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In this supplementary material, we first describe addi-
tional details about our depth map refinement/enhancing
algorithms (Section 1). We then include several additional
qualitative comparisons to show the effects of Lgrad and Lord

in Section 2. In Section 3, we provide additional details for
of our SfM Disagreement Rate (SDR). In section 4, we pro-
vide extra detailed quantitative performance of 4 modelswe
trained on MegaDepth. Finally, in Section 5, we provide
additional qualitative results in the form of depth maps pre-
dicted from images in our MegaDepth test set, as well as the
Make3D, KITTI and Depth in the Wild (DIW) test sets.

1. Depth Map Refinement and Enhancement
In this section, we provide additional details for our depth

map refinement and enhancement methods presented in Sec-
tion 3.2 and 3.3 of the main paper.

1.1. Modified MVS algorithm

Our modified MVS algorithm and semantic segmentation-
based depth map filtering are summarized in Algorithm 1.
Our algorithm first runs PatchMatch [1] using photomet-
ric consistency constraints, as implemented in COLMAP, to
solve for an initial depth map D0 (with some pixels whose
depth could not be estimated marked as invalid). Next, K
iterations of PatchMatch using geometric consistency con-
straints are run. For each iteration k, we compare the depth
values at each pixel before and after the update and keep
the smaller (closer) of the two, to get an updated depth map
Dk. After K iterations of PatchMatch, we apply a median
filter toDK and only keep depths whose values are stable, in
that they are close to their median-filtered value. Finally, we
remove spurious depths from transient objects based on se-
mantic segmentation, as described in Section 3.3 of the main
paper. Regarding the parameters defined in Algorithm 1, we
set τ1 = τ2 = 1.15 and K = 3. Two additional examples of
depth maps with and without our refinements are shown in
Figure 1.

1.2. Foreground and background classes

In this subsection, we provide details of the foreground
object classes used to define the foreground mask F for each

Algorithm 1 Depth Refinement and Semantic Cleaning

Input: Input image I , semantic segmentation map L (di-
vided into subregions F (foreground), B (background),
and S (sky).

Output: Refined depth map D for image I .
1: Run PatchMatch using photometric consistency con-

straints to solve for initial depth estimate of D0. Pixels
in D0 without an assigned depth are instead assigned a
NaN sentinel value.

2: for round k = 1 to K do
3: Run PatchMatch using geometric consistency con-

straints on Dk−1 to get updated depth estimate Dk.
4: Rk = Dk/Dk−1 (element-wise)
5: for each valid (non-NaN) pixel p of Rk do
6: if Rk

p > τ1 then
7: Dk

p = Dk−1
p

8: else
9: Dk

p = Dk
p

10: Apply 5× 5 median filter on DK , storing result in D̂K .
11: Filter (i.e., replace with NaN) unstable pixels from

DK
p for which max(D̂K

p /D
K
p , D

K
p /D̂

K) > τ2.
12: for each connected component C from F do
13: if fraction of valid depths in C is > 50% then
14: keep depths in region C from DK .
15: else
16: remove all depths in region C from DK .
17: Filter out all depths in sky region S.
18: Apply morphological erosion followed by small con-

nected components removal operation on DK to obtain
final depth map D.

image, and similarly the background object classes used to
define the background mask B. These classes are subsets of
the classes recognized by our semantic segmentation module,
as described in Section 3.3 of the main paper.

Foreground classes. F = {person, table, chair, seat, sign-
board, flower, book, bench, boat, bus, truck, streetlight,
booth, poster, van, ship, fountain, bag, minibike, ball, animal,
bicycle, sculpture, traffic light, bulletin board}



(a) Input photo (b) Raw depth (c) Refined depth

Figure 1: Additional example comparisons between
MVS depth maps with and without our proposed refine-
ment/cleaning methods. Column (b) (before filtering):
the plinth of the statue in the first row and the “Statue of
Liberty” in the second row both show depth bleeding ef-
fect. Column (c) (after filtering): our refinement method
corrects or removes such depth values.

Background classes. B = {building, house, skyscraper, hill,
tower, waterfall, mountain}.

1.3. Automatic ordinal depth labeling

In this subsection, we provide additional details for our
automatic ordinal depth labeling method. Recall that O
(“Ordinal”) is the subset of photos that do not satisfy the “no
selfies” criterion described in the main paper. Recall that the
“no selfies” criterion rejects images I for which < 30% of
the pixels (ignoring the sky region S) consists of valid depth
values)—otherwise, these images are added to the set O. For
each image I ∈ O, and given foreground pixel F and B in
I as defined above, we compute two regions, Ford ∈ F and
Bord ∈ B, such that all pixels in Ford are likely in front of
all pixels in Bord.

In particular, we assign any connected component C of
F to Ford if the area of C is larger than 5% of the image.
We assign a pixel p ∈ B to Bord if it satisfies the following
conditions:

1. p belongs to the background region B,
2. the area of p’s connected component in B is larger than

5% of the image, and
3. p has a valid depth value that lies in the last quartile of

the full range of depths for I .

Originally, we considered a more complex approach involv-

Figure 2: Additional examples of automatic ordinal la-
beling. Blue mask: foreground (Ford) derived from semantic
segmentation. Red mask: background (Bord) derived from
reconstructed depth.

ing geometric reasoning (e.g., estimating where foreground
objects touch the ground), but we found that the simple ap-
proach above works very well (> 95% accuracy in pairwise
ordinal relationships), likely because natural photos tend to
be composed in certain common ways. Additional examples
of our automatic ordinal depth labels are shown in Figure 2.

2. Additional examples of the effects of Lgrad

and Lord

Here we show additional qualitative examples of the ef-
fects of our loss terms Lgrad and Lord effects on learned
single-view depth predictions. Figure 3 shows the effect of
Lgrad on predicted depth maps, and Figure 4 shows the effect
of Lord.

3. SfM Disagreement Rate (SDR)

In this section, we provide additional details for our SfM
Disagreement Rate (SDR) error metric defined in Section
5.1 of the main paper.

SDR is based on the rate of disagreement between a pre-
dicted depth map and the ordinal depth relationships derived
from estimated ground truth SfM points. We use sparse SfM
points for this purpose rather than dense MVS depths for two
reasons: (1) we found that sparse SfM points can capture
some structures not reconstructed by MVS (e.g., complex
objects such as lampposts), and (2) we can select a robust
subset of SfM points based on measures from SfM such
as the number of observing cameras or uncertainty of the
estimated depth computed by bundle adjustment.

We define SDR(D,D∗), the ordinal disagreement rate
between the predicted (non-log) depth map D = exp(L)
and ground-truth SfM depths D∗, as:

SDR(D,D∗) = 1
n

∑
i,j∈P 1

(
ord(Di, Dj) 6= ord(D∗i , D

∗
j )
)

(1)

where P is the set of pairs of pixels with available SfM
depths to compare, n is the total number of pairwise compar-
isons, and ord(·, ·) is one of three depth relations (further-
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Figure 3: Depth predictions with and withoutLgrad. Lgrad

encourages the prediction to match the depth gradient of the
ground truth.

than, closer-than, and same-depth-as):

ord(Di, Dj) =


1 if Di

Dj
> 1 + δ

−1 if Di
Dj

< 1− δ

0 if 1− δ ≤ Di
Dj

≤ 1 + δ

(2)

In other words, SDR is the rate of disagreement between
predicted and ground-truth depths in terms of pairwise depth
orderings. Note that SDR is an unweighted measure for
simplicity (all measurements count the same towards the
cost), but we can also integrate depth uncertainty derived
from bundle adjustment as a weight.

We also define SDR= and SDR6= as the disagreement
rate with ord(D∗i , D

∗
j ) = 0 and ord(D∗i , D

∗
j ) 6= 0 respec-

tively. In our experiments, we set δ = 0.1 for tolerance to
uncertainty in SfM points.

Because SDR is based on point pairs and hence takes
O(n2) time to compute, for efficiency we subsample SfM
points by splitting each image into 15× 15 blocks, and for
each block, randomly sampling an SfM point (if any exist).
We then use these sampled points to create a clique of or-
dinal relations, where each edge connecting two features is
augmented with the ordinal depth label. To obtain reliable
sparse points we only sample SfM points seen by > 5 cam-
eras and with reprojection error < 3 pixels. Figure 5 shows

Input photo Output w/o Lord Output w/ Lord

Figure 4: Depth predictions with and without Lord. Lord

corrects ordinal depth relations for hard-to-construct objects
such as people.

several examples of SfM points we sample for evaluating
SDR.

4. Detailed Quantitative Results
In this section, we provide additional quantitative results

on our MegaDepth test set, as well as the Make3D, KITTI
and Depth in the Wild (DIW) test sets for all 4 models
we trained on MegaDepth. The reason we do that is to
reduce performance variance of cross-dataset test since we
found if we do not train and validate models on any target
dataset, variance of error measures could vary significantly,
depending on when the models stop your trainning.

4.1. Quantitative results on MegaDepth test set

Quantitative error measures of 4 MegaDepth trained mod-
els on our MegaDepth test set are shown in Table 1.

4.2. Quantitative results on Make3D test set

Quantitative error measures of 4 MegaDepth trained mod-
els on Make3D test set are shown in Table 2.

4.3. Quantitative results on KITTI test set

Quantitative error measures of 4 MegaDepth trained mod-
els on KITTI test set are shown in Table 3.



Figure 5: Examples of sampled SfM points. Red circles
indicate sampled SfM points with the radius indicating esti-
mated depth derived from SfM; small radius = small (close)
depth, large radius = large (far) depth.

Model si-RMSE SDR=% SDR 6=% SDR%

Model-1 0.103 29.69 22.49 25.62
Model-2 0.102 24.09 26.26 25.32
Model-3 0.108 26.95 26.64 26.78
Model-4 0.104 30.19 22.06 25.60

Average 0.104 27.73 24.36 25.82

Table 1: Results on MD test set from 4 models trained on
MegaDepth Lower is better.

4.4. Quantitative results on DIW test set

Quantitative error measures of 4 MegaDepth trained mod-
els on DIW test set are shown in Table 4.

Training set Method RMS Abs Rel log10

MD Model-1 6.266 0.389 0.154
MD Model-2 5.915 0.411 0.150
MD Model-3 6.078 0.402 0.147
MD Model-4 6.659 0.407 0.172

MD Average 6.230 0.402 0.156

Table 2: Results on the Make3D test set from 4 models
trained on MegaDepth. The first column indicates the train-
ing dataset. Lower is better for all error metrics.

Training set Method RMS RMS(log) Abs Rel Sq Rel

MD Model-1 6.92 0.436 0.327 2.694
MD Model-2 6.36 0.385 0.333 2.409
MD Model-3 6.47 0.411 0.322 2.478
MD Model-4 6.97 0.424 0.324 2.769

MD Average 6.62 0.369 0.307 2.546

Table 3: Results on the KITTI test set from 4 models
trained on MegaDepth. The first column indicates the
training dataset. Lower is better for all error metrics.

Training set Method WHDR%

MD Model-1 23.87
MD Model-2 25.64
MD Model-3 25.04
MD Model-4 23.67

MD Average 24.55

Table 4: Results on the DIW test set from 4 models
trained on MegaDepth. The first column indicates the
training dataset. Lower is better for WHDR%.

5. Qualitative Results
In this section, we provide additional qualitative results

on our MegaDepth test set, as well as the Make3D, KITTI
and Depth in the Wild (DIW) test sets.

5.1. Qualitative results on MegaDepth test set

Qualitative results on images from the MegaDepth test
set are shown in Figure 6. As in the main paper, we compare
single-view depth prediction results from three network ar-
chitectures: (1) VGG, using the same network and loss as [3],
(2) ResNets, adopted from [5], and (3) the “hourglass”(HG)
network adopted from [2].

5.2. Qualitative results on Make3D

Figure 7 shows qualitative comparisons between our MD-
trained network and other non-Make3D dataset-trained net-
works on the Make3D test set. In particular, we compare



(a) Image (b) GT (c) VGG∗ (d) VGG∗ (M) (e) ResNet (f) ResNet (M) (g) HG (h) HG (M)

Figure 6: Depth predictions on MD test set. (Blue=near, red=far.) For visualization, we mask out the detected sky region.
In the columns marked (M), we apply the mask from the GT depth map (indicating valid reconstructed depths) to the prediction
map, to aid comparison with GT. (a) Input photo. (b) Ground truth COLMAP depth map (GT). VGG∗ prediction using the loss
and network of [3]. (d) GT-masked version of (c). (e) Depth prediction from a ResNet [5]. (f) GT-masked version of (e). (g)
Depth prediction from an hourglass (HG) network [2] . (h) GT-masked version of (g).



our method with (1) a DIW-trained network [2], (2) the best
NYU-trained network [3], and (3) the best KITTI-trained
network [4]. None of the methods used Make3D data during
training.

5.3. Qualitative results on KITTI

Figure 8 shows qualitative comparisons between our MD-
trained network and other non-KITTI dataset-trained net-
works on the KITTI test set. In particular, we compare our
method with (1) a DIW-trained network [2], (2) the best
NYU-trained network [7], and (3) the best Make3D-trained
network [5]. None of the methods used KITTI data during
training.

5.4. Qualitative results on DIW

Figure 9 shows qualitative comparisons between our MD-
trained network and other non-DIW dataset-trained networks
on the DIW test set. In particular, we compare our method
with (1) the best NYU-trained network [3] (2) the best KITTI-
trained network [4], and (3) the best Make3D-trained net-
work [6]. None of the methods used DIW data during train-
ing.
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(a) Image (b) GT (c) DIW [2] (d) NYU [3] (e) KITTI [4] (f) Ours

Figure 7: Depth predictions on Make3D. (Blue=near, red=far.) (a) Input photo. (b) Ground truth (c) DIW-trained network
predictions [2]. (d) Best NYU-trained network predictions [7] (e) Best KITTI-trained network predictions [4]. (f) Our
MD-trained network predictions. None of the models were trained on Make3D data.



(a) Image (b) GT (c) DIW [2] (d) Best NYU [7] (e) Best Make3D [5] (f) Ours

Figure 8: Depth predictions on KITTI. (Blue=near, red=far.) (a) Input photo. (b) Ground truth (c) DIW-trained network
predictions [2]. (d) Best NYU-trained network predictions [7] (e) Best Make3D-trained network predictions [5]. (f) Our
MD-trained network predictions. None of the models were trained on KITTI data.

(a) Image (b) NYU [3] (c) KITTI [4] (d) Make3D [6] (e) Ours

Figure 9: Depth predictions on the DIW test set. (Blue=near, red=far.) (a) Input photo. (b) Best NYU-trained network
predictions [3]. (c) Best KITTI-trained network predictions [4] (d) Best Make3D-trained network predictions [6]. (e) Our
MD-trained network predictions. None of the models were trained on DIW data.


