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Abstract

Epidemic-style (gossip-based) techniques have recently
emerged as a scalable class of protocols for peer-to-peer
reliable multicast dissemination in large process groups.
These protocols provide probabilistic guarantees on relia-
bility and scalability. However, popular implementations
of epidemic-style dissemination are reputed to suffer from
two major drawbacks: (a) (Network Overhead) when de-
ployed on a WAN-wide or VPN-wide scale they generate
a large number of packets that transit across the bound-
aries of multiple network domains (e.g., LANs, subnets,
ASs), causing an overload on core network elements such
as bridges, routers, and associated links; (b) (Lack of Adap-
tivity) they impose the same load on process group mem-
bers and the network even under reduced failure rates (viz.,
packet losses, process failures). In this paper, we report on
the (first) comprehensive set of solutions to these problems.
The solution is comprised of two protocols: (1) a Hierar-
chical Gossiping protocol, and (2) an Adaptive multicast
Dissemination Framework that allows use of any gossiping
primitive within it. These protocols work within a virtual
peer-to-peer hierarchy called the Leaf Box Hierarchy. Pro-
cesses can be allocated in a topologically aware manner
to the leaf boxes of this structure, so that (1) and (2) pro-
duce low traffic across domain boundaries in the network.
In the interests of space, this paper focuses on a detailed
discussion and evaluation (through simulations) of only the
Hierarchical Gossiping protocol. We present an overview
of the Adaptive Dissemination protocol and its properties.

1. Introduction
The growth of the Internet and the emergence of appli-

cation scenarios for large-scale peer-to-peer (p2p) systems
is driving the need for scalable and reliable solutions to
the multicast problem in distributed process group comput-
ing systems. Examples of such systems include publish-
subscribe [7], distributed hash tables (DHTs) for file shar-
ing and archival [20], distributed databases [5], distributed

failure detection [22], distributed resource location [21] and
virtual synchrony [12]. These applications require a group
multicast protocol that is a) reliable, even in the presence of
network packet losses and process crashes, and b) scalable,
in terms of the load imposed on the network and on partic-
ipating processes, as the system size grows into thousands
of processes.

Traditional solutions to the problem work well in small-
scale settings, but suffer drastic reduction in reliability and
performance at larger scales. Existing solutions, such as
SRM [8] or RMTP [18], that augment best-effort IP multi-
cast with negative or positive acknowledgments, hit a scala-
bility limit in the range of only 50 to 100 participating group
members [3, 17, 23], as the number of duplicate copies of
the multicast that they generate grows linearly with the sys-
tem size [3, 17], for any fixed packet loss rate. In addition,
the lack of deployment of IP multicast limits applicability
of these protocols.

Gossip-based (epidemic) protocols spread multicasts in
a process group in a randomized peer-to-peer fashion much
like the spread of rumor in society, or of a contagious dis-
ease in a population [2]. This results in probabilistic be-
havior of the reliability of multicast delivery at recipients,
with per-process overhead and latency rising slowly (poly-
logarithmically) with group size. Multicast throughput is
resilient to system-wide noise arising from packet losses,
and the presence of failed or perturbed processes. At higher
failure and loss rates, the probabilistic delivery properties
degrade gracefully [3, 5, 14]. Deterministic reliability can
then be provided through a low-overhead recovery layer, in-
serted in the network stack between the epidemic dissemi-
nation and application layers. An example is virtually syn-
chronous multicast [12].

Gossip-based protocols have been used in a variety of in-
formation dissemination applications [3, 5, 6, 12, 13, 21]. In
a gossip protocol, each group member periodically picks a
few other members at random and gossips to them about re-
cently received multicast messages. Implementations differ
in the length of gossip round and the weighting of mem-
bers for gossip target selection. However, most conform to



a “Flat Gossiping” technique, where targets are chosen uni-
formly at random from the group membership [3, 5, 6].

Large networks, such as wide area networks (WAN) or
corporate virtual private networks (VPN [1]) spanning sev-
eral locations, are structured as a hierarchy of domains. For
example, the Internet is structured hierarchically through
domains such as ASs, Class A/B/C networks, subnets, lo-
cal ethernets etc. Flat Gossiping is oblivious to network
topology, and hence generates substantial network traffic
into and out of these domains. This translates into signif-
icant network overhead on connecting core routers, bridges
and links. Such behavior is undesirable even if the band-
width, buffer space, and processing capability of core net-
work elements scales to sustain Flat Gossiping traffic from a
single process group, since it limits the deployment of mul-
tiple large process groups, as well as affects the behavior
of non-gossip-based applications using the network simul-
taneously.

Previous work [3, 5, 6, 14, 22] has also embodied the be-
lief that receiving multiple copies of a multicast in gossip-
based protocols is acceptable overhead in exchange for re-
liability and scalability. Current gossip protocols continue
to incur this overhead even if there are negligible message
losses and process failures in the underlying network during
the dissemination of a multicast. In other words, they lack
adaptivity, in the sense of imposing lower overhead when
there are fewer failures.

This paper proposes two new protocols for gossip-based
multicast dissemination that address the issues of network
overhead and adaptivity. These are a) a Hierarchical Gos-
siping algorithm, and b) an Adaptive multicast Dissemina-
tion framework which works in conjunction with any gos-
siping primitive. The protocols work within a virtual (or
abstract) hierarchy for the process group, which we call the
Leaf Box Hierarchy, and which is adapted from the Grid
Box Hierarchy of [11]. The protocols exhibit probabilistic
reliability similar to that of Flat Gossiping, and have slightly
higher latency (by a factor that grows as the logarithm of
group size). In exchange, when processes are mapped to
leaf boxes in a topologically aware manner, they achieve an
order of magnitude reduction in network overhead (the re-
duction factor is almost linear in group size). For brevity,
we primarily discuss the Hierarchical Gossiping algorithm
in this paper. The Adaptive Dissemination framework is in-
vestigated thoroughly in [10].

The paper is organized as follows. Section 2 describes
the Flat Gossiping protocol and motivates the need for net-
work overhead reduction and adaptivity. Section 3 presents
algorithms for Leaf Box Hierarchy construction and mem-
bership maintenance. The Hierarchical Gossiping proto-
col and Adaptive Dissemination framework are presented
in Sections 4 and 5. Section 6 presents an evaluation of the
former protocol through simulations. Section 7 concludes.

2. Previous Work and Design Guidelines
Flat Gossiping: Gossiping protocols such as in [3, 5, 6] can
be abstracted into a canonical protocol called “Flat Gos-
siping”, which disseminates a multicast as follows: each
group member that receives the multicast gossips about it
for log(N) rounds, where N is the (approximate) group size
and a round is a fixed local time interval at the member. In
each round, the group member selects b other members uni-
formly at random (flatly) from the group membership, and
sends them a copy of the multicast message. Here, b is a
constant. A gossip message is transmitted via a lightweight
unreliable protocol such as UDP.

It can then be shown, as in [5, 14], that the probability of
a given member receiving the multicast is 1− 1

Nb ·(1+o(1)).
This is the probabilistic reliability achieved by the proto-
col. The number of rounds between origin and completion
of gossip is O(log(N)), which scales well as N increases.
The protocol is fault-tolerant: its randomized nature “routes
around” member failures and dropped messages.
Network Overhead: Large Internetworks and corporate-
wide VPNs are structured hierarchically in domains 1. Fig-
ure 1 shows how Flat Gossiping can overload a router in a
two-level topology. The same problem can occur in a multi-
level topology, especially near the backbone.

Network overhead could be reduced by tailoring the
choice of gossip targets to the specific underlying topol-
ogy as in [5], but a more general strategy applicable to any
topology is desirable. One such strategy is proposed in [22],
where targets are probabilistically weighted so that, in each
gossip round, only a constant number of gossip messages
transit out of any given network domain. Another strategy
is Directional Gossip [15], which calculates target weights
dynamically. Hierarchical gossiping algorithms have also
been proposed for managing distributed MIBs and content
filtering in publish subscribe systems [7, 21]. However, the
protocols in [7, 21], as well as Directional Gossip (the study
in [15] is limited to small-scale WANs), are sensitive to
member distributions across the topology and hence require
careful tuning. Our weighted target selection is similar to
that of [22], but our Hierarchical Gossiping protocol pro-
vides guarantees on reliability, latency and domain bound-
ary load that hold for any distribution of members across
the network topology.
Adaptivity: Adaptivity entails incurring low overhead at
low failure rates, with a rise in this overhead only if the local
or system-wide failure rate rises. Our approach to adaptivity
works by initially attempting to disseminate the multicast
via a virtual tree spanning the group members. This virtual
tree is not static as in [3], but is constructed dynamically, on
the fly (using random seeds) and locally. Each member uses
only local information for this construction - its leaf box

1Recall from Section 1 that we are using “domain” as an abstract name
for ASs, subnets, ethernets, etc.



Router/Switch

pass through router links

Domain 1:  O(N) group members Domain 2 : O(N) group members

O(N) messages per gossip round

Figure 1. High Network Overhead of Flat Gossiping: In a
WAN-wide process group distributed evenly across two domains,
when there are O(N) infected members in the group, O(N) gos-
sip messages in each round go across the domain boundaries (and
hence the router). The domain boundary bandwidth usage grows
linearly with group size.

address and local membership list. The tree is constructed
in such a way that it mirrors the location of processes in the
Leaf Box Hierarchy (and the network topology if the Leaf
Box Hierarchy used a topologically aware mapping).

The protocol transitions to gossiping in subtrees of the
Leaf Box Hierarchy where the global tree construction fails
due to message losses and process failures. This localizes
gossip to only the lossy regions of the Leaf Box Hierarchy.

Deterministically Constrained Flooding [16] can lower
overhead when there are a small number of failures. How-
ever, as failure rates increase, the reliability of this proto-
col degrades worse than gossiping [16], while reliability of
our Adaptive Dissemination Framework is always bounded
from below by that of the gossiping primitive it uses.

Gossip protocols also require each group member to
maintain a (small) view - a list of its knowledge about other
group members. Views may be partial and inconsistent. The
view needs to be small to minimize memory storage and tar-
get computation time during gossip rounds, yet it should be
large enough as to not affect the reliability properties of gos-
siping, or non-partitionability of the group. It is shown in
[6, 14] that a view size of O(log(N)) suffices for Flat Gos-
siping to retain the same properties as with complete views.
Our protocols require a view size of O(log2(N)).

3. The Leaf Box Hierarchy
The Leaf Box Hierarchy is defined by three parameters

that are consistently known at all processes:
(1) K, a small constant.
(2) an estimate N of current group size. N is rounded off
to the next power of K (say N ′), and the number of leaf
boxes in the hierarchy is then (N ′/K). Estimation of the
value of N may be done either by individual members or
by periodical dissemination within the group. Although this
scheme defines a range of consistent values for N across the
group members, for simplicity of exposition, the rest of the
paper assumes that N = N ′ =a power of K.

M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

Leaf Box - 00 Leaf Box  - 01 Leaf Box - 10 Leaf Box - 11

Figure 2. Example of a Leaf Box Hierarchy for a group of
8 members {M1 . . . M8} with K = 2; there are N/K = 4 leaf
boxes.

(3) a consistent map function H that maps members to one
of N/K leaf boxes.

Each leaf box has a (logKN − 1)-digit address in base
K. Subtrees of height j (0 ≤ j ≤ logKN − 1) in the hier-
archy contain the set of leaf boxes whose addresses match
in the most significant (logKN − j − 1) digits. Mi can cal-
culate the leaf box address of any other group member Ml,
in its view, by applying the consistent map function H2.
For 1 ≤ j ≤ logKN − 1, we denote the jth internal node
ancestor of a member Mi as the root of the height-j sub-
tree that Mi lies in. Notice that the hierarchy is designed
in a peer-to-peer fashion: internal nodes are not associated
with any particular group member, but the entire subset of
members lying in the leaf boxes of the subtree rooted at the
internal node. This design decision avoids the overhead of
reorganizing and maintaining the hierarchy on each individ-
ual process failure.

Figure 2 shows a Leaf Box Hierarchy for the process
group of Figure 1, with parameters K = 2, N = 8 and a
map function that we will describe shortly. Consider the
process M5 in this figure. M5 lies in leaf box 01, which in
turn lies within the Subtree-0*, which in turn lies within the
Subtree-**. Leaf Box 01, Subtree-0* and Subtree-** are
thus M5’s height 0,1,2 -subtrees respectively. The internal
nodes labeled Subtree-0* and Subtree-** are the first and
second internal node ancestors of M5 respectively.

Our design assumes consistent knowledge of the tuple
(K, N, H) across the group. This is akin to the assumption
in most peer-to-peer systems, e.g., Pastry, Chord [20], of the
existence of consistent hash functions. The tuple (K, N, H)
in the group may need to be changed after a while as the
composition and distribution of the group changes. We as-
sume, for simplicity of exposition, that the Leaf Box Hier-
archy is not reorganized during the dissemination of a mul-
ticast. Section 6 investigates the effect of non-uniform map
functions, such as skewed, random, overloading and under-
loading mappings. Our study indicates that Leaf Box Hier-

2Alternatively, (Ml,H(Ml)) may be disseminated within the group
along with membership information.
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Figure 3. Example of Contiguous Mapping for the topology
from Figure 1.

archy performs well even under most degraded conditions,
and would require only infrequent reorganization, such as
when the group size crosses a power of K or the distribu-
tion of members across leaf boxes is too skewed. Multicasts
can continue to be disseminated during a reorganization by
using the old hierarchy.

3.1. Choosing the Map Function H
Cryptographic hashes, e.g., MD-5, SHA-1, would offer

no topological awareness. A geographical partitioning can
be used to construct the Grid Box Hierarchy [11] for sensor
networks. For a hierarchically structured Internetwork-type
network such as a WAN or a corporate VPN, we propose
a mapping scheme called the Contiguous Mapping, which
assigns to each network domain a set of leaf boxes that are
contiguous in the lexicographic space of leaf box addresses.
The assignment is done top-down in the hierarchy of net-
work domains, and a group member then belongs to a ran-
domly chosen leaf box from among those assigned to the
smallest domain to which it belongs. Figure 3 shows a pos-
sible Contiguous Mapping for the example process group
in the topology of Figure 1. This scheme is preferable to
associating each subtree with a single domain (e.g., as in
the Astrolabe system [21]), since it can be made to fit any
distribution of group members across domains.

The Contiguous map function H could be maintained
in a distributed manner, or through a fault-tolerant commit-
tee of central servers with knowledge of the underlying net-
work topology. The central servers that manage the VPN or
the “introduction” operations of processes (i.e., joining and
leaving the group), could be used for the latter. Our simula-
tions (Section 6) show that non-uniform map functions do
not degrade performance too drastically, so this committee
would not need to be highly available. A discussion of the
distributed algorithm is beyond the scope of this paper.

Accurate network topology discovery is difficult, and
there is often only a loose correlation between the IP ad-
dress of a host and its network location, except possibly
in an administered VPN. In such a case, an approximate
knowledge of the topology, where each “domain” corre-
sponds to a coarse area rather than just a subnet, could be

used for the map function H . The Landmark Mechanism
[19], for example, is fully decentralized and can provide
such information. The more accurately the domains esti-
mated by such an approximation correspond to actual net-
work domains, the closer would be the match between the
load on core network elements and the predictions of our
analysis.

We reiterate that the formal description of protocols
within the Leaf Box Hierarchy do not depend on the topo-
logical awareness of H . The topological awareness of H
has an effect only on the domain boundary load behavior
of the Hierarchical Gossiping protocol, with reliability, la-
tency and per-process overhead remaining unaffected at a
given group size and system-wide packet loss rate.

3.2. Composition of the View
Each member Mi maintains a view that consists of

logKN subviews, V iewMi
[0] through V iewMi

[logKN −
1]. V iewMi

[j] consists of information (such as mem-
ber identifiers) about at most subviewsize(N) other dis-
tinct members chosen uniformly at random from among the
members lying in the same height-(logK(N) − j − 1) sub-
tree as Mi. If there are fewer than subviewsize(N) other
members in the height-(logK(N) − j − 1) subtree of Mi,
Mi includes in V iewMi

[j] as many such other members as
it knows about. From the definition, note that view elements
of V iewMi

[j] might be repeated in any of the V iewMi
[≤ j]

subviews. Views might also be partially inconsistent, i.e.,
contain members that have failed. Such elements time out
and are deleted after a while.

Figure 4 shows the composition of the view at member
M5 in the Leaf Box Hierarchy example of Figure 2. Group
member M5’s view would consist of logK(N) = 3 sub-
views, each containing subviewsize(N) = viewfactor ∗
logKN members chosen uniformly at random from the sub-
group of members within the appropriate same subtree as
M5. Here, viewfactor is a constant.

It is shown in [14] that knowledge of at least
viewfactor∗ logKN members in the group at each process
suffices to provide a high probability of non-partitionability
of the group, where viewfactor > logKe. Our view main-
tenance algorithm retains this property through the V iew[0]
sets in the group. Further, [6] shows that sampling the par-
tial view by using a uniform random distribution on the
membership, and maintaining it large enough to be able to
pick unique gossip targets per multicast, would retain the
probabilistic properties of Flat Gossiping. In Section 4.2,
we show a similar property for Hierarchical Gossiping w.r.t.
the above view composition.

Views in dynamic groups could be maintained using any
of several dynamic membership algorithms from the litera-
ture, e.g., random probe-based [4], gossip-based heartbeat-
ing [22], or graph-based [9], and local views updated proba-
bilistically with new or streaming membership updates. An



M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

Leaf Box - 00 Leaf Box  - 01 Leaf Box - 10 Leaf Box - 11

M5’s view

View[0]: 

View[1]: 

View[2]: 

       M3,M2,M7

M7,M3,M6

M6

Figure 4. Example of View Maintenance: A typical group
member (M5 shown above) knows about (viewfactor ∗ logKN)
other members in each of the Leaf Box Hierarchy subtrees it be-
longs to. Here viewfactor = 1. Note that multiple subviews
at a member might overlap (e.g., M7 occurs in V iewM5

[0] and
V iewM5

[1]).

Ms:Hierarchical Gossip (Multicast m)
for logKN gossip rounds

for i := 1 to b

pick a subtree of height l with probability distribution
pl = 1

Kl+1 ∗ p(N, K)

where 0 ≤ l ≤ logKN − 1,

p(N, K) =

[

∑

logK (N)−1

j=0

1

Kl+1

]

−1

pick a node Mtarget uniformly at random from V iewMs [l]
Send m to Mtarget

Figure 5. The Hierarchical Gossiping Protocol.

investigation of interaction with such membership protocols
is left to future work.
4. Hierarchical Gossiping Protocol

We discuss and analyze the Hierarchical Gossiping pro-
tocol. When combined with the Contiguous Mapping in the
Leaf Box Hierarchy, this protocol tackles the network over-
head problem. The protocol may also be used within the
Adaptive Dissemination framework (Section 5).

4.1. Protocol Description
While Flat Gossiping selects targets uniformly at ran-

dom, Hierarchical Gossiping prefers targets nearer in the
Leaf Box Hierarchy. Each target at group member Mi is
selected by (a) first choosing a level l (0 ≤ l ≤ logKN − 1)
corresponding to Mi’s height-l subtree, and then (b) pick-
ing a member uniformly at random from V iewMi

[logKN−
l − 1]. The height-0 subtree is chosen with probability
1
K

∗ p(N, K), the height-1 tree is chosen with probabil-
ity 1

K2 ∗ p(N, K), and so on until the height-(logKN − 1)
subtree is chosen with probability 1

N
∗ p(N, K). Here,

p(N, K) = (
∑logK (N)−1

j=0
1

Kj+1 )−1 is a normalizing factor.
The specification of the rest of the protocol is the same

as the Flat Gossiping template described in Section 2. Upon
receiving a multicast, a group member Mi gossips about it
for logK(N) gossip rounds, choosing b target members per
round. These parameters and the gossip round duration are
fixed as in Flat Gossiping. The pseudo code for the algo-
rithm is presented in 5. Figure 6 shows the (relative) tar-

M2 M4M8M7 M6M3 M5 M1

Subtree - **

Subtree - 1*Subtree - 0*

Leaf Box - 00 Leaf Box  - 01 Leaf Box - 10 Leaf Box - 11

M5’s target choice probabilities

1/4*8/7=2/7

1/2*8/7=4/7

1/8*8/7=1/7

Figure 6. Hierarchical Gossiping at a process: M5’s gossip-
target probability distribution in the example Leaf Box Hierarchy.

get choice probability distribution for each gossip round at
member M5 in the Leaf Box Hierarchy of Figure 2.

4.2. Protocol Analysis
We now analyze the reliability and group member load

characteristics of this algorithm. Let K = 2, and suppose
there are N group members (N being a power of K) dis-
tributed uniformly among the leaf boxes by the map func-
tion H . These rigid assumptions will be relaxed in the sim-
ulations.

The normalization constant p(N, K) is close to 1 for
large N when K = 2. We study the simplified algorithm
where each group member chooses a gossip target from the
height-i subtree containing it with probability 2−i−1, and
remains silent with the residual probability 1 − p(N, 2) =
1/N . The reliability analysis below pertains to this mod-
ified algorithm, which clearly has a smaller probability of
success than the algorithm we actually use.

Define f(N) to be the probability of a given member not
receiving any copy of the multicast in a Leaf Box Hierarchy
with N members (a height-(log2(N) − 1) hierarchy). We
now derive a recursion for f(N).

Increasing the group size from N to 2N adds an ex-
tra level to the Leaf Box Hierarchy (making it a height-
(log2(2N) − 1) tree), as well as increasing the number of
gossip rounds per member by one.

In a Leaf Box Hierarchy of height-(log2(2N) − 1), a
member Mi lies in the same height-(log2(N) − 1) subtree
as the sender with probability 1

2 - such a member will not
receive the multicast if it does not receive it through gossip-
ing within the height-(log2(N) − 1) subtree with N mem-
bers, as well as from the extra gossip round added due to
the number of group members being increased to 2N . The
probability of not receiving the gossip message in the first
log2(N) rounds is f(N). The probability of receiving the
message in the last round depends on the location of nodes
that have received the message in the first log2(N) rounds.
We assume that (a) the number of nodes that have received
the gossip message in the first log2(N) rounds is equal to its
expectation, which is N(1−f(N)), and (b) there is a prob-



ability 1
N

(1 − 1
2 . 1

2N
) that each of these nodes will choose

Mi as its gossip target each time in the extra round.
The mean-value assumption embodied in (a) is common

to most analyses of gossip protocols. The term (1 − 1
2 . 1

2N
)

in assumption (b) is the probability that a gossip remains
within the height log2(N)−1 subtree containing the sender
and Mi; conditional on this, we assume the message is tar-
geted uniformly at each of the N members of this subtree.
While this assumption is clearly false for messages orig-
inating from a specific node, we are only assuming it on
average for messages originating from all nodes within this
subtree. The performance results derived using this assump-
tion seem to be borne out by simulations.

With these assumptions, the probability that Mi does not
receive the gossip message in the last round from within its
height log2(N) − 1 subtree is bounded above by

(

1 − 1

N
(1 − 1

2
.

1

2N
)
)N(1−f(N)b

≤ exp

(

−
(1 − f(N))b

2

)

.

Combining this with the probability of not receiving
the message in the first log2(N) rounds, the probability
of Mi not receiving the message is bounded above by
f(N) exp(−(1 − f(N))b/2).

A member Mi lies in a different height-(log2(N) − 1)
subtree than the sender with probability 1

2 . Such a member
will not receive the multicast if either 1) no gossip mes-
sage is sent from the sender’s height-(log2(N) − 1) sub-
tree to Mi’s height-(log2(N) − 1) subtree, or 2) if (1) does
not hold, yet gossiping within this subtree fails to deliver
the multicast to Mi, and Mi is not chosen as a gossip tar-
get by a node in the other subtree. (2) occurs with prob-
ability no more than f(N). For (1) to occur, each of the
b log2(2N) messages sent by each of the N(1 − f(N))
nodes that receive the gossip in the sender’s subtree should
remain within that subtree. Hence, (1) occurs with proba-
bility

(1 − 1

2
.

1

2N
)bN(1−f(N)) log2(2N) ≤ (

1

2N
)b(1−f(N)) log2(e)/4

.

Thus, we have:

f(2N) ≤ 1

2
f(N) exp

(

−
(1 − f(N))b

2

)

+

1

2

[

f(N) +
(

1

2N

)

b(1−f(N)) log2(e)
4

]

≤ f(N)
1 + e−β(N)

2
+

(

1

2N

)log2(e).β(N)/2

,

where β(N) = (1 − f(N))b/2. Clearly, we can choose b
so that f(4) ≤ 1/2. Since f(N) decreases as b increases,
we assume without loss of generality that b ≥ 8, so that
β(4) ≥ 2. Now, if f(N) ≤ 1/

√
N and β(N) ≥ 2, we have

from above that

f(2N) ≤ 1√
2N

(

1 + e−2

√
2

+
(

1

2N

)log2 e−1/2
)

.

Thus, f(2N) ≤ 1/
√

2N if N ≥ 16. By induction, we have
Reliability: β(N) ≥ 2 and f(N) ≤ 1/

√
N for all N ≥

16. In particular, f(N) → 0 as N → ∞.
A (similar) analysis for K > 2 is excluded for brevity.

Per member load: Each member sends at most b logK(N)
copies of any multicast. The average number of copies of
any multicast received by a group member is also no more
than b logK(N).
View size sufficiency: Choosing viewfactor as a con-
stant that is large enough to ensure subviewsize(N) =
viewfactor·log(N) > b retains the reliability properties of
Hierarchical Gossiping. This is true because each process
knows about enough members (chosen uniformly at random
from prospective targets) at each level of the hierarchy.
Network Overhead: We calculate the domain boundary
load by first measuring the overhead on internal nodes.
Visualize each gossip message as “traveling through” the
edges of the Leaf Box Hierarchy from the source to destina-
tion member. Consider an internal node INh at the root of a
height-h subtree in the Leaf Box Hierarchy. For each mem-
ber Mi within the subtree rooted at this internal node, the
probability that any given gossip message from Mi will pass
through INh is: p(N, K) ·∑logKN−1

j=h
1

Kj+1 · (1− 1
Kj−1 ) ≤

1
Kh·(K−1) . Since the subtree with INh as root contains an

average of Kh+1 members, each of which chooses blogKN
gossip targets per multicast, the average number of copies
of a given multicast that will pass up through the inter-
nal node INh is at most b.p(N, K) K

K−1 logK(N). A sym-
metrical number of gossip messages passes down through
INh. Thus, any internal node sees, in expectation, at most
2b.p(N, K) K

K−1 logK(N) copies of a given multicast.
Now consider a contiguous set of leaf boxes assigned

to a domain in the Contiguous Mapping scheme. Con-
sider the set of internal nodes that are non-common an-
cestors of the leftmost and rightmost leaf boxes in the
set. A gossip message passing into or out of the do-
main (i.e., through its boundary) will also pass through at
least one of these internal nodes. It is important to no-
tice that this fact is independent of the size of the domain,
or the number of group members that it contains. Since
there can be at most (2logKN − 4) non-common inter-
nal node ancestors of the leftmost and rightmost leaf boxes
in a domain, the average replication factor of a multicast
across any domain boundary can be bounded from above by
2b.p(N, K) K

K−1 (logKN)(2logKN − 4) = O(log2(N)).
5. Adaptive Dissemination Protocol Overview

The Adaptive Dissemination framework consists of two
subprotocols: Tree Dissemination and Gossip. Any gossip
protocol, e.g., Flat Gossiping, Hierarchical Gossiping, etc.,
could be used as the Gossip primitive. Each message is
either a TREE message or a GOSSIP message.

Each message also bears a hop number. The multi-
cast sender first sends a TREE message with hop number



0 to itself. A group member Mi, on receiving a multi-
cast through a TREE message m with hop number m.h
(0 ≤ m.h < logK(N) − 1), attempts to forward this mes-
sage to K randomly chosen child members, one in each of
the child subtrees of the (logK(N) − m.h − 1)th internal
node ancestor of Mi in the Leaf Box Hierarchy. To avoid a
member receiving more than one TREE message, this type
of message also bears the list of ancestor members that it
has traversed so far - the size of this list can be shown to be
constant in expectation and (logK(N) − 1) at worst.

Tree Dissemination thus creates a dynamic multicast tree
mirroring the Leaf Box Hierarchy. TREE messages are ac-
knowledged by the immediate child members. A TREE

message with hop number (logKN − 1) or non-receipt of
an acknowledgment initiates GOSSIP messages, through a
Gossip primitive, in the relevant height-(logKN − h − 1)
subtree where the failure has occurred.

It is shown in [10] that Adaptive Dissemination gives
at least as good probabilistic reliability as when Gossip
is used solely. In absence of failures and message losses
during the multicast dissemination, the protocol delivers at
most a constant number (i.e., independent of group size)
of copies of the multicast at each member. Network and
per-member load rises with the rate of failures and message
loss. With the Contiguous Mapping, the average number of
TREE messages passing through any domain boundary is at
most O(log(N)) in expectation, and O(log2(N)) at worst.
6. Experimental Results

We present experimental studies comparing the scaling
trends of Hierarchical Gossiping (“HierGssp”) with Flat
Gossiping (“FlatGssp”). We use metrics of per-member
load, reliability, domain boundary load, and latency. Sec-
tion 6.1 reports on topology-independent simulations with
uniform, skewed, overloading, underloading and random
map functions. While these experiments ignore the network
topology, they are nevertheless useful for measuring relia-
bility, latency and domain boundary load in the leaf box hi-
erarchy, which are all topology-independent for HierGssp.
The only topology-dependent metric is the load on router
links. Section 6.2 presents experiments with transit-stub
network network topologies, and shows that HierGssp’s re-
duction of domain boundary load translates into a reduction
of load on router links.
6.1. Topology Independent Simulations

The Leaf Box Hierarchy is constructed using a branch-
ing factor of K = 2. N is used to denote the actual group
size (which is also the same as the group size estimate, ex-
cept in (3) below). Protocol behavior under different map
functions is investigated:
(1) The default uniform mapping: exactly K = 2 mem-
bers per leaf box; No suffix in plots;
(2) Skewed mappings: modeled with a parameter called
mask. Every 2mask-th leaf box contains 2mask + 1 mem-
bers. Other leaf boxes contain one member each. mask =

0 gives the default distribution, and higher values of mask
model more skewed mappings. Denoted in plots with suf-
fix: “mask =”;
(3) Overloading (resp. underloading) mappings: by us-
ing the default distribution, but on a Leaf Box Hierarchy
with N

K2 (resp. N ) leaf boxes. Suffix in plots: “OL” (resp.
“UL”);
(4) Random mapping: obtained by using the C library
function rand() to determine members’ leaf box ad-
dresses. Suffix in plots: “rand”.

FlatGssp HierGssp HierGssp [mask=3] HierGssp [mask=6]
HierGssp [rand] HierGssp [OL] HierGssp [UL]
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Figure 7. Topology Independent Simulations: Flat Gossip
versus (New) Hierarchical Gossip. In (b), N = 2047. In the
other plots, the system-wide message loss rate=0%. Overlapping
data-points in (b) and (e) horizontally perturbed slightly for clarity.
The plots are explained in Section 6.1.

(1) models performance with perfect knowledge of N
and the network topology, e.g., soon after a Leaf Box Hi-
erarchy reorganization. (2)-(4) model staleness of H and
the group size estimate N in the tuple (K, N, H) (which



might occur due to process joins and failures since the last
hierarchy reorganization).

Both gossiping protocols (Flat and Hierarchical) are con-
figured as follows. Protocol rounds are synchronous at
group members3. Each member, on receiving a multicast,
gossips about it for logK(N)+4 rounds - the extra 4 rounds
are added for robust dissemination of gossip at small group
sizes. During each round, a member selects b = 2 gossip
targets using the (Flat or Hierarchical) distribution.

The membership view at each member Mi is constructed
with viewfactor = 4 in the algorithm of Section 3.2. The
view size is thus bounded by 4(log2(N))2 and increases
slowly with group size. At N = 16384, the average mea-
sured view size is about 600, or less than 5 % of group size.
General Scaling and Comparative Trends: All averages
in the plots of Figure 7 are measured over 50 random runs
of the protocol, and error bars show one standard deviation.
Figure 7(a) shows the baseline for the comparison; the mea-
sured average overhead per group member per multicast -
this grows as the logarithm of group size. HierGssp, de-
fault and random and for different values of mask, have the
same overhead. The UL and OL overheads are different; in
OL since the number of gossip rounds falls with decreasing
hierarchy height, and in UL due to lower reliability.

Figure 7(b) shows that FlatGssp tolerates up to 75 %
system-wide message loss while HierGssp (default) starts
to degrade at message loss rates of 30 %. This occurs be-
cause weighing target choices sends more copies (gossip
messages) of a multicast to group members that have pre-
viously received a copy. However, loss rates beyond 30%
indicate extreme congestion in the network, so HierGssp
and FlatGssp have comparable reliability in practical oper-
ating ranges. Skewed mappings in HierGssp lead to similar
behavior as the default, and are not shown. OL (resp. UL)
gives a higher (resp. lower) reliability than the default as the
Leaf Box Hierarchy has one level less (resp. more), and is
thus flatter (resp. more hierarchical). The rand mapping ex-
hibits high variability in reliability beyond a 20% loss rate.
Member failures give similar results, and these are omitted
for brevity.

Figure 7(c) compares the upper bound on the average
replication factor of a multicast through any domain bound-
ary. For FlatGssp, this corresponds to the worst case config-
uration of Figure 1. For (default) HierGssp, this is derived
from a summation of replication factors at internal nodes
(Section 4.2). The upper bound grows linearly with group
size for FlatGssp (300000 at 16384 members), whereas it
increases as the square of the logarithm of the group size for
HierGssp (2410 at 16384 members). The upper bound on
average domain boundary load (copies of a multicast/time

3This is a conservative assumption since a gossip is disseminated faster
with asynchronous gossip rounds rather than with synchronous gossip
rounds [22].

unit) passing through any domain boundary is the replica-
tion factor divided by dissemination latency . As group size
rises, domain boundary load in FlatGssp increases linearly,
while HierGssp (Figure 7(d)) quickly converges to a limit
independent of group size. In this experiment, the limit ap-
pears to be around 20 gossips/round.

Figure 7 (e) shows that average latency until a HierGssp
epidemic dies out is independent of mapping skewedness,
and increases sublinearly with group size. The latency is
higher than in FlatGssp, but Figure 7(f) shows that the ratio
is low; it stays below 4 at 16384 members. While Flat-
Gssp’s latency is logarithmic in group size, HierGssp’s la-
tency appears to increase as the square of this logarithm.
In general though, both protocols have low latencies - with
a 1 s gossip round, HierGssp’s (resp. FlatGssp) latency at
16384 members is a little over 2 min (resp. 34 s). The OL
mapping gives a lower latency than the default as target se-
lection is “flatter” than default HierGssp. As expected, UL
results in a very high latency.

Our conclusion is primarily that compared to FlatGssp,
HierGssp (default) achieves an order of magnitude lower
network overhead at the cost of a small decrease in fault-
tolerance and a small increase in multicast dissemination la-
tency. Further, the tradeoff space spanned by varying gossip
round length is better in HierGssp than in FlatGssp. With
increasing group size, the product of latency and domain
boundary replication factor would be sublinear in the for-
mer, and at least linear in the latter. The variation of relia-
bility and latency of HierGssp are not affected by mappings
that are skewed or overloading (although they are with un-
derloading and random mappings).
Non-uniform Leaf Box Mappings: Non-uniform map-
pings do however influence distribution of load on internal
nodes of the hierarchy, and thus multicast replication fac-
tor across domain boundaries 4. In Figure 8, we show the
variation of internal node loads in a height-10 Leaf Box Hi-
erarchy. A uniform mapping imposes similar load distri-
butions on all internal nodes at all levels (Figure 8(a); lev-
els are marked down from the root which is level 0). As
the skewedness of the mapping rises, the number of mes-
sages passing through some internal nodes increases (Fig-
ures 8(b,c)). From the addresses of the overloaded internal
nodes, we observe that these nodes are the first few direct
ancestors of the leaf boxes that contain a large number of
members. However, this increase in overhead is slow - even
at a skew of mask = 6, where the largest leaf boxes con-
tain 65 members, no internal node has a replication factor
beyond 257; this compares with mask = 0 (Figure 8(a))
where the maximum replication factor at a level 9 node

4Recall from the last paragraph of Section 4.2 that the replication factor
across a domain boundary can be bounded by summing the loads on the
non-common internal node ancestors of the leftmost and rightmost subtree
assigned to this domain.
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Figure 8. Topology Independent Simulations: Internal
node load due to Hierarchical Gossip with different mapping
schemes in a height-10 Leaf Box Hierarchy. The X-axis shows in-
ternal node addresses (obtained by zeroing out “*” ’s). Level 0 is
the root. N = 2047 in (a)-(c). The plots are explained in Sec-
tion 6.1.

(i.e., root of a height-1 subtree) is 133, and at any internal
node is 139. This occurs since the view composition repli-
cates members across subviews. Figures 8(d,e) show that
the UL (resp. OL) mapping, as expected, causes a halving
(resp. doubling) of domain boundary load w.r.t. the default
mapping. Plots for the random mapping depend on the ex-
act distribution of members and are not shown; intuitively
however, the average load on any given internal node over
all possible random distributions will look the same as Fig-
ure 8(a). We conclude that domain boundary load would
not increase significantly with mappings that are skewed,
overloading or underloading.
Conclusions about Leaf Box Hierarchy reorganization:
Uniform, skewed and OL mappings perform quite well un-
der the metrics considered, while rand and UL mappings
perform worse on reliability and latency, though not on do-
main boundary load. We conclude that the Leaf Box Hi-
erarchy would require reorganization when the group size
crosses a power of K (particularly when this size decreases)
or when the skew crosses a (pre-specified) threshold.

6.2. Simulations on Transit-Stub Topologies
A reduction of domain boundary load may not necessar-

ily translate into a reduction of overhead on core network
elements such as routers. For example, a router associated
with a boundary domain may have to route gossip messages
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Figure 9. Transit-stub Topologies: Comparison of network
link stress in a transit-stub topology in Hierarchical Gossiping
(HiCast) and Flat Gossiping: (a) Distribution of link stress in a
16,000 sized group; (b) Maximum link stress in the presence of
failures in a 16,000 sized group.

sent from other outside domains.
Hence, we compared the performance of C# implemen-

tations of the two multicast protocols in groups spread
within transit-stub network topologies generated from the
Georgia Tech model (GT-ITM) [24]. The two implemen-
tations are called “HiCast” (based on Hierarchical Gossip-
ing), and Flat Gossiping, respectively. Two discrete event
simulation scenarios were investigated - a 16,000 sized
group in a network of 600 core routers nodes and 60,000
LAN nodes, and a 64,000 sized group in a network of 5050
core routers nodes and 505,000 LAN nodes, with nodes as-
signed to routers (and members to nodes, one per node) via
a uniform distribution. Network routing delays were mod-
eled through a 1 ms delay on LAN links and a 40.5 ms delay
on core links. Shortest path routing was used. The maximal
process group membership was static. Contiguous Mapping
was used to map group members uniformly into the Leaf
Box Hierarchy that was constructed with K = 2 and an ac-
curate estimate of group size. Each multicast was gossiped
with b = 2, for 10 rounds in Flat Gossiping (20 rounds in
HiCast) in the 16,000 sized group, and for 12 rounds in Flat
Gossiping (25 rounds in HiCast) in the 64,000 sized group.

We measured the “stress” on a network link - the num-
ber of copies of a multicast that pass through it. Figure 9(a)
shows the distribution of stress across network links in the
absence of failures while Figure 9(b) shows the variation
of peak stress with failure rate. In spite of the higher load
per process in HiCast compared to Flat Gossiping, HiCast
imposes a load on core network links that is an order of
magnitude lower than Flat Gossiping. Similar behavior was
observed in the 64,000 sized group, verifying our hypothe-
sis that HiCast lowers overhead on core network elements.

Figure 10 shows the variation of reliability with process
failure rate and corroborates the data of Figure 7(b).

7. Conclusions
Flat epidemic-style algorithms for multicast dissemina-

tion offer good probabilistic guarantees on reliability and
scalability. However, they lack adaptivity and impose high
network overhead across domains in the network, which
translates to an overloading of core bridges, routers and as-
sociated links. Other epidemic-style algorithms either solve
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Figure 10. Transit-stub Topologies: Comparison of re-
silience to process failures in a transit-stub topology between
Hierarchical Gossiping (HiCast) and Flat Gossiping in (a) a 16,000
sized group and (b) a 64,000 sized group.

this problem partially, or are not generally applicable. We
have presented the (first) comprehensive set of solutions to
avoid these drawbacks. The new algorithms use an abstract
hierarchy defined on the process group, called the Leaf Box
Hierarchy. We have detailed and analyzed the Hierarchi-
cal Gossiping algorithm, and presented an overview of an
Adaptive multicast Dissemination Framework. The Leaf
Box Hierarchy can be mapped on to the member distribu-
tion on any Internetwork-type topology by using the Con-
tiguous Mapping, ensuring that the Hierarchical Gossiping
and Adaptive Dissemination protocols impose low overhead
on network elements such as core routers. Simulation re-
sults show that, compared to a canonical Flat Gossiping pro-
tocol, Hierarchical Gossiping imposes lower network over-
head than, but suffers small decrease in reliability and small
increase in latency. These algorithms require a view size
that increases with the square of the logarithm of the num-
ber of processes participating in the group. Simulations also
predict that the Leaf Box Hierarchy behaves well under uni-
form, skewed and overloaded mappings, and would require
infrequent reorganization.
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