at http://www.cs.cor-
nell.edu/Info/Projects/HORUS for details.

References
1. Amir, Y., Dolev, D., Kramer, S., and Malki, D. Transis: A Com-

munication Subsystem for High Availability. In Proceedings of the
22nd Symposium on Fault-Tolerant Computing Systems (Boston, July
1992), pp. 76–84.

2. Birman, K.P. and van Renesse, R. Reliable Distributed Computing
with the Isis Toolkit. IEEE Computer Society Press, Los Alamitos,
Calif., 1994

3. Bressoud, T.C., and Schneider, F.B. Hypervisor-based fault-toler-
ance. In Proceedings of the 15th Symposium on Operating Systems Prin-
ciples (Copper Mountain Resort, Colo., Dec. 1995), 1–11

4. Clark, D.C. and Tennenhouse, D.L. Architectural Considera-
tions for a New Generation of Protocols. In Proceedings of the ‘90
Symposium on Communication Architectures and Protocols (Philadel-
phia, Pa., Sept. 1990), pp. 200–208.

5. Cristian, F. Probabilistic clock synchronization. Distributed Com-
puting, 3 (Mar. 1989), 146–158.

6. Friedman, R. and van Renesse, R. Packing Messages as a Tool for
Boosting the Performance of Total Ordering Protocols. Cornell
University Department of Computer Science. Rep. 94-1527, July
1995. Submitted to IEEE Transactions on Networking.

7. Maffeis, S. Adding group communication and fault-tolerance to
CORBA. In Proceedings of the 1995 USENIX Conference on Object-Ori-
ented Technologies (Monterey, Calif., June 1995).

8. Melliar-Smith, P.M., Moser, L.E., and Agrawala, V. Broadcast pro-

tocols for distributed systems. IEEE Transactions on
Parallel and Distributed Systems, 1 (Jan. 1990).

9. Mishra, S., Peterson, L.L., and Schlichting, R.D.
Experience with modularity in Consul. Software—
Practice and Experience 23, 10 (Oct. 1993),
1050–1075.

10. Peterson, L.L., Bucholz, N.C., and Schlichting,
R.D. Preserving and using context information in
interprocess communication. ACM Trans. Comp.

Sci. 7, 3 (Aug. 1989), 217–246.
11. Peterson, L.L., Hutchinson, N., O’Malley, S., and Abbott, M. RPC

in the x-kernel: Evaluating new design techniques. In Proceedings
of the 12th Symposium on Operating Systems Principles (Litchfield
Park, Ariz., Nov. 1989), 91–101.

12. Reed, D.P. and Kanodia, R.K. Synchronization with eventcounts
and sequencers. Commun. ACM 22, 2 (Feb. 1979), 115–123

13. Reiter, M., Birman, K.P. and Gong, L. Integrating security in a
group-oriented distributed system. In Proceedings of the IEEE Sym-
posium on Research in Security and Privacy (Oakland, Calif.) May
1992, 18–32.

14. Reiter, M.K. Secure agreement protocols: Reliable and atomic
group multicast in Rampart. In Proceedings of the 2nd ACM Confer-
ence on Computer and Communications Security. Nov. 1994, 68–80.

15. Ritchie, D.M. A stream input-output system. Bell Laboratories Tech-
nical Journal 63, 8 (1984), 1897–1910.

16. Rowe, L.A. and Smith, B.C. Continuous media player. In Pro-
ceedings of the 3rd International Workshop on Network and Operating
Systems Support for Digital Audio and Video (San Diego, Calif., Nov.
12–13, 1992).

17. Sally, F., and Jacobson, V., McCanne, S., Liu, C.-G., and Zhang,
L. A reliable multicast framework for light-weight sessions and
application level framing. In Proceedings of the ‘95 Symposium on
Communication Architectures and Protocols (Cambridge, Mass., Aug.
1995).

18. Van Renesse, R., Birman, K.P., Friedman, R., Hayden, M., and
Karr, D.A. A framework for protocol composition in Horus. In
Proceedings of the 14th Symposium on the Principles of Distributed Com-
puting ACM (Ottawa, Ont., Aug. 1995), pp. 80–89.

19. Whetten, B. A reliable multicast protocol. In Theory and Practice
in Distributed Systems. K.P. Birman, F. Mattern, and A. Schiper,
Eds. Springer-Verlag, Lecture Notes on Computer Science 938, July
1995.

About the Authors:
ROBBERT VAN RENESSE is a senior research associate in the
Department of Computer Science at Cornell University. email:
rvr@cs.cornell.edu

KENNETH P. BIRMAN is a professor in the Department of Com-
puter Science at Cornell University. email: ken@cs.cornell.edu

SILVANO MAFFEIS is a visiting scientist in the Department of
Computer Science at Cornell University. email: maffeis@acm.org

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0400 $3.50

C

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 83

GroupCommunication

