
Self-Replicating Objects for Multicore Platforms

Krzysztof Ostrowski, Chuck Sakoda, and Ken Birman

Cornell University, Ithaca, NY 14853, USA
{krzys,cms235,ken}@cs.cornell.edu

Abstract. The paper introduces Self-Replicating Objects (SROs), a new
concurrent programming abstraction. An SRO is implemented and used
much like an ordinary .NET object and can expose arbitrary user-defined
APIs, but it is aggressive about automatically exploiting multicore CPUs.
It does so by spontaneously and transparently partitioning its state into
a set of replicas that handle method calls in parallel and automatically
merging replicas before processing calls that cannot execute in the repli-
cated state. Developers need not be concerned about protecting access to
shared data; each replica is a monitor and has its own state. The runtime
ensures proper synchronization, scheduling, decides when to split/merge,
and can transparently migrate replicas to other processes to decrease
contention. Compared to threads/locks or toolkits such as .NET Paral-
lel Extensions, SROs offer a simpler, more versatile programming model
while delivering comparable, and in some cases even higher performance.

1 Introduction

1.1 Motivation

Modern PCs are becoming massively parallel: 4-core PCs are widespread, 64-core
platforms will soon become a reality [1], and the trend is likely to continue, as it is
driven by compelling performance and energy considerations [2]. Unfortunately,
industry benchmarks show that moving from 2 to 4 cores, whether in PC games
or office applications, brings little benefit [3,4,5]: such systems rarely gain much
speedup beyond that which can be achieved by running applications side by side.
This could mean that many applications are non-parallelizable; our experience
suggests otherwise, and several researchers have offered plausible explanations.

First, it is widely believed that existing concurrency abstractions are inade-
quate: explicitly using threads/locks is difficult; using lock-free primitives is even
harder, and composing correct modules with locks can lead to deadlocks [2,6,7,8];
multi-threaded programs are hard to debug [8]. Software Transactional Memory
(STM) offers clean semantics, but it can be hard to exploit in applications that
trigger external actions hard to “rollback” on abort [9], such as web service calls.

Second, many developers fail to use parallelism because hardware is already
fast enough for their needs, and they lack incentives to optimize resource usage.
Decades of increase in CPU speeds have shifted the focus from careful perfor-
mance profiling towards increasingly sophisticated functionality, even at sharply

T. D’Hondt (Ed.): ECOOP 2010, LNCS 6183, pp. 452–477, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Self-Replicating Objects for Multicore Platforms 453

higher cost [2,10]. This is further complicated by the fact that modern develop-
ment environments shield developers from so many decisions that it is difficult
to understand the performance consequences of one’s architectural choices [10].

These and other studies suggest that it may be unrealistic to expect develop-
ers to explicitly and deliberately express concurrency in their programs through
programming language mechanisms. Instead, it may be preferable to approach
concurrency in a manner similar to the way we treat garbage collection: as im-
plicit, always present by default, controlled by the runtime, and only sporadically
manipulated by the developers, possibly in a declarative fashion via annotations.

Besides abstracting away complexity, letting the runtime control concurrency
is essential in avoiding the consequences of the Amdahl’s law [11]. To fully exploit
the potential of multi-core platforms, one needs to ensure that non-parallelizable
computation represents a small fraction of the system. This is hard to achieve
if concurrency has to be explicitly programmed; particularly if the developers
have to manually create tasks, combine them into complex workflows, and coor-
dinate access to shared data. If even a fraction of developers neglect to express
concurrency and 10% of code is not parallelizable, the system may be limited to
only a 10-fold speedup [11]. Thus, it is essential that concurrency be implicit.

In the last few years, concurrency techniques inspired by functional program-
ming have made their way into the mainstream OO languages [12,13,14,15,16,17]
in the form of data parallelism; this includes constructs such as parallel loops,
aggregations, and workflows. In purely functional programming, concurrency is
implicit [18] in the sense that computations do not share state, and can be
scheduled in parallel.

Modern software technologies, however, and widely used standards, including
web services and Ajax, are based primarily on the object-oriented, not functional
paradigm, and notions such as mutable state and externally visible behavior with
side effects are fundamental to it. Consequently, there is a limit to how much we
can achieve by explicitly embedding functional abstractions in an OO language.

To a degree, parallelism is implicit in the Actor model [19], e.g., in Smalltalk
[20]. Constructs such as asynchronous methods and futures [21] allow for decou-
pling of the caller from the callee; the two may run in parallel. Popularized by
Erlang [22], this capability has been incorporated into Java [23,24] and .NET
[25,26,27,28,29,30], and we expect it to be rapidly adopted by mainstream devel-
opers. The model is attractive, in that it enables concurrency without the need
for explicit synchronization; in most variants of the model, each object executes
at most one method at a time, and some implementations can even enforce mem-
ory isolation between components [26], making it impossible for distinct objects
to share data.

Actor-level concurrency, however, brings a new set of limitations: it enables
distinct objects to run concurrently, but individual objects are sequential, and a
single Actor can become a non-parallelizable bottleneck that drags performance
down if it has to handle a longer sequence of method calls in a serialized fashion.

The above discussion suggests that concurrency should be implicit in the OO
languages at a deeper level than simply decoupling objects from one-another: we



454 K. Ostrowski, C. Sakoda, and K. Birman

need a way to model individual objects as implicitly concurrent. Thus, it should
be possible for multiple method calls to be executed simultaneously, yet in a way
that retains the clean and intuitive sequential execution semantics that makes the
Actor model so attractive to developers; we need to prevent data sharing without
resorting to synchronization primitives. The functional approach addressed this
by eliminating the state altogether, but as mentioned earlier, state is an essential
part of the OO paradigm. A less radical approach is needed: to only require that
distinct concurrent activities are accessing disjoint portions of the object’s state.
One way to achieve this is to partition the state and allow multiple concurrently
executing threads to independently operate on their coresponding partitions, in a
manner similar to how the input data is partitioned by parallel loops, MapReduce
[31], and other mechanisms inspired by functional programming. Indeed, if state
and behavior play the same fundamental role in OO as functions do in functional
programming, then partitioning state is the perfect analogue of data parallelism,
and if splitting functional computation across all the available cores is automated
by the runtime environment, so could be the partitioning of the object’s state.
This observation motivates the methodology described in the following section.

1.2 Our Approach

This paper introduces Self-Replicating Objects (SROs), a new concurrency ab-
straction that builds upon and extends the Actor model style of concurrency.
An SRO resembles an ordinary object, in that it can implement arbitrary inter-
faces and expose user-defined methods, but unlike an ordinary object, each SRO
can have multiple replicas of its state. The replicas are symmetric: each has all
member fields defined by the SRO. Distinct replicas can be updated by different
threads without synchronization; the values stored in their fields are unrelated.

If the SRO consists of a single replica, we say that it is in the collapsed state;
in this case, the SRO is functionally equivalent to an ordinary Actor. If the SRO
consists of multiple replicas, we call it replicated. In the course of its lifetime, an
SRO can arbitrarily often transition between these two states; the number of its
replicas can be adjusted by the runtime environment depending on factors such
as the number and utilization of the available cores or the application workload.
It is not possible for the programmer to refer to individual replicas or to explicitly
manipulate their number; all code written by the programmer is always executed
in the context of a single replica (except for two special cases discussed further).

The methods of an SRO are classified as ordinary and scalable. The former can
run only in the collapsed state; if one is invoked on a replicated SRO, the run-
time postpones its execution until it has an opportunity to collapse the replicas.
Scalable calls can run in either state; during periods when they predominate, the
SRO can be replicated to introduce parallelism. The runtime will automatically
partition an SRO if many such calls follow in short succession.

SRO methods are non-blocking and asynchronous: all calls complete immedi-
ately; their execution is decoupled from invocation. The runtime transparently
intercepts each call, encapsulates it as an asynchronous event, and schedules for
execution on one of the available cores. The required scheduling, synchronization,



Self-Replicating Objects for Multicore Platforms 455

and replication logic are all dynamically generated at runtime, and the required
wrappers are seamlessly injected at cross-component boundaries. If desired, the
SRO could return results via asynchronous callbacks, or as futures (futures are
compatible with SRO, but not implemented in our prototype because .NET lacks
support for uniform proxies; one could implement these much as in Java [32]).

It is important to notice that in our approach, each call executes against only
one replica of the SRO’s state. Scalable methods can be directed by the runtime
to any of the available replicas, e.g., to load-balance, based on affinity, or to
leverage other considerations beyond the programmer’s control. Indeed, in our
model it is not possible for the programmer to invoke a specific replica. Request
ordering is normally preserved, as discussed below, but in many situations a series
of scalable calls submitted in succession will be executed in parallel. Moreover,
the number of replicas is dynamically adjusted to control the level of concurrency.

Much as in the Actor model, each replica acts as a monitor and handles a single
method call at a time; thus, each call exclusively owns the replica on which it
runs, and since replicas are disjoint (no state is shared), the programmers need
not use any synchronization primitives in the method bodies. Thus, in terms
of ease of use and transparency, our abstraction is comparable to Actors, while
potentially enabling a much more efficient use of parallel hardware. Developers
never explicitly control concurrency, and although they do have to be aware of
the presence of other replicas, they do not have to worry about race conditions.

Sequences of ordinary method calls issued by the same thread are executed in
the order in which they were submitted, and the relative order is also preserved
between pairs of ordinary and scalable method calls. Sequences of scalable calls
submitted together can be arbitrarily reordered, however; in this case, ordering
is undefined because the calls can be dispatched to different replicas. Ordinary
calls to an SRO made by different threads are guaranteed to be causally ordered.

As noted earlier, during the lifetime of an SRO, the runtime spawns replicas
as needed to execute sequences of scalable method calls in parallel, and merges
replicas prior to executing ordinary method calls; during an execution, SRO goes
through many such replicate/collapse cycles. The programmer cannot control
when this happens, but does provide a custom per-object replicate/collapse logic.
Each SRO defines a pair of special methods export(r′) and import(r′), where r′ is
a reference to a replica. After creating a blank new replica r′, at first uninitialized
and with empty state, the runtime invokes export(r′) in the context of an existing
replica r, to allow r to initialize r′ and possibly transfer some of its state to r′.
The export method is guaranteed to always run atomically with respect to other
activities that might be scheduled on either of the replicas involved in the state
transfer; hence, even though the method can access two independent portions of
the SRO’s state, the programmer need not worry about race conditions.

Likewise, when the runtime decides to demote an existing replica r′, it waits
for all ongoing calls to r′ to complete, executes import(r′) in the context of some
existing replica r, and destroys r′. The import call allows r to transfer the state
from r′ and combine it with its own. By convention, import leaves r′ in a blank,
empty, but usable state, to allow the runtime to immediately reuse it if needed;



456 K. Ostrowski, C. Sakoda, and K. Birman

this also allows the runtime to perform incremental state merging in parallel with
scalable calls, by periodically calling import against actively working replicas.

SROs support implicit parallelism in two ways. First, to other components,
their replicated nature is invisible; they behave like Actors, with asynchronous in-
vocation semantics. SROs are fully backwards compatible with the Actor model,
and can be seamlessly incorporated as a feature into any Actor-based platform.
For the purpose of evaluation, we implemented SRO as a feature within our Live
Distributed Objects (LDO) platform [33,34], but our approach does not depend
on any specifics of LDO, and we believe our findings to be universally applicable.

Second, while a developer implementing an SRO has to define export/import,
she never has to spawns threads/tasks or use synchronization primitives; she can
write all of her code as if it were always going to be executed by a single thread.

Example 1. Consider a priority queue with a simple interface that contains two
methods: enqueue(t, w) schedules a work item w to be processed at time t, and
dequeue(t) returns the list of work items scheduled to execute no later than t. If
the application accesses the priority queue in a very bursty manner, scheduling
and retrieving work in batches, it might be possible to parallelize it by modeling
it as an SRO. In this case, each replica of the SRO represents a separate priority
queue, with a disjoint set of scheduled work items. The enqueue method is marked
as scalable: each work item is scheduled on one of the replicas, arbitrarily chosen
by the runtime. The dequeue method is ordinary; it cannot run until the object
collapses. The export method is empty; it initializes a replica without transferring
any state. The import method combines two replicas, leaving one of them empty.
For example, if we implement the priority queue as a splay tree (as in the example
discussed in Section 3.3), the import method performs a merge on two splay trees.

In this example, modeling the queue as an SRO allows multiple enqueue calls
to execute in parallel. This is desirable, since in most implementations, including
the splay tree, enqueue is an O(log n) operation, and can be costly if the queue is
large. In contrast, accessing elements of a splay tree in order is an O(1) operation;
hence, it is possible to merge two splay trees efficiently. Our experiments confirm
that wrapping a large, heavily used queue as an SRO can make it up to 2x faster.

1.3 Related Work

While we believe SRO to be novel as a concurrent programming abstraction and
an extension of the Actor model, the idea of replicating a component is not new;
scalable and fault-tolerant network services have traditionally been implemented
as clusters of servers that maintain sessions with and respond to requests from
disjoint sets of clients [35,36]. In some systems, service replicas used distributed
protocols such as state machine replication and reliable multicast to coordinate
changes to their state, but since these protocols tend to be expensive, it is more
common for servers to remain only loosely synchronized, instead relying on back-
ground reconciliation mechanism to restore consistency. SROs use a similar idea:
rather than require all methods to run against shared state, we allow the replicas
to diverge, and rely on the import method to combine the results of their work.



Self-Replicating Objects for Multicore Platforms 457

The behavior of an SRO is reminiscent of MapReduce [31,37,38]. Scalable calls
handled in parallel by replicas can be viewed as analogous to map followed by
reduce that combines the results of the call with the state of a replica. Import is
analogous to reduce, whereas export resembles the MapReduce deployment step.
As the SRO replicates and collapses, it goes through a series of MapReduce-like
stages: its state is repeatedly partitioned, its portions are processed in parallel,
and then merged together. Most of the classic MapReduce workloads are easily
expressed as SROs; we discuss some of them in Section 3.4.

Compared to MapReduce, SRO is more general. First, MapReduce is inspired
by functional programming, and most intuitive when used in a functional style, to
represent one-off computations that run to completion. It is less obvious how to
use it in an elegant way to model objects such as the priority queue in Example 1,
or agents that continuously respond to requests while maintaining internal state
accumulated in the course of computation. Second, MapReduce models data as
sets of (key,value) pairs [31]. SRO does not use keys; replica states and arguments
of scalable calls can assume any form. Third, in an SRO that has multiple scalable
methods, different types of reductions interact with one-another as they execute,
by altering replica states. Finally, SROs are backwards compatible with the
Actor model and can be easily incorporated into legacy code; transforming an
Actor into an SRO requires only adding import and export, and annotating some
methods as scalable; all existing code remains unchanged.

Some of these points also apply to other abstractions inspired by functional
programming or data parallelism. This includes parallel loops and reduces, work-
flows, and graphs of interconnected tasks; some of the most popular examples
include Intel’s Thread Building Blocks (TBB) [14], Microsoft’s Parallel LINQ
(PLINQ) [15] and Task Parallel Library (TPL) [16] (also known as Parallel Ex-
tensions and integrated into .NET 4.0), and others [12,13,17,39]. As mentioned
earlier, using these mechanisms involves a conscious and deliberate effort on be-
half of the programmer, and legacy code would have to be significantly modified
to be parallelizable; this conflicts with the implicit parallelism approach we pos-
tulated earlier. Also, while the abstractions are certainly extremely useful, they
are either low-level, or they belong to a different paradigm. We believe that OOP
needs its own approach to concurrency, and SRO is a step in this direction.

Our proposal builds upon a rich body of work on the Actor model [19] and its
implementations: Erlang [22], Scala [23,24], Timber [40], Salsa [41], and others.
Much prior work focused on the equivalence of threads and events [42] as a way of
implementing Actors; particularly on implementing asynchronous methods that
contain blocking calls and infinite loops without allocating a thread per Actor,
e.g., by using tail recursion [23,24,25], or by automatically transforming blocking
code to continuation-passing style by the compiler [28]. In most implementations
of the model, Actors assume control via a blocking receive or a similar call
[22,23,24,25,27,28,29,30,43,44]; much work focused on features such as multi-
way joins that allow multiple events to be corelated and received atomically in
a rendezvous-style. Our contribution is complementary to all the above work.
Support for loops and blocking calls and features such as multi-join receive could



458 K. Ostrowski, C. Sakoda, and K. Birman

be easily incorporated into SRO using any of the published techniques. Likewise,
automatic replication could be added without much difficulty to most of the
aforementioned platforms.

A number of lightweight thread architectures have been proposed to support
very large numbers of Actors, e.g., Kilim [45], Actra [46], and Capriccio [47]. Our
prototype uses a thread pool and assumes that methods do not contain blocking
code. Some have criticized event-driven programming as unintuitive [48,49,23];
others argued the opposite [6,7], and the widespread adoption of standards such
as Ajax and the turn towards asynchronous APIs [50] strongly support this point
of view. Some of the prior work focused on ways to combine the models [23,51].

Many implementations of the Actor model use a custom work-stealing sched-
uler [52,53]. In principle, SRO is compatible with any scheduling infrastructure,
although some of the functionality provided by our prototype, such as replicating
SROs across processes and machines, are difficult to combine with work-stealing.

The idea of an implicitly parallel computation has also been explored, e.g., in
Fortress [54], but implicit parallelism in earlier work applies primarily to control
structures such as loops, whereas our work targets fundamental OO abstractions.
Other work focused on mechanisms such as speculative parallel method calls [55].

State replication as a way to introduce concurrency has been explored in [56];
their system performs static analysis and transforms sequential code by injecting
threads and locks. SRO uses dynamic reflection, and injects wrappers with lock-
free event scheduling code. We focus on different types of optimizations, such as
remote replication, incremental imports, or flow control, and different workloads.
Our technique is complementary to, and could be used in combination with [56].

We believe SROs to be the first to model Actors, mapreduce, and many forms
of task- and data-level parallelism as special cases of a single unified program-
ming abstraction. This, the ease of use, the backwards compatibility with Actors,
and the flexibility left to the runtime in deciding when to spawn or merge repli-
cas and where to direct its method calls, make SRO an attractive alternative as
a basic building block for massively parallel applications.

1.4 Contributions

This paper makes the following contributions:

1. It introduces SRO, a new concurrent programming abstraction that extends
Actor-style parallelism with the ability to parallelize individual Actors, while
being fully backwards compatible and easy to integrate into legacy systems.

2. It offers an approach to implicit concurrency that more naturally fits with the
OO paradigm than those inspired by data flow functional and programming.

3. It combines elements of multiple paradigms (Actors, data parallelism, MapRe-
duce) within a single unified abstraction and offers a versatile programming
model that enables forms of concurrency typically achieved with threads and
locks. It discusses two broad classes of workloads that benefit from SRO and
are hard to model using the existing tools: stateful components that perform
continuous, heavy batch-style processing, and producer-consumer scenarios.



Self-Replicating Objects for Multicore Platforms 459

4. It evaluates a working system (http://liveobjects.codeplex.com/); it shows
that SRO matches cutting edge technologies such as PLINQ on MapReduce
workloads, and in some scenarios overperforms it thanks to techniques such
as remote replication. It shows substantial gains on workloads native to SRO.

2 Implementation

2.1 Live Distributed Objects

This section presents the architecture of the LDO platform as a point of reference;
the implementation of SRO as an extension to LDO is discussed in Section 2.2.
Our priority queue SRO can be defined as a component in LDO as shown below
(the code is simplified for readability; the actual namespaces and syntax differ).

01: [Serializable] [ComponentClass("6F0DB8E4D16443C28A71D39CB04A763E")]

02: class PQueue : IPQueue, IReplicated<PQueue>, ISerializable {
03: PQueue(IContext c) { e = c.NewEndpoint<IPQClient,IPQueue>(this); }
04: private IEndpointInternal<IPQClient,IPQueue> e;

05: [Endpoint] IEndpoint<IPQClient,IPQueue> E { get { return e; } }
06: [Option(Async|Multi|Scalable)] void IPQueue.Enqueue( ... ) { ... }
07: [Option(Async|Multi)] void IPQueue.Dequeue( ... ) { ... }
08: void IReplicated<PQueue>.Export(PQueue other) { ... }
09: void IReplicated<PQueue>.Import(PQueue other) { ... } }
A component in LDO is an annotated .NET class that exposes some endpoints.
An endpoint is a small data structure that stores two interfaces: one exposed by
the component that defines it (here IPQueue), and one that should be exposed by
another component (IPQClient). Endpoints serve as connectors; all interactions
between any pair of components in LDO are channeled through their endpoints,
which have to be explicitly connected. As soon as this happens, the interfaces are
exchanged, and the runtime dynamically generates, compiles, and transparently
injects various wrappers that enable features such as automatic data conversion
or event scheduling. Replication has been implemented as one of such wrappers.

Each component creates its endpoints in the constructor (line 3), stores them
as fields (line 4), and provides on demand via annotated .NET properties (line 5).
Any entity that holds a reference to a component can query it for endpoints and
connect them to endpoints exposed by other components (including itself). The
connect/disconnect operations are the only ones supported by endpoints. Thus, to
use a component, one has to connect a client endpoint of a complementary type.

Wrappers are hidden from the programmer. To expose an interface (IPQueue),
the component implements its methods (IPQueue.Enqueue and IPQueue.Dequeue

in lines 6-7), and points to itself as the entity that handles all calls arriving via the
endpoint (this in line 3). Under the hood, such interface is actually implemented
by a wrapper, which follows the façade pattern, and can forward the call directly
to the target component, or schedule it for later (Fig. 1). Method bodies can call
the other connected component through the endpoint (e.g., e.Interface.Result(...)).

The set of injected wrappers is determined based on annotations ([Option(...)]

in lines 6-7). For example, a method could be annotated as asynchronous (Async),



460 K. Ostrowski, C. Sakoda, and K. Birman

method call
Enqueue(1)

component 
“PQClient” endpoint

component “PQueue”

interface

W

scheduling
wrapper

Enqueue(3)

Dequeue()

Enqueue(1)

event
local 

context

IPQClient

IPQueue

call 

Result() CODE

call 
Enqueue(2)

thread pool

PQueue

PQClient

global queue

q1

q2

q8

PQueue

handle
multiple
events

component code

Fig. 1. To invoke method Enqueue on the component PQueue connected to it, compo-
nent PQClient calls its local endpoint, which routes the call to the endpoint exposed by
PQueue. The latter passes the call to an auto-generated wrapper, which encapsulates
it as an event and schedules it on a lock-free queue in PQueue’s local context. The local
context schedules itself on one of the global queues associated with scheduler threads.

multi-threaded (Multi, similar to COM multi-threaded apartments), and scalable
(Scalable). By default, methods are synchronous (no scheduling code is injected).

Whenever the application process loads a new DLL, the LDO runtime uses
.NET reflection and introspection to scan all types, looking for annotations, and
generates wrappers as a C# code, which is then compiled in memory and loaded.
For each asynchronous method, an event class is created that stores all its input
and output parameters and programmer’s custom annotations. For each interface
exposed via a wrapper, a façade class is created that defines all its methods, and
in their bodies, instantiates appropriate events and passes them to the scheduler.

Each component in LDO, at the time of creation, receives its private runtime
context (IContext in line 3), a small object that holds all scheduler data structures
associated with the individual component. When an endpoint is created (line 3),
its wrappers are configured to pass their events to the component’s local context.
The local context has its own lock-free queue, on which all events associated with
the component are deposited. If a new event is placed on the local context queue,
but the queue is not actively processed by any scheduler thread, the local context
registers itself with the scheduler by posting an event on a global lock-free queue
(Fig. 1). Each thread in the thread pool has one global queue associated with it.

Each thread in the pool monitors its queue. When it finds an event posted by
a local context, it enters the context to handle calls scheduled in it in a batched
manner, one after another. The number of calls and time spent in a single local
context are bounded to prevent starvation. If the scheduler thread exceeds this
limit, it puts the context back on one of the other global queues, and moves on
to the next local context. The advantage of this two-level queue hierarchy is that
events associated with the same component are processed together, with better
locality, and that scheduler threads consult their queues less often, thus reducing
contention. A major disadvantage is that this push-based approach can result in
unevenly balanced load. In practice, allocating 2x more scheduler threads than
there are CPU cores suffices to avoid imbalance in all workloads we have tested.



Self-Replicating Objects for Multicore Platforms 461

2.2 Self-Replicating Objects

In the absence of scalable calls, an LDO component behaves as described in the
preceding section; it acts similarly to a classical Actor, except with asynchronous
methods that run to completion. Replication gets first activated when a scheduler
thread enters the component’s local context and dequeues an event representing
a scalable method call from the component’s local queue. The thread determines
the type of the call from the annotations tagged onto the event by the scheduling
wrapper. Now, depending on the situation, the thread can proceed in three ways.

First, if the component is in a collapsed state (as indicated by a status variable
in the local context), the thread may simply ignore the annotation and execute
the call as ordinary: scalable calls are legal in any state. This will be the case if
the scheduler believes that the component is not under heavy workload, and the
overhead of replication would outweigh its advantages. The scheduler maintains
statistics in the local context, e.g., the average duration of a call in a recent time
period or the number of scalable calls encountered in close succession; these can
be used to devise adaptive policies for when to replicate. The discussion of such
policies is outside the scope of this paper. In all our experiments we adopted an
aggressive replication policy: new replicas are spawned (up to a predefined limit)
when possible if all existing replicas are currently busy processing scalable calls.

Second, if the SRO is in a collapsed state, running an ordinary call, the event
is put back at the head of the queue and the context is frozen; no new events are
processed until all ordinary calls complete. The context also freezes if an ordinary
call is dequeued in a replicated state, while scalable calls are still executing.

Finally, if the component is in a collapsed state, but not processing ordinary
calls, or if it is already in the replicated state, the event is scheduled for execution
on one of the slave replicas (the initial replica is designated as master and plays
a special role). If no slave replicas exist, or if all existing slave replicas are busy,
and their number is still below the predefined threshold, a new replica is created.

Slave replicas are copies of the entire component: as mentioned earlier, each
has a copy of all fields/methods in the master. Each slave replica also includes
its own local context and its own local event queue independent from the master;
it is a completely separate component in LDO, and behaves as described in the
preceding section. The only difference is that all features pertaining to replication
are disabled: slave replicas cannot further replicate the calls. Also, slave replicas
are not visible to other application components, and cannot directly receive calls:
they can only receive calls forwarded from the master. The slave replicas may be
able to submit calls to other components through one of the master’s endpoints,
although we have not needed such functionality in any of the tested workloads.

If a new replica is created, it is now added to the master’s pool, and export is
executed in the context of the master to transfer state. If not, one of the existing
replicas is selected using a simple round-robin policy. In either case, the event is
subsequently placed onto the designated replicas’s lock-free queue; it is executed
later, when a scheduler thread enters the replica’s local context. Meanwhile, the
master keeps processing events in its local context, and if more scalable calls are
encountered, they are immediately rescheduled to execute on different replicas.



462 K. Ostrowski, C. Sakoda, and K. Birman

Notice that in this scheme, every scalable call goes through two event queues,
and is scheduled twice. The disadvantage of this is that calls suffer from increased
latency. On a very heavily loaded system, it can take tens of milliseconds for such
event to be processed. The advantage is that if many scalable calls are submitted
in short succession, they can be much more efficiently distributed across threads.
It might be possible to reduce the overhead by moving the scheduling logic to the
scheduling wrapper, but we found that it dramatically increases the complexity
of the scheduler: even in the current version, the scheduling and replication logic
includes 30+ CAS-style operations, and in practice, replication can be adaptively
enabled only on bursty workloads, where throughput matters more than latency.
Indeed, we experimented with a simple bypass technique that avoids intermediate
scheduling on the master; it made no impact on the results reported in Section 3.

Notice also that our scheme is push-based; there is no work-stealing. Once an
event is forwarded to one of the replicas, it is assigned to the replica and cannot
be further reassigned. To alleviate the potential for uneven distribution of work,
we provide a flow control policy. Each replica adaptively chooses the maximum
number of events it can accept: it monitors the duration of the subsequent calls,
and adjusts the threshold so that it has enough events to continue for δ seconds,
where δ is a configuration parameter. If all replicas are at their thresholds, the
event cannot be rescheduled and the master context is frozen, as discussed earlier.
In practice, we found that on the tested workloads, flow control is not necessary,
since the durations of subsequent scalable calls were similar enough. Our scheme
could be modified to use a work-stealing policy, if desired, although some of the
features discussed later rely on the push approach and would have to be disabled.

Moving scalable calls to slave replicas has one additional benefit: the master
is free to perform export and import at any time while a long sequence of scalable
calls is being processed. Normally, the master executes import calls only when the
SRO is in a replicated state, and its context is frozen on a pending ordinary call.
When a slave replica finishes processing all calls scheduled on it, and detects that
the master is frozen in such a state, it awakens the master, which subsequently
executes import on the replica, then disposes of it. While some replicas are getting
demoted, other replicas might still continue processing their scheduled calls; this
allows for the processing and merging phases to partially overlap.

In some workloads discussed below, postponing the entire merge phase until
the end is undesirable, e.g., in situations where the costs of merging rise rapidly
as a function of the number of events processed by a replica. Accordingly, we
implemented optional incremental imports. When this feature is enabled, each
slave replica runs a timer with timeout θ, where θ is a configuration parameter;
it checks the timer after processing each event. Whenever the timeout expires,
the replica checks if another replica designated as its parent is ready to accept
an incremental import. The replicas are ordered into a tree-like hierarchy, with
the master at the root. A replica can always accept an incremental import if
there are no incremental imports currently enqueued on it, as discussed below.
If the parent cannot accept an import, the timed-out replica resets the timer to
a shorter retry interval θ′ (also a parameter), and retries the incremental import
later. If the parent is ready for incremental import, the process works as follows.



Self-Replicating Objects for Multicore Platforms 463

To perform incremental import, the timeout-out replica r spawns a new tran-
sient replica r′ outside of the replication limits. The transient replica r′ has no
local context, no queue, and it cannot accept events; it exists solely for the pur-
pose of transferring state. The timed-out replica r first executes export(r′) it its
own context to initialize r′, and follows with import(r) in the context of r′, thus
allowing all its state to be moved to r′. Replica r now remains in an empty state,
and can continue to accept new calls, whereas r′ is enqueued with the parent on
a dedicated transfer queue. Each replica checks its own transfer queue after each
scalable call, and if it finds a transient replica r′ enqueued on it, it immediately
performs import(r′), then disposes of r′. To prevent the transient replicas from
piling up and keep the overhead low, a replica is considered not ready for import
if its transfer queue is non-empty. Thus, transient replicas are spawned at most
at the speed at which they can actually be consumed by their respective targets.

The last feature we discuss in this section is the ability to export slave replicas
to other processes or to other machines; we refer to this as remote replication (as
opposed to local replication discussed so far). To support this, the LDO scheduler
optionally spawns a number of child processes and establishes TCP connections
with them. Each of the child processes runs a separate hosting environment, and
can run components on behalf of the master process controlling it. When remote
replication is enabled, the master replica on the master process, after creating a
slave replica, can optionally serialize and send it over TCP to the child process.
If a replica is exported out of process, instead of rescheduling scalable calls,
as described earlier, the master likewise serializes all calls and sends them over
TCP to the child for remote execution. The child remotely executes all calls, and
can periodically export its current state and send it back to the parent process
in a way similar to how we implemented incremental import. Otherwise, the
process is virtually identical to what was discussed so far, except that all control
requests such as the intent to import and demote a replica, are transmitted over
the network. Since all scheduling logic is already event-driven, asynchronous, and
push-based, we did not need to significantly change our scheduler to support this.

As discussed in Section 3, remote replication allows replicas to run in sepa-
rate CLRs, with their own schedulers and as a result, much less contention. The
main overhead factor is the cost of serialization/deserialization. To reduce it, we
used a serialization stack from our QuickSilver Scalable Multicast (QSM) engine
[57], with performance-improving features such as scatter-gather and mecha-
nisms that eliminate the need to repetitively pass class/namespace names and
other metadata. While not as versatile and functional as .NET serialization, this
scheme let us decrease communication overheads by an order of magnitude.

3 Evaluation

3.1 Configuration and Performance Metrics

All measurements reported here were performed on a Dell PowerEdge 2950 server
with 2 quad-core Intel Xeon X5355 2.66GHz/8MB cache CPUs (in total 8 cores),
16GB RAM, running Microsoft Windows Server 2008 R2 with .NET Framework



464 K. Ostrowski, C. Sakoda, and K. Birman

3.5sp1/4.0beta2. The LDO runtime and the test components were compiled with
optimizations and ran as 64-bit code. A typical workload lasted for minutes and
involved a warmup phase. Time was measured using a combination of DateTime,
QueryPerformanceCounter, and for detailed profiling on Fig. 7, 8, also the RDTSC
instruction. We took precautions against the known RDTSC pitfalls: take samples
on the same physical thread pinned to a CPU core; disable power management,
check for CPU frequency changes; issue memory barriers; reboot between series
of experiments; analyze distributions and check for negative/very large samples.
We rely on RDTSC only for increased resolution on very short intervals. Statistics
such as % CPU utilization were taken using OS performance counters.

The two primary performance statistics we employ are speedup and efficiency.
Both are relative with respect to the baseline we use in the particular experiment.
We define speedup s as s = t0/t, where t is the time to finish all computation
with SRO, and t0 is the time to finish in the baseline scenario; the total amount
of work is the same. We define efficiency as relative speedup divided by relative
cost: e = (t0/t)/(c/c0), where c is the total CPU utilization across all cores if
using SRO, and c0 is the CPU utilization in the baseline scenario. Note that since
efficiency is relative to the baseline, it can be higher than 1 (more is better). This
is the case if the baseline scenario involves high contention.

Another statistic we use is the relative utilization of CPU cores. To account
for the fact that threads migrate, in each set of measurement samples we order
cores from the most to the least loaded and average samples within each rank.
We use the term kth core to refer to the kth busiest core, not a physical one.

3.2 Performance with Synthetic Workloads

We begin with the analysis of idealized synthetic workloads in order to quantify
the overheads incurred by the SRO infrastructure and the .NET CLR. We also
evaluated realistic workloads and report them later, but those results are easier to
interpret in light of the information from the synthetic ones. The main takeaway
from this section is that when a method call to an SRO lasts for at least a few μs
(as is the case for Enqueue calls in a large priority queue, as shown on Fig. 3, and
all MapReduce workloads discussed in Section 3.4), the overheads of replication
are negligible, and scalability is limited by factors independent of SRO: memory
bottleneck and .NET CLR overheads, particularly memory allocation, garbage
collection, and contention in .NET data structures.

In the first experiment (Fig. 2), the tested component declares two methods:
Work() annotated as scalable and an ordinary Done(). Work performs a single type
of operation repeatedly, in a tight loop, as shown below. By varying the number
of loop iterations (constant count), we control the duration of a single Work call.

01: void Work() { for (int i = 0; i < count ; i++) { operation } }

The benchmark also invokes Work multiple times in a loop, sequentially and from
a single thread, and follows with a single call to Done, as shown below. Done calls
back into the benchmark code to signal that all work has completed.



Self-Replicating Objects for Multicore Platforms 465

���

�

�

�

�

� � 	� ��� �
 ��


��
�
�
�
�
�

��������	
���������

���������� ��������� ��������� ��������� ����������

���������� ���������� ������������� ������ �� !���"���

���

���

��#

���

� � 	� ��� �
 ��


�
��
�	
��


	�

��������	
���������

Fig. 2. Performance with synthetic workloads: one type of operation, no state to merge.
Processing time and speedup are plotted on a logarithmic scale to improve readability.

01: for (int i = 0; i < num ; i++) { sro.Work(); }
02: sro.Done();

In the baseline scenario, the tested component acts like an ordinary .NET
object; each call to Work and Done runs synchronously. With SRO enabled, Work

becomes asynchronous and is excuted in parallel by the replicas, and Done waits
for all the Work calls to complete and for all the replicas to be merged. In this ex-
periment, there is no state to merge; the body of import is empty. The benchmark
thus only measures the maximum speedup that can be achieved by parallelizing
Work calls. In realistic workloads, much of this gain is subsequently lost in import.

In case of a purely computational workload, when the body of Done consists
of floating point operations (data series “arithmetic” on Fig. 2), speedup > 1.0
is achievable when the duration of the call is higher than ε = 1μs, approximately
the amount of overhead introduced by the SRO scheduling and replication logic.
Both speedup and efficiency reach their maximum with calls approaching 100μs,
but even calls lasting 5μs can benefit from a 4-fold speedup and a 70% efficiency.

The observed values match our predictions (data series “theoretical”), cap-
tured by the formulas below, in which n is the number of cores, t is the duration
of the call in a baseline scenario, and κ is scheduling contention discussed below.

speedup s(t) =
n

1 + nε/t
, efficiency e(t) =

1
1 + κε/t

. (1)

To see how the formulas are derived, note that scheduling overhead can be viewed
as mostly sequential. If all work is perfectly balanced across cores, m calls to an
SRO take mε+mt/n, compared to mt in the baseline case. We obtain s(t) after
dividing the latter by the former. To compute cost, assume that in the scheduler,
κ cores on average compete for resources. The number of cores used by the SRO
is an average of κ and n, weighted by mε and mt/n, correspondingly. We arrive at
the formula for efficiency e(t) by dividing speedup s(t) by that weighted average.



466 K. Ostrowski, C. Sakoda, and K. Birman

The value of κ will depend on the implementation. In our platform, contention
occurs primarily in the implementation of lock-free queues spinning on CAS-style
operations; it involves the application thread issuing calls and a scheduler thread
dispatching them to the replicas, hence κ ≈ 2; this is the value we used on Fig. 2.

The next two workloads in this experiment are heavy on memory operations:
swapping the contents of random cells in a 1.6MB array that fits entirely in the
cache (the swap-short series) and in a 100MB array that does not (swap-long).
Replicas in the SRO scenario work on disjoint parts of the array, and use different
patterns of random access; the random indices of cells to swap are pre-computed.

When all data fits entirely in the L2 cache, the achievable speedups are nearly
the same as in case of the purely computational workload, although for calls that
last under 100μs efficiency is slightly lower. In contrast, if the data does not fit,
performance is slashed by the system memory bottleneck, the speedup converges
to 2 even with very long calls, and the efficiency remains low, at the level of 25%.

Contention is even more pronounced with memory allocations. The next two
workloads allocate small objects, combine them into linked lists, and restart each
time the lists reach a predefined maximum size: 160 elements (alloc-short), or 2.5
million (alloc-long). With SRO, replicas build separate lists, and their maximum
length is scaled down to ensure that the garbage collection overheads are similar.
In either case, we cannot speed up sequential code: allocation is too expensive.

While workloads consisting solely of memory operations and allocations may
seem artificial, they turn out to be good predictors of the performance we observe
with several of the standard collections. In particular, manipulating hash tables
(dictionary) involves small allocations and access over large portions of memory,
and indeed it lies somewhere in between with its 1.5 speedup and a 30% efficiency.

In contrast to manipulating large data structures and collections, operations
such as manipulating network sockets, calling SOAP web services, serialization,
and deserialization are quite scalable: we can achieve 2.5 to 5-fold speedup with
up to 80% efficiency. This suggests that contrary to the popular trend, in man-
aged environments the benefits of parallelism may be easier to find, e.g., in web
application components as opposed to typical data-heavy MapReduce workloads.

In the experiment just discussed, all calls to the tested component were made
from within a single thread, but in realistic parallel applications, there will often
be concurrency on the client-side as well. In the second experiment, we split the
calls evenly among 8 client threads and let them all make their calls concurrently.
The final Done is called once, after all client threads run through their for loops.
In the baseline scenario, we additionally protect Work with a method-wide lock.

For the sake of brevity, we omit performance data and just briefly summarize
the results. For the most part, speedup is not affected by client-side concurrency;
in the baseline scenario, all work is anyway serialized due to locking and the SRO
is isolated from client threads through its local context queues. What does change
is efficiency: with calls under 500μs, the baseline scenario experiences high lock
contention and saturates all CPU cores with useless work. SRO efficiency is >1
even with 1μs calls for most workloads, and reaches 8 at 500μs with arithmetic.



Self-Replicating Objects for Multicore Platforms 467

3.3 Performance with Stateful Components

In this section, we move on to more realistic workloads. We discuss two examples
of components that have state and a nontrivial merging phase: the priority queue
introduced in Section 1.2 (Example 1), and the append log (Example 2, discussed
below). The former represents a broader class of workloads that involve batched
processing, where data is continuously accumulated and accessed in phases. The
latter represents the broader class of producer-consumer scenarios. The exam-
ples demonstrate the versatility of SRO. While implementing these components
using Actor-style parallelism or data-parallel abstractions is possible, we found it
hard to do this in an elegant manner; typically, one resorts to low level program-
ming, with explicit use of threads and fine-grained locks. The examples are also
important in that compared to MapReduce workloads discussed in Section 3.4,
the components discussed here are lightweight: a typical call lasts only a few μs
(Fig. 3), yet SROs can offer measurable performance benefits even at this level.

To evaluate the performance of the priority queue, we preload the queue with
various numbers of elements, ranging from a few to a few millions, and perform a
burst of enqueue calls in a loop followed by a single dequeue. As in the preceding
section, if SRO is disabled, all calls run synchronously, and if SRO is enabled, the
dequeue is postponed until all enqueue calls complete. By varying the number of
enqueued elements, we vary the size of the data structures and the overheads in-
curred by each call: parameter processing time on Fig. 3. Additionally, we vary the
number of arguments passed to enqueue: parameter b on Fig. 3. When b > 1, the
benchmark is requesting multiple events to be scheduled in one call, passing
the desired times together as arguments to enqueue. The event times are random
and computed in advance to avoid polluting the experiment. To simulate the use
in a realistic application, the k-th event out of the total n is scheduled to run at
time k/n+α ·X , where X is a [0,1] uniformly distributed random variable and α
is a parameter that determines how much the series is unordered. The results are
similar for most choices of α; those on on Fig. 3 were obtained with α = 0.1.

As seen on the charts (Fig. 3, top), higher speedups and efficiency are possible
with longer calls, when the SRO scheduling overheads and the cost of allocating
splay tree nodes are less pronounced. Longer calls work on larger data structures,
and spend proportionally more time on comparisons and memory operations. As
explained in the preceding section, this is where gains can potentially be made.

With 8 CPU cores, one might expect speedup higher than 2, but if we compare
the results on Fig. 3 with those on Fig. 2, it becomes clear that performance is
limited by memory bottleneck and non-scalable memory allocation overheads;
the two types of operations dominate in the code, and indeed, speedup/efficiency
curves on Fig. 3 lie close to those of alloc-long and swap-long reported on Fig. 2.

The speedup is better explained if we look at the performance of SRO sepa-
rately in the working phase (when performing enqueue), and in the merge phase
(when collapsing the replicas). In the working phase, the SRO utilizes only about
3-4 cores (not shown) because of the contention factor mentioned above. Because
work is split among multiple replicas, each call is also slightly cheaper. Overall,
SRO completes work in 20-30% of the time it takes the baseline implementation



468 K. Ostrowski, C. Sakoda, and K. Birman

�

���

���

�

���

���

���

� � 	� ��� 
��

��
�
�
�
�
�
�

��������	
����������

��� ��� ��� ��� ���� ��	�

���

���

���

���

�

���

� � 	� ��� 
��

�
��
	

	�
�

�
�

��������	
����������

��

��

	�

��


�

� � 	� ��� 
��

�
��
�	
�
�
��
�
�
�	
�
�
��
�
�
�
��

��������	
����������

��� ��� ��� ��� ���� ��	�

�


��





��

�


� � 	� ��� 
��

�
��
��
��
�
�
�	
�
�
��
�
�
�
�
��

��������	
����������

Fig. 3. Top charts: performance of the priority queue implemented as SRO, relative to
the baseline. Bottom charts: the durations of the enqueuing (work) vs. import (merge)
phases with SRO enabled, expressed as relative to the duration of the baseline scenario.

to finish (Fig. 3, bottom left). The non-parallelizable merge phase takes a similar
amount of time (Fig. 3, bottom right), thus bringing speedup down to 70-100%.

Notice that while the gain achieved in the work phase converges to a constant
level and depends mainly on the number of cores and contention in the CLR, the
relative duration of the merge phase is sharply decreasing: as the data structures
get larger and more costly to access, the per-element merge overhead eventually
becomes insignificant compared to the per-call overhead during the work phase.

Now, we shift attention to our second example: the append log. As mentioned
earlier, this type of logic is often expressed using low-level abstractions: threads,
locks, asynchronous I/O. SROs are easier to use, and as shown here, just as fast.

Example 2. Consider a logging component with one method log(m) that appends
an update m to the end of a log file on a disk, e.g., to enable rollback and replay
in a system that can crash and reboot. The operation needs to serialize m, which
is computationally intensive, and could be parallelized, and perform I/O, which
requires synchronization to ensure that the appended segments do not overlap.
We can model the component as an SRO, in which a scalable call log(m) serializes
the object and puts it on the list of objects pending I/O, the import call merges
the lists, and if it occurs on the master, import also invokes I/O in a synchronous



Self-Replicating Objects for Multicore Platforms 469

�

�

�

�

�

�

�

�

�	�� �	� � �� ��� ����

��
�
�
�
�
�
�

��������	
���������


��������� 	������������� 	����������������� ���� �!�"#�

�

�	�

�	�

�	�

�	$

�

�	�� �	� � �� ��� ����

�
��
	

	�
�

�
�

��������	
���������

Fig. 4. Performance with append log, relative to the single-threaded sequential baseline:
SRO compares favorably to hand-crafted code with threads/locks + asynchronous I/O.

manner. By activating SRO’s incremental imports, we ensure that the serialized
blocks are written out regularly, at a speed at which the disk can accept them.

The benchmark creates a .NET dictionary m with n elements in it, and then
repeatedly invokes log(m) in a loop, measuring the time for all calls to complete.
As in the previous sections, by controlling the number of elements n, we change
the duration of a single log call. The baseline implementation is again sequential,
singe-threaded, and invokes the log calls one after another.

We compare the speedups achieved by SRO with two alternative implementa-
tions. The first (.NET thread pool) performs serialization in parallel by schedul-
ing work items on the .NET thread pool, and performs disk I/O synchronously,
protected with a lock. The second (.NET thread pool + asynchronous I/O) also
uses asynchronous I/O to parallelize disk writes and minimize lock contention.

SRO compares favorably to both implementations: it makes the most efficient
use of CPU (Fig. 4), and always performs at least as well as asynchronous I/O.
The slight differences compared to .NET thread pool may be caused by different
behavior of the .NET and LDO schedulers; overall, performance is comparable.

3.4 Performance with MapReduce Workloads

In this section, we shift attention to classic MapReduce workloads, modeled after
prior work on MapReduce on multi-core platforms [37]. As a baseline scenario,
we have implemented each workload as a program that explicitly spawns threads
and makes efficient use of fine-grained locking to protect shared data structures;
we refer to this baseline as locking. We demonstrate that performance achieved
with SRO always matches, and in several cases beats that achieved with a hand-
written code; replication overhead is lower than the hard to avoid lock contention.
Furthermore, SROs perform as well as, and in several cases better than state of
the art parallel MapReduce abstractions offered by the latest versions of .NET.

We evaluated the performance of SROs with three parameter settings. First,
we used in-process replication: all replicas are spawned in the same address space



470 K. Ostrowski, C. Sakoda, and K. Birman

as the benchmark code; we refer to this setting as local replication on the charts.
We disabled flow control and incremental aggregation; they had minimal effect
on performance. Second, we used out-of-process (remote) replication: replicas are
exported to child processes, with all communication over TCP. Since serialization
in this scenario affects performance, we evaluated two variants: SRO with .NET
binary serialization stack (remote), and with the QSM [57] stack (remote - QS ).

SROs are coded in much the same way as in the preceding sections: scalable
map calls are issued in a for loop, followed by a single ordinary done call to mark
the end of the computation, and the final reduction step is performed in import.

We compared our results with two state of the art approaches based on .NET
Parallel Extensions: one that directly uses Parallel.For from .NET Task Parallel
Library (TPL), denoted as ParallelFor on the charts, and another expressed with
.NET PLINQ. The ParallelFor version adheres to the following general pattern.

01: string[] paths = ...;

02: IDictionary<string,int> result = new Dictionary<string,int>();

03: Parallel.For(0, paths.Length, new ParallelOptions(),

04: () => new Dictionary<string,int>(),

05: (index, loop, counts) => Reduce(counts, Map(paths[index])),

06: counts => { lock (mylock) result = Reduce(counts, result); });
The above shows the WordCount implementation; the others are similar. Notice
the lock statement in the last line; there, partial results generated by each worker
thread are integrated into the main data structure at the end of the computation.

The PLINQ version is expressed in a purely functional style; hence, it does
not require any explicit locks. It adheres to the following general pattern.

01: IDictionary<string, int> result =

02: (from index in ParallelEnumerable.Range(0, paths.Length)

03: select Map(paths[index])).Aggregate((x, y) => Reduce(x, y));

With PLINQ, aggregation is performed incrementally (during the computation).
Most of the following discussion focuses on analyzing the classic WordCount

workload (Fig. 5), to explain in depth the reason for the performance advantages
of SRO over the manually written code, and on the benefits of remote replication.
Other classic MapReduce workloads are discussed at the very end of this section.

We discuss two WordCount implementations: the most intuitive (hash table)
that uses a .NET Dictionary to count word occurrences, and one (sorting) that
is less heavy on memory allocation and the use of .NET collections. The latter is
computationally more expensive, but incurs less contention and performs better
across the board; in particular, it is 4x faster in the baseline scenario.

As shown on the charts, regular SRO (local) performs as well as hand-written
code with the sorting implementation, and almost 2x faster in case of hashtable.
In both cases, SRO utilizes fewer CPU resources. The results are almost identical
to those achieved by PLINQ, and better than ParallelFor in one of the scenarios.

When work is offloaded to child processes, SRO performs significantly better
than all other implementations: with QuickSilver serialization, it yields an almost
2x speedup over PLINQ in the sorting scenario and more than 3x speedup over
PLINQ in the hashtable scenario. In the latter case, SRO provides a 5.7x speedup



Self-Replicating Objects for Multicore Platforms 471

�

�

��

���

���

���

�	
��� ���������

�
�
�
��
��
�
	

�
��

�

�
�



�	��� 
��	�� 
��	������� �	���� ��
������	
 �����

�

��

 �

!�

"�

���

�	
��� ���������


�
�
�

�
��
��
��
��
�
	

�
�
�


�

�

 

!

�	
��� ���������

�
�
�
�
�
�



�

�

�

�

 

�	
��� ���������

�
��
��
��
	
��



��� 

Fig. 5. Performance of WordCount: we compare code that uses .NET Dictionaries (hash
table) with code that sorts words to facilitate counting and avoids memory allocations
(sorting). Performance metrics on the bottom charts are relative to the locking baseline.
On these charts, all performance metrics including speedup are plotted on a linear scale.

over the hand-written code, and makes a 4x more efficient use of CPU resources.
This is despite the considerable overhead incurred by serialization/deserialization
and exchanging data over TCP with child processes. Performance and efficiency
gains are due to the fact that remote replication greatly reduces contention, and
the redundant work involved in inter-process communication is smaller than the
overhead otherwise incurred by spinning locks, lengthy garbage collections, etc.

To better illustrate the reasons for the observed performance gains, particu-
larly with remote replication, we report the relative durations of different phases
of computation (Fig. 6). As seen on the chart, serialization/deserialization with
the QSM stack takes on the order of a few seconds compared to the tens of sec-
onds saved in the working phase thanks to the lower contention among replicas.
Unlike the priority queue, merging replicas in WordCount is very cheap: the time
spent in import accounts for about 5% of the total duration of the experiment.

We attributed SRO’s performance gains to a reduced contention. To measure
it directly, we profiled different sections of the code (Fig. 7). First, in the baseline
scenario 50% of the time is spent acquiring locks, which hurts efficiency. Second,
GC activity with the baseline is especially high in the hash table scenario, where
SRO turns out to be particularly beneficial. Remote replication slashes the cost
of memory-related operations and the use of collections (add and GC ); it makes
less impact on sections that are less sensitive to contention (find words and sort).



472 K. Ostrowski, C. Sakoda, and K. Birman

��������	
���

�

�������������
���

����������
���

���������
	��

������

��	��

������

����

������

���

	�����

������

	�����


����

������

�����

��������	
����

�

��������������
��

���������������

��������	���

�������

�����

������

 ��

� !��

"�����

���� ��
����

�����

�����

���#��

�����

����� serializa	on deserializa
on� ��������

Fig. 6. The time spans of the different phases of computation in the WordCount work-
load (left: sorting, right: hash table). In case of PLINQ, merging overlaps with compu-
tation; the length of the merging bar is thus not indicative of the actual work invested.

�

�

��

��

��

��

�
�
�
�
�
�
�
�
	

�
�
�
�

�

�



��� 	
������� ���� 	
����� �� ����
�
�������� ���
�

�

 �

!��

! �

���

� �

"��

�
�
�
�
�
�
�
�
	

�
�
�
�

�

�



��� ��� 

Fig. 7. The relative contributions to the total execution time in Word Count (left: sort-
ing, right: hash table) coming from different sections of the benchmark code: adding new
words to a dictionary (add) and looking up existing ones (find words), sorting words to
eliminate duplicates (sort), splitting lines of text into word-sized strings (split), file I/O
(file IO), acquiring locks (acquiring locks), and the garbage collector activity (GC ).

To further elucidate the dynamics of the workload, we micro-profiled selected
individual lines of code that contain representative operations, such as individual
dictionary lookups and string comparisons (Fig. 8). Each of these operations took
significantly less time in SRO’s remote replication scenarios despite the fact that
the total number of threads (and thus the amount of preemption) was identical.

It is worth noting that SRO performance matches that of PLINQ despite the
fact that SRO employs an aggressive push-based scheduling scheme instead of a
work-stealing scheduler [53]. In all scenarios we evaluated, allocating an adequate
number of scheduler threads and object replicas guarantees even distribution of
work; as a rule of thumb, we typically set these to 2x the number of CPU cores.



Self-Replicating Objects for Multicore Platforms 473

�����

����

���

�

�

�

�	
�

�	�

�	
�

���

�	
�

���


��� �	��

���

�
�
�
�
�
�
��
	
�


�
�
�

�
��
�
�
�
��

��
�� ������ ��������� ��
�	� ����������� �����

�����
����
���
�
�
�
 

�!
"�
!�

�� 

�	
�

�	�

�	
�#��� �	
�#��� ���	�

�
�
�
�
�
�
��
	
�
�


�
�

�
��
�
�
�
�

��� 

Fig. 8. The result of micro-profiling individual lines of code in Word Count (left: sort-
ing, right: hash table): dictionary TryGetValue (dict find), assignment d[key]=value (dict
set), dictionary Add (dict add), a comparison of two strings (comp), list Add (list add),
and string Split (split) operations. Longer times point to increased contention in .NET.

	


	

�	

�	

	

�		

	 � 
 � � � � �


��
��
��
��
�
�
��
�
��

�����

����� ������ ����������� ������� ����������� �����

	


	

�	

�	

	

�		

	 � 
 � � � � �


��
��
��
��
�
�
��
�
��

�������� 

Fig. 9. Relative CPU core utilizations with WordCount for the sorting (left) and hash
table (right) implementations: the kth data point shows the load on kth most busy core.

As mentioned before, the reason for using a push-based scheme is motivated by
the remote replication performance. Work-stealing scheduling is hard to combine
with remote replication without an explicit support from the .NET runtime; the
scheduler would have to span across and migrate events between processes. In our
push-based scheme, a call once dispatched stays assigned to the same process.
Imbalance in work assignment can be bounded by the flow control scheme.

To put this discussion in context, let’s look at the relative utilization of CPU
cores (Fig. 9). As seen on the chart, locally replicated SROs balance the workload
roughly as well as PLINQ. The distribution of work is actually slightly more even
on all cores except for the busiest one; the load on the busiest core is higher than
on the others due to the (mostly sequential) replica splitting and merging phase.
Remote replication spreads work even more evenly despite the mostly sequential



474 K. Ostrowski, C. Sakoda, and K. Birman

�

������

�����

����

���

�

�

�

	
���

��
��

���
����� �������

����

����������  !���� ��"

#��$%��

��
�
�
�
�
�
�

%���% ����
� ����
��!�&	 ����%%�%'�� �(�)&

�

���

�

���

�

���

*

*��

	
���

��
��

���
����� �������

����

����������  !���� ��"

#��$%��

�
��
	

	�
�

�
��

%���% ����
� ����
��!�&	 ����%%�%'�� �(�)&���� 

Fig. 10. Performance with other typical MapReduce workloads [37]. Word Pairs counts
the frequencies of bi-grams (two-word sequences) instead of single words. Web Crawler
compiles a list of hyperlinks starting at http://google.com in an iterative manner; each
iteration explores the next level. K-Means is also iterative, and uses randomly generated
data points. Reverse Index operates on an offline, locally saved snapshot of Wikipedia.

deserialization phase. This is due to the fact that with out-of-process replication,
different replicas are using independent garbage collectors. The baseline locking
implementation also loads cores evenly, but as noted earlier, it wastes resources.

Having thoroughly analyzed WordCount, we now briefly summarize the per-
formance achieved by SRO on other examples of MapReduce workloads (Fig. 10).
First, as was the case for WordCount, SRO’s local replication generally performs
at least as well as hand-written code, PLINQ, and ParalellFor. Remote replica-
tion does not help on workloads, in which the method calls are very short (String
Match and K-Means), and where the amount of data transferred in each method
call is relatively large Histogram and Reverse Index ). In the former case, batching
calls can help significantly; after doing so, one can still demonstrate performance
gains due to the reduced contention (not reported here due to space limitations).

4 Conclusions

SROs are an elegant, easy to use programming abstraction that addresses short-
comings of the Actor model concurrency, and unifies multiple paradigms. SROs



Self-Replicating Objects for Multicore Platforms 475

are versatile; they can match, and in some cases exceed the performance of both
manually-written code and dedicated mechanisms such as the .NET thread pool,
asynchronous I/O, or PLINQ, on several types of workloads, whether functional
(MapReduce) or not (priority queue, append log). SROs are easy to incorporate
into existing OO environments, and seamlessly integrate with the existing code.

Acknowledgments. This work was supported, in part, by grants from AFRL,
NSF, and Intel. We would like to thank Andrew Myers for his helpful comments.

References

1. http://www.intel.com/pressroom/archive/releases/20090526comp.htm

2. Sutter, H.: The concurrency revolution, http://www.ddj.com/cpp/184401916
3. Case, L.: Does quad core matter? (2007), extremetech.com
4. Hagedoorn, H.: Cpu scaling in games with dual and quad core processors (2008),

guru3d.com

5. Intel: Digital Office Performance: Business Productivity with SYSmark 2007 pre-
view (2009), intel.com

6. van Renesse, R.: Goal-oriented programming, or composition using events, or
threads considered harmful. In: EW-8 (1998)

7. Ousterhout, J.: Why threads are a bad idea (for most purposes). Invited talk at
USENIX (1996)

8. Sutter, H., Larus, J.: Software and the concurrency revolution. Queue 3(7) (2005)
9. Harris, T.: Exceptions and side-effects in atomic blocks. Science of Computer Pro-

gramming 58(3) (2005)
10. Larus, J.: Spending moore’s dividend. CACM 52(5) (2009)
11. Amdahl, G.: Validity of the single processor approach to achieving large scale

computing capabilities (2000)
12. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel

language. In: IJHPCA (2007)
13. Ghulou, A., Sprangle, E., Fang, J., Wu, G., Zhou, X.: Ct: A flexible parallel pro-

gramming model for tera-scale architectures (2007), techresearch.intel.com
14. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-

cessor Parallelism. O’Reilly Media, Sebastopol (2007)
15. Duffy, J., Essey, E.: Parallel LINQ: Running queries on multi-core processors

(2009), msdn.microsoft.com
16. Leijen, D., Hall, J.: Parallel performance: Optimize managed code for multicore

machines (2009), msdn.microsoft.com
17. Blelloch, G.: NESL: A nested data-parallel language. CMU Tech. Report (1993)
18. Burton, F.: Functional programming for concurrent and distributed computing.

Computer Journal 30(5) (1987)
19. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for arti-

ficial intelligence. In: IJCAI (1973)
20. Yokote, Y., Tokoro, M.: Experience and evolution of concurrent smalltalk. SIG-

PLAN Notices 22(12) (1987)
21. Baker, h., Hewitt, C.: The incremental garbage collection of processes. In: AIPL

1977 (1977)

http://www.intel.com/pressroom/archive/releases/20090526comp.htm
http://www.ddj.com/cpp/184401916
extremetech.com
guru3d.com
intel.com
techresearch.intel.com
msdn.microsoft.com
msdn.microsoft.com


476 K. Ostrowski, C. Sakoda, and K. Birman

22. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang. Prentice-Hall, Englewood Cliffs (1996)

23. Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: JMLC (2006)

24. Haller, P., Odersky, M.: Actors that unify threads and events (2007),
scala-lang.org

25. Pickering, R.: Concurrency in f# - part iii - erlang style message passing (2007),
strangelights.com

26. Fähndrich, M., et al.: Language support for fast and reliable message-based com-
munication in singularity os. In: EuroSys (2006)

27. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for c#.
TOPLAS (2004)

28. Chrysanthakopoulos, G., Singh, S.: An asynchronous messaging library for c#. In:
SCOOL (2005)

29. Podwysocki, M.: Introducing maestro – a dsl for actor based concurrency (2009),
weblogs.asp.net/podwysocki

30. Gustafsson, N.: Axum: Language overview (2009), msdn.microsoft.com
31. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

In: SOSP (2004)
32. Eugster, P.: Uniform proxies for java. In: OOPSLA (2006)
33. Ostrowski, K., Birman, K., Dolev, D., Ahnn, J.: Programming with Live Dis-

tributed Objects. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 463–489.
Springer, Heidelberg (2008)

34. Ostrowski, K., et al.: Live Distributed Objects (2007),
liveobjects.cs.cornell.edu

35. Zhang, X., Hiltunen, M., Marzullo, K., Schlichting, R.: Customizable service state
durability for service oriented architectures. In: EDCC (2006)

36. Marian, T., Balakrishnan, M., Birman, K., van Renesse, R.: Tempest: Soft state
replication in the service tier. In: DSN (2008)

37. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating
mapreduce for multi-core and multiprocessor systems. In: HPCA (2007)

38. Lämmel, R.: Google’s mapreduce programming model - revisited. Sci. Comput.
Program. 68(3), 208–237 (2007)

39. Thies, B., Karczmarek, M., Amarasinghe, S.: Streamit: A language for streaming
applications. In: ICCC (2001)

40. Black, A., Carlsson, M., Jones, M., Kieburtz, R., Nordlander, J.: Timber: A pro-
gramming language for real-time embedded systems (2002), timber-lang.org

41. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
salsa. In: OOPSLA (2001)

42. Lauer, H., Needham, R.: On the duality of operating system structures. In: ACM
SIGOPS OSR (1979)

43. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: APPSEM (2000)

44. Sulzmann, M., Lam, E., van Weert, P.: Actors with multihea- ded message receive
patterns. In: COORDINATION (2008)

45. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for java. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

46. Thomas, D., et al.: Actra: A multitasking / multiprocessing smalltalk. SIGPLAN
Notices 24(4) (1989)

47. von Behren, R., Condit, J., Zhou, F., Necula, G., Brewer, E.: Capriccio: scalable
threads for internet services. In: SOSP (2003)

scala-lang.org
strangelights.com
weblogs.asp.net/podwysocki
msdn.microsoft.com
liveobjects.cs.cornell.edu
timber-lang.org


Self-Replicating Objects for Multicore Platforms 477

48. Cunningham, R., Kohler, E.: Making events less slippery with eel. In: HotOS (2005)
49. von Behren, R., Condit, J., Brewer, E.: Why events are a bad idea (for high-

concurrency servers). In: HotOS (2003)
50. http://msdn.microsoft.com/en-us/devlabs/ee794896.aspx

51. Li, P., Zdancewic, S.: A language-based approach to unifying events and threads.
Tech Report, U. of Penn (2006)

52. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk:
An efficient multithreaded runtime system. In: PPoPP (1995)

53. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:
OOPSLA (2009)

54. Allen, E., et al.: Project fortress: A multi-core language for multi-core processors
(2008), linux-mag.com

55. Balakrishnan, S., Sohi, G.: Program demultiplexing: Data-flow based speculative
parallelization of methods in sequential programs. In: SIGARCH (2006)

56. Rinard, M., Diniz, P.: Eliminating synchronization bottlenecks using adaptive repli-
cation. TOPLAS (2003)

57. Ostrowski, K., Birman, K., Dolev, D.: Quicksilver scalable multicast. In: NCA
(2008)

http://msdn.microsoft.com/en-us/devlabs/ee794896.aspx
linux-mag.com

	Self-Replicating Objects for Multicore Platforms
	Introduction
	Motivation
	Our Approach
	Related Work
	Contributions

	Implementation
	Live Distributed Objects
	Self-Replicating Objects

	Evaluation
	Configuration and Performance Metrics
	Performance with Synthetic Workloads
	Performance with Stateful Components
	Performance with MapReduce Workloads

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


