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Figure 1: All materials in this interior scene were generated and rendered using the techniques described in this paper. The insets on the left
and right reveal the corresponding structural descriptions that were used as inputs to our system.

Abstract

We present a general and practical method for computing BSDFs of
layered materials. Its ingredients are transport-theoretical models
of isotropic or anisotropic scattering layers and smooth or rough
boundaries of conductors and dielectrics. Following expansion into
a directional basis that supports arbitrary composition, we are able
to efficiently and accurately synthesize BSDFs for a great variety
of layered structures.

Reflectance models created by our system correctly account for
multiple scattering within and between layers, and in the context of
a rendering system they are efficient to evaluate and support textur-
ing and exact importance sampling. Although our approach essen-
tially involves tabulating reflectance functions in a Fourier basis, the
generated models are compact to store due to the inherent sparsity
of our representation, and are accurate even for narrowly peaked
functions. While methods for rendering general layered surfaces
have been investigated in the past, ours is the first system that sup-
ports arbitrary layer structures while remaining both efficient and
accurate.

We validate our model by comparing to measurements of real-world
examples of layered materials, and we demonstrate an interactive
visual design tool that enables easy exploration of the space of lay-
ered materials. We provide a fully practical, high-performance im-
plementation in an open-source rendering system.
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1 Introduction

The notion of scattering at a surface is central to rendering. It is
appropriate, and computationally essential, to treat thin structures
as surfaces when the scale of the scene allows: from a metal sur-
face with microscopic imperfections to a rough ocean viewed from
space, surface-scattering models are often the correct representa-
tion.

Metal or dielectric interfaces with microscopic roughness are the
simplest scattering surfaces, but the vast majority of nonmetallic
materials are not transparent; they reflect light diffusely by subsur-
face scattering. The most commonly used reflectance models, with
a diffuse and a specular component, are based on the idea of a di-
electric boundary above an optically dense scattering medium.

Surfaces can also be more complex, with layers that might not fully
hide the material below: glaze over ceramic, wall paint over primer,
colored car paint with a clear coat, vitreous enamel in gold and
silver jewelry, and layered biological structures like leaves, flower
petals, or skin. All these can be described in terms of a stack of
layers of scattering and/or absorbing media, separated by interfaces
that might be smooth or rough. At the bottom the stack could be an
opaque interface (such as a metal) or a transparent one. Layers and
interfaces provide a language that is useful for describing a wide
range of surfaces, and which already underlies most BRDF models.

Expressing a surface explicitly as a layered system with physical
parameters also allows it to be treated consistently across scales.
For close views where a given structure can’t be treated as a thin
surface, the structure can be rendered directly, and with an accurate
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reduction to a surface model, it can be freely switched to a surface
for farther views.

However, it is important to realize that we do not have accurate
computational models for scattering from any systems more com-
plex than a single layer or a single interface. Even the simplest
nontrivial system, of a single medium bounded by a smooth in-
terface, is only roughly approximated by standard BRDF models.
Many other models have been proposed for layered or coated struc-
tures of one kind or another, but all are limited to particular special
cases or lacking in terms of accuracy. Of course, it is possible to
instantiate any kind of layered structure explicitly in a rendering
system, relying on a general purpose rendering algorithm to resolve
interactions between the layers; however, this approach is usually
impractical due to the difficulty that a such methods face in reliably
finding light paths through a material stack.

In this paper we provide a complete solution for accurately sim-
ulating scattering from layered surfaces. Our system handles any
isotropic surface that can be expressed in terms of layers and in-
terfaces; in a sense we provide a computational language for de-
scribing surface structure. The building blocks of our system—
the grammar of the language, so to speak—are basis expansions,
the adding equations, and the adding/doubling method: computa-
tional tools from radiative transport that have seen occasional use
before in graphics. In this paper we develop the vocabulary needed
to express the kinds of surfaces that are useful for graphics: we
show how to use microfacet models for transmission and reflection,
measured BRDFs, and media with the Henyey-Greenstein and von
Mises-Fisher phase functions in this framework. We also provide
efficient algorithms for evaluation and exact importance sampling
at render time.

Our system is expressive but also practical. A precomputation step
expands all the BSDFs and phase functions in a Fourier basis, which
causes the plane-parallel multiple scattering problem to decompose
into separate problems per azimuthal frequency. The multiple scat-
tering problem is solved using adding/doubling for scattering layers
and the adding equations for the sequence of layers and interfaces.
Finally the resulting BSDF is stored to be used for rendering.

Our implementation scales efficiently to high orders, handling very
rough to nearly mirrorlike interfaces, and isotropic to strongly
peaked phase functions, while maintaining accuracy and avoiding
ringing or other artifacts. The precomputed BSDF is stored in a
sparse format, requiring a few kilobytes to a few megabytes, de-
pending on the expansion order. Precomputation time is on the or-
der of seconds, and render-time performance is close to that of ded-
icated implementations of BSDF models—in fact, the quality of
our importance sampling technique means that precomputed rep-
resentations of standard BSDF models sometimes outperform the
corresponding analytic models in equal-time comparisons.

Achieving this level of accuracy and performance requires consid-
erable care in designing representations, algorithms, and numerical
techniques used in both precomputation and rendering. In this pa-
per we discuss the design of the system and the most important
issues in making it work, and the full details are available in the
supplementary report. We will release a complete open-source im-
plementation as part of the Mitsuba renderer [Jakob 2010].

This paper has the following contributions:

• We develop efficient and robust numerical methods for pro-
jecting a range of transport-theoretic reflectance models into
a basis that supports arbitrary composition.

• We recognize the inherently sparse nature of the problem to be
solved and develop a system that is able to exploit this prop-
erty to scale to a wide range of layered structures including

very challenging input. To our knowledge it constitutes the
first practical solution for modeling the interactions of multi-
ple rough boundaries without simplifying assumptions.

• We show how to efficiently evaluate and importance sample
the resulting tabulations and propose an extrapolation method
that accelerates precomputation and rendering times further
when some approximations are acceptable.

• We propose a multiple scattering term for microfacet BRDFs
that avoids an energy loss issue of these models.

• We develop heuristics that automatically select a basis of suf-
ficient resolution to guarantee bounds on representation error.

2 Prior work

Light transport in graphics is typically done in the framework of
linear transport theory (wave and quantum effects are neglected
except, possibly, in deriving scattering phase functions). Predict-
ing reflectance from layered materials at this level of accuracy is
the subject of the albedo problem [van de Hulst 1980] in one-
dimensional linear transport theory—the problem of determining
the emergent distributions from plane-parallel media subject to only
external sources.

Exact closed-form albedo problem solutions are rare. In graphics,
Blinn [1982] used single-scattering solutions, which were extended
by Hanrahan and Krueger [1993] to include index of refraction
changes, multiple layers, and a Monte Carlo method for computing
multiple scattering. These were some of the first graphics models to
work in terms of layered media, but single-scattering solutions have
limited applicability and the more general Monte Carlo method is
unfortunately slow to converge—though the convergence rate can
be improved in some cases by the use of scattering equations in in-
tegral form [Pharr and Hanrahan 2000]. Our work pursues the same
goal with a focus on efficiency, accuracy, and generality.

Exact solutions that include all orders of scattering are limited to
infinitely-thick materials with isotropic or linearly-anisotropic scat-
tering and smooth, indexed-matched boundaries [Chandrasekhar
1960]. The semi-infinite solution for isotropic scattering involv-
ing the H-function was used by Premože [2002] to render dusty
surfaces. Solutions for finite layers [Das 2010] or for semi-infinite
media with Fresnel reflection [Williams 2006] require solving inte-
gral equations by iteration or other methods.

A wide variety of approximate deterministic methods are avail-
able for computing BSDFs for general layered materials, including
discrete ordinates (SN ) [Thomas and Stamnes 2002], the transfer
matrix method [Aronson 1971], the FN method [Siewert 1978],
adding-doubling [van de Hulst 1980], analytical discrete ordi-
nates [Siewert 2000], and the singular eigenfunction method [Mc-
Cormick and Kuscer 1973]. These methods all have different accu-
racy/cost tradeoffs and stability issues [Chalhoub et al. 2003] and in
principle any of them could be used to compute transport operators
within our general framework.

In graphics, our approach is most similar to that of Stam [2001]. In
his paper, he proposes the first BSDF model for rough dielectrics
and uses it via the SN method to compute a BSDF that models skin
as an anisotropic scattering layer with rough dielectric boundaries.
Our work continues in the same vein as Stam’s: we also model sur-
faces in terms of layers and boundaries and we work in terms of a
similar directional basis. However, our system goes considerably
beyond Stam’s earlier work, providing a complete, modular solu-
tion that can handle any layered structure accurately and efficiently
and maintains good performance for high order expansions. This



requires fundamentally different ways of computing basis expan-
sions, representing them compactly, and solving the resulting equa-
tions robustly in the face of challenging input. Also, to the best of
our knowledge, we are the first to consider importance sampling,
von Mises–Fisher scattering, and an approximate multiple surface-
scattering correction for rough interfaces using this approach.

Several specialized BRDF models have been proposed that approx-
imate specific types of layered structures using coupled diffuse
and specular lobes [Wolff et al. 1998; Shirley et al. 1997; Kele-
men and Szirmay-Kalos 2001], including asperity scattering [Koen-
derink and Pont 2003], and modified microfacet distributions for
rough slabs [Dai et al. 2009]. Our framework subsumes these mod-
els and is generally also more accurate as a consequence of cor-
rectly accounting for all interactions between layers. A variety of
other approximate analytic methods have been proposed for ren-
dering layered materials, such as Kubelka-Munk [Dorsey and Han-
rahan 1996], diffusion-based methods [Donner and Jensen 2005],
or specialized approximations for leaves [Wang et al. 2005]. A
flexible family of layered BRDFs was proposed by Weidlich and
Wilkie [2007]. Their approach is simple and efficient but doesn’t
achieve many desirable properties that our model does, including
reciprocity, energy conservation, and accurate accounting for mul-
tiple scattering within and among layers.

Neglecting polarization effects, we consider only scalar radiative
transfer in this paper. Extension of our methods to handle vec-
tor radiative transfer is straightforward [Garcia 2012]. There is
also the possibility of inhomogeneous scattering layers—layers
where the single-scattering albedo is a function of depth, which
are solvable using known methods [Yanovitskij 1997a]. Floures-
cence [Wilkie et al. 2006], anomalous dispersion [Weidlich and
Wilkie 2009], and thin film interference effects [Hirayama et al.
2001; Icart and Arquès 2000; Ershov et al. 2001] have been consid-
ered in reflectance models and could be included as components in
our framework but our foremost focus here is on a comprehensive
geometrical optics framework.

3 Background

This section describes the computational framework of our system,
which builds upon a number of prior works in transport theory that
we review here. We will work under a plane-parallel, or 1D trans-
port, assumption, meaning that illumination and surface properties
are assumed to be invariant across the surface, so that all functions
depending on position can be modeled as depending on depth alone.
Practically speaking, this means that the we are deriving a BSDF
rather than a BSSRDF model.

The system works in terms of radiance functions expanded in a di-
rectional basis, so that the BSDFs of layers and interfaces are rep-
resented by matrices known as scattering matrices.

We begin by introducing the adding equations, which are used to
compute the scattering matrix of a composite layer given the scat-
tering matrices of its constituent layers. Next, we describe the di-
rectional basis that underlies these matrix representations, and we
show how to use it to discretize the radiative transfer equation and
boundary conditions. Finally, we describe how to solve the radia-
tive transfer equation using the adding-doubling method, which is
named in this way due to its reliance on the adding equations to
repeatedly double a layer until it has the necessary size.

3.1 Adding equations

Some of the earliest theoretical work on layered materials was con-
ducted by Stokes [1860], who analyzed the combined reflection and

transmission properties of a stack of glass plates. It will be instruc-
tive to review the mathematics underlying the simplest case of his
analysis involving only a single plate.

The top interface of a glass plate illuminated by a ray of unit power
reflects a portionR of the light and transmits another portion T into
the material, where it goes on to encounter the bottom interface,
reflecting back and forth with a fraction escaping at each event:

...

Due to reciprocity, the reflection and transmission coefficients at
the bottom interface are also equal to R and T . By summing over
all light paths, it is then possible to compute the total reflectance
and transmittance of the plate as a whole. The resulting geometric
series have a very simple explicit form:

R̃ = R+ TRT + . . . = R+
RT 2

1−R2
,

T̃ = TT + TR2T + . . . =
T 2

1−R2
. (1)

These equations show us how to compute the scalar reflectance and
transmittance of the two interfaces together from the reflectance and
transmittance of the two separate interfaces.

With this example in mind, let us move to a more general case:
Rather than a smooth interface illuminated from a single direction,
consider a slab of arbitrary composition illuminated by a radiance
distribution expressed in some basis. (We leave the underlying dis-
cretization unspecified for now.) The linearity of light transport
then allows us to write the scattered illumination projected into the
same basis using a matrix-vector product:

Φ↑(t) = RtΦ↓(t) + TbtΦ↑(b),

Φ↓(b) = RbΦ↑(b) + TtbΦ↓(t), (2)

where Φ↑(τ) and Φ↓(τ) are vectors describing the upwards and
downwards radiance at depth τ with respect to the basis. The depths
t and b correspond to the top and bottom surface, and the square ma-
trices Rt,Rb and Ttb,Tbt describe the reflection and transmission
for light arriving at the top and bottom, respectively:

Multiplication by 

The analogous question to the glass plate example is: given the scat-
tering matrices of two distinct layers (i.e. Rt

1,R
t
2,T

tb
1 ,T

tb
2 , etc.),

what are the scattering matrices of the two layers stacked together?

The solution is similar, but with the R and T matrices replacing
the scalars R and T . As in the scalar case we sum over all possi-
ble sequences of reflections and transmissions, replacing geometric
series by their closed-form solutions. Attention must be paid to
the ordering of multiplications, since the matrices generally do not



Term Meaning

Φ(τ, µ, φ) Continuous radiance function
µ Cosine of the elevation angle
φ Azimuth angle
τ Optical depth within a layer
n Number of discretizations in µ
m Number of Fourier basis functions
δij Kronecker delta
l Index used for Fourier expansions
α Beckmann roughness of a layer
σt Extinction coefficient of a layer
p Phase function of a layer
f BSDF of a boundary between layers
Φl(µ),Φl Fourier expansion of φ and µ-discretization (Rn)
pl(µ, µ

′),Pl Fourier expansion of p and µ-discretization (Rn×n)
fl(µ, µ

′),Fl Fourier expansion of f and µ-discretization (Rn×n)
W Integration weights of the quadrature scheme (Rn×n)

Table 1: Notation used in this paper

commute. For a rigorous discussion of this derivation, we refer the
reader to [Grant and Hunt 1969]. The final result of this computa-
tion, analogous to (1), are the so-called adding equations:

R̃t = Rt
1 + Tbt

1 (I−Rt
2R

b
1)−1Rt

2T
tb
1

R̃b = Rb
2 + Ttb

2 (I−Rb
1R

t
2)−1Rb

1T
bt
2

T̃tb = Ttb
2 (I−Rb

1R
t
2)−1Ttb

1

T̃bt = Tbt
1 (I−Rt

2R
b
1)−1Tbt

2 (3)

The same approach works equally well to compute the effect of a
rough interface at the top or bottom of a layer or at the boundary
between two layers.

The adding equations are a key ingredient of our system, since they
permit accurate computation of the scattering properties of stacks
of layers. We compute the scattering matrix of a layered mate-
rial by repeatedly using Equation (3) to combine layers and bound-
aries based on a structural description of the material. This requires
knowing the matrices of the interior of layers, which we discuss in
Section 3.4 and of the boundaries, which is covered in Section 3.4.1.

3.2 Problem statement

Before describing the basis we use to represent scattering func-
tions and the methods used to compute the matrices used in the
adding equations, we first formalize the global plane-parallel radia-
tive transfer problem to be solved. The geometric situation is illus-
trated in Figure 2: we have a sequence of layers, each containing
a homogeneous medium, separated by interfaces that are described
by BSDFs. Because of the 1D transport assumption, the radiance
depends only on direction and depth. For simplicity we define the
dimensionless optical depth at z, measured from the top, as

τ(z) :=

∫ z

0

σt(z) dz (dimensionless)

where σt(z) denotes the extinction coefficient at depth z inside the
layered material (having units of 1/distance).

Radiance is then denoted as Φ(τ, µ, φ), where µ = cos θ ∈ [−1, 1]
is the cosine of the elevation angle, and φ ∈ [0, 2π] is the azimuth.
Using this parameterization, the radiative transport equation inside

Figure 2: Our framework combines interface and layer operators
to form a combined material BSDF.

a layer takes on the following form [Chandrasekhar 1960]:

µ
dΦ(τ, µ, φ)

dτ
= −Φ(τ, µ, φ)

+

∫ 2π

0

∫ 1

−1

Φ(τ, µ′, φ′)p(µ′, φ′, µ, φ) dµ′dφ′, (4)

where p(µ, φ, µ′, φ′) is the phase function of the layer, which is
a function of the angle between the directions (µ, φ) and (µ′, φ′).
Note that p implicitly accounts for the albedo of scattering interac-
tions and will generally integrate to a value less than one.

The boundary conditions of this equation are the BSDFs at the in-
terfaces between layers. To describe interactions of light with these
layer boundaries, we must distinguish between incident and exitant
radiance, since a boundary at some depth τ0 generally introduces a
discontinuity in Φ:

Φi(τ0, µ, φ) =

{
Φ(τ−0 , µ, φ), µ ≥ 0

Φ(τ+0 , µ, φ), µ < 0

Φo(τ0, µ, φ) =

{
Φ(τ+0 , µ, φ), µ ≥ 0

Φ(τ−0 , µ, φ), µ < 0

With these definitions, the surface illumination integral at a layer
boundary (accounting for both reflection and transmission) takes
the form:

Φo(τ0, µ, φ)=

∫ 2π

0

∫ 1

−1

Φi(τ0, µ
′, φ′)f(µ′, φ′, µ, φ) |µ′| dµ′dφ′, (5)

where f is the BSDF of the boundary.

3.3 Directional basis

Before we can proceed to use the adding equations to solve actual
problems, we must decide on a basis that is used to represent the
space of radiance functions. To discretize Φ in direction, we rely on
a basis originally proposed by Chandrasekhar [1960]. It represents
the light distribution at depth τ using a Fourier series in the azimuth
angle φ and point samples in the elevation angle cosines µ.

We restrict our analysis to surfaces that are isotropic, in the sense of
invariance with rotation around the normal (a), and add the further
reasonable assumption of bilateral symmetry (b):

(a) Isotropy (b) Bilateral symmetry

Together these imply that all relevant quantities only depend on µ,
µ′, and |φ−φ′|. We expand the components of the model in an even



real Fourier expansion with respect to φ−φ′. In scattering volumes
we expand the radiance distribution Φ and phase function p:

Φ(τ, µ, φ) =

∞∑
l=0

Φl(τ, µ) cos lφ (6)

p(µ, φ, µ′, φ′) =

∞∑
l=0

pl(µ, µ
′) cos(l(φ− φ′)), (7)

and at an interface at depth τ0, we define analogous expansions
of the incident and scattered radiance functions, Φil(τ0, µ) and
Φol (τ0, µ), and the boundary BSDF fl(µ, µ

′). Substituting these
definitions into the scattering integral in (4), and simplifying using
the convolution property of the cosine basis, puts the inscattered
radiance (the final term in (4)) in the form of a Fourier series,

∞∑
l=0

∫ 1

−1

Φl(τ, µ
′) pl(µ

′, µ) (π(cos(lφ) + δ0l)) dµ′

where δ0l is the Kronecker delta. Equating coefficients yields:

µ
dΦl(τ, µ)

dτ
= −Φl(τ, µ)

+ π(1 + δ0l)

∫ 1

−1

Φl(τ, µ
′) pl(µ

′, µ) dµ′. (l = 0, . . .) (8)

A similar transformation of the surface reflection equation reads:

Φol (µ)=π(1+δ0l)

∫ 1

−1

Φil(µ
′) fl(µ

′, µ) |µ′| dµ′. (l = 0, . . .) (9)

This form reveals a key benefit of the Fourier expansion—the prob-
lem of computing radiance as a function of µ, µ′, and φ − φ′ has
been reduced to a sequence of separate problems each involving
only µ and µ′. In practice, the coefficients pl and fl decay as
l → ∞ so that only problems up to some maximum index m need
to be solved. This is dictated by the lowest frequency factor in the
integral—e.g., for a diffuse layer only the l = 0 term is necessary
regardless of the frequency of the illumination. For brevity, we will
from now on omit the (l = 0, . . .) suffix with the understanding
that each equation with an unbound l is a sequence of equations.

Fourier series are often treated with reluctance when dealing with
functions that may contain narrow peaks, but they offer impor-
tant benefits in this case: the separation into independent prob-
lems for each azimuthal mode significantly reduces the difficulty
of the problem that must be solved. This is a consequence of the
convolution theorem, which is unique to the Fourier family of ba-
sis functions. By taking advantage of inherent symmetries in the
underlying scattering functions, their dimension is furthermore re-
duced from 4D to 3D. As we will see later, in conjunction with spar-
sity, these properties will allow us to go to high order expansions
to represent even mirror-like reflectors accurately. Finally, project-
ing existing material models onto this space involves a sequence of
one-dimensional integrals, which can be evaluated cheaply using
recurrences (details in Section 5). Our system could in principle
also be realized using another basis, but this would involve compli-
cations due to the loss of at least one of the above properties.

3.3.1 Discretization over elevation angles

We now turn to the µ dependence: here, a quadrature scheme
with integration nodes {µ1, . . . , µn} ⊂ [−1, 1] \ {0} and weights
{w1, . . . , wn} is used to discretize the integration variable µ′. This

turns the Fourier-space surface illumination integral (9) into a sum:

Φol (µ) = π(1 + δ0l)

n∑
i=1

wi Φil(µi) fl(µi, µ) |µi| , (10)

and using matrix notation, we can write this equation as

Φo
l (τ0) = π(1 + δ0l) FlWMΦi

l(τ0), (11)

where Φl(τ) := (Φl(τ, µk))k, and similarly for Φi
l and Φo

l ,
which are n-vectors, and Fl := (fl(µi, µj))ij and the diagonal
W := (δijwi)ij and M := (δij |µi|)ij , which are n × n matrices.
An analogous process applied to the equation of transfer (8) leads
to the matrix differential equation

M
dΦl(τ)

dτ
= −Φl(τ) + π(1 + δ0l)PlWΦl(τ), (12)

where Pl is defined similarly to Fl and M := (δijµi)ij .

A wide range of quadrature schemes are applicable in this setting; in
our implementation, we use Gauss-Lobatto points [Chandrasekhar
1960], which include the endpoints ±1 and maximize the order of
exactly integrable polynomials subject to this constraint.

3.4 Solving for the scattering matrices

Recall that in our system, we plan to use the adding equations (Sec-
tion 3.1), whose input are scattering matrices Rt,Rb,Ttb,Tbt de-
scribing the response of a layer to incident illumination. An impor-
tant consequence of our transition to a frequency representation in
azimuth is that each layer now in fact has a sequence of these ma-
trices labeled Rt

l ,R
b
l ,T

tb
l ,T

bt
l (l = 0, . . . ,m), which describe its

response to illumination with different azimuthal Fourier modes. In
this section, we show how to find these scattering matrices, starting
with the simpler case of interaction with a boundary.

3.4.1 Scattering matrices of layer boundaries

For layer boundaries, it is straightforward to extract the scatter-
ing matrices directly from the Fourier-projected BSDF Fl based
on Equation (11). For this, let us partition the matrix Fl into the
four sub-blocks Ftl ,F

b
l ,F

tb
l and Fbtl corresponding to the different

modes of reflection and transmission at the top and bottom surfaces.
Then we have Ttb

l Rb
l

Rt
l Tbt

l

 = π(1 + δ0l)

 Ftbl Fbl

Ftl Fbtl

WM. (13)

In Section 5 we look at specific scattering models to find Fl.

3.4.2 Scattering matrices of layers

Several different techniques exist that can be used to solve for the
scattering matrices of medium layers. In our system, we imple-
mented the discrete ordinates method and adding-doubling tech-
niques, and found the adding-doubling method to be generally
preferable due to its robustness1. Adding-doubling builds on the
property that, as a function of optical depth, multiple scattering is a
higher-order effect that can be neglected for sufficiently thin layers.
On the other hand, scattering matrices of layers with at most a sin-
gle scattering event are easily obtained, since they admit an analytic

1The discrete ordinates method is discussed in the supplement; it enables
us to handle layers whose parameters are continuous functions of depth.



solution. The idea of adding-doubling then is as follows: after com-
puting the scattering matrices of a very thin layer (thin enough that
multiple scattering can be neglected), the results of Section 3 are
used to find the scattering matrices of a layer twice the thickness,
by joining two identical layers. The layer is repeatedly doubled
until it has the desired thickness.

Since τ increases exponentially, even very thick layers can be pro-
cessed rapidly.

In our implementation, we start with a depth of dτ = 2−15. To
obtain layers with thicknesses other than powers of two times dτ ,
we first represent the number b(b − t)/dτc in base 2 (where b − t
is the desired thickness). A simple loop then iterates through the
digits in increasing magnitude and adds a layer of thickness 2idτ
on top of the partially generated layer whenever the i-th bit is 1.

Returning again to the projected and discretized radiative transfer
equation (12), note that it describes how one “unit” of optical depth
of the ambient medium locally influences the radiance function:

dΦl(τ)

dτ
= M−1 (−I + π(1 + δ0l)PlW) Φl(τ).

To obtain the scattering matrices of a thin layer with optical depth
dτ , we can then simply use the above differential equation as the
linear term of a Taylor expansion. With some liberty in notation,
this can be interpreted as

Φafter
l =Φbefore

l + dτ
[
M−1 (−I + π(1+δ0l)PlW)

]
Φbefore
l

More formally, let us partition the matrix Pl into the four sub-
blocks Pt,Pb,Ptb and Pbt corresponding to the different modes
of reflection and transmission at the top and bottom surfaces. Then
we haveTtb

l Rb
l

Rt
l Tbt

l

=I + dτ M−1

−I+π(1+δ0l)

Ptb
l Pb

l

Pt
l Pbt

l

W


which tells us how to find the scattering matrix of the initial layer
of depth dτ , which is required to start up the adding and doubling
process discussed above, from the phase function matrices P.

So far, we have explained the basic mathematical framework of our
system, which consists of a directional basis and the requisite meth-
ods to turn the matrix representations of phase functions and BSDFs
in that basis into a scattering matrix for any layered material. The
remainder of the paper is structured as follows: Section 4 gives an
overview of the core algorithm and ties together later sections. Sec-
tion 5 shows how to find the matrix representations Pl and Fl of
relevant phase functions and BSDF models that we required in Sec-
tions 3.4.1-3.4.2. Section 5.3 fixes an energy loss problem in tradi-
tional microfacet models that causes difficulties in layered BRDFs,
and Section 6 explains how to efficiently evaluate and importance
sample our model in a renderer. Finally, Section 7 demonstrates
applications of our model and Section 8 concludes the paper.

4 Algorithm overview

Algorithm 1 implements the central component that computes the
Fourier modes of the reflection and transmission matrices for each
layer, which are subsequently combined using the adding equations.
Inputs to this algorithm are a structural model of the material con-
sisting of the phase functions and optical depth of layers, the BSDFs

Algorithm 1 Solve for the scattering matrices of a layered material

1 function SOLVE-SCATTERING-MATRICES(structure, n, m)
2 for l← 0 to m do . For each Fourier mode
3 R̂t

l , R̂
b
l ← 0, T̂tbl , T̂

bt
l ← I . Initialize as clear layer

4 for L in structure do . Iterate over structure
5 if L is a boundary layer then
6 Compute Fl . Section 5.2
7 Extract Rt

l ,R
b
l ,Ttbl ,T

bt
l . Section 3.4.1

8 else if L is a medium layer then
9 Compute Pl . Section 5.1
10 Solve for Rt

l ,R
b
l ,T

tb
l ,T

bt
l . Section 3.4.2

11 Use the adding equations to merge . Section 3.1
Rt
l ,R

b
l ,T

tb
l ,T

bt
l into R̂t

l , R̂
b
l , T̂

tb
l , T̂

bt
l

12 return R̂t
l , R̂

b
l , T̂

tb
l , T̂

bt
l (l = 0, . . . ,m)

of boundaries, as well as the targeted discretization n in µ and µ′

and the number of Fourier expansion coefficientsm for the azimuth
difference angle φ−φ′. The discretization is related to the accuracy
of the model, and in Section 5.4 we present conservative bounds on
these parameters.

This entire computation is an offline process in the sense that it is
executed before rendering starts. The output of this process is a set
of n×n matrices Rt

l ,R
b
l ,T

tb
l ,T

bt
l (l = 0, . . . ,m) that character-

ize the material’s response to illumination. Section 6 explains how
this representation can be used by a rendering algorithm.

Note that the high level structure of Algorithm 1 itself is not new,
being a combination of standard techniques in 1D linear transport
theory. The key contributions of this paper follow in the subsequent
sections and focus on making each of the steps sufficiently general
and scalable to tackle relevant problems in rendering.

Sparsity: At this point, we make an observation with important
implications regarding the scalability of our approach:

1. To represent very peaked reflectance functions, we require
many Fourier coefficients, but this is only the case for a small
set of elevation pairs (µ, µ′). For instance, in the case of
specular reflection, the expansions have high frequencies only
when µ ≈ µ′ and low frequencies or even zeroes elsewhere.

2. Smoother reflectance functions are nonzero over many pairs
(µ, µ′), but they are low frequency in the azimuth difference
angle φ− φ′, and thus their Fourier series decay rapidly.

Scattering matrices of high frequency materials expressed in Chan-
drasekhar’s [1960] directional basis are sparse; our system there-
fore relies on sparse linear algebra techniques, allowing us to go
to very high orders to represent even mirror-like materials without
ringing or other artifacts (Figure 3), while generating BSDF repre-
sentations that require comparably little storage. We have not found
any references of this property in the literature and believe that we
are the first to exploit it.

We now turn to the computation of Pl and Fl on lines 6 and 9.

5 Scattering models

Our system supports several kinds of scattering functions: for
layer boundaries of dielectrics and conductors, we use the micro-
facet model proposed by Walter et al. [2007], and medium layers
are modeled using linear combinations of the Henyey-Greenstein
[1941] phase function and the von Mises-Fisher lobe proposed by
Gkioulekas et al. [2013]. The main difficulty in deriving the matri-



Figure 3: Frequency-based representations are usually impractical
when trying to represent specular materials like this chrome object
with Beckmann roughness α = 0.01. We projected this material
into a basis with m = 9763 Fourier series terms and n = 503
discretizations in µi and µo, which would normally produce about
28 GiB of dense coefficient data. By exploiting sparsity and our ef-
ficient Fourier projections, we require only 51.3 MiB of coefficients
(0.19%) computed in 9.6 seconds; rendering took 1.4 minutes.

ces Pl and Fl lies in finding Fourier expansions

pl(µ, µ
′)=Fl

[
p(µ, µ′, ·)

]
:=

2−δ0l
π

∫ π

0

p(µ, µ′, φ) cos(lφ)dφ,

for phase functions p and analogous for BSDFs f . The dependence
on the elevations µ and µ′ is simple as it is handled by discretiza-
tion. We begin by looking at expansions of the phase function.

5.1 Phase functions

5.1.1 Henyey-Greenstein phase function

The Henyey-Greenstein (HG) phase function is a widely used one-
dimensional family of phase functions with a single parameter g ∈
[−1, 1], which specifies the medium’s disposition of scattering light
into the backward or forward direction. As a function of γ, the
angle between the incident and outgoing directions, it is defined as

p(cos γ) =
1− g2

4π (1 + g2 − 2g cos γ)3/2
. (14)

To compute the Fourier expansions of p, Stam [2001] numerically
evaluated a power series for each coefficient to be computed. We
found this series to converge very slowly, particularly for high g.
Instead, we use a technique by Yanovitskij [1997b] to rapidly and
accurately compute the coefficients in one pass using recurrences
(code is provided in the supplementary technical report).

We wish to highlight a curious aspect of Yanovitskij’s recurrence
because it will resurface in the next section. His derivation shows
that any three successive Fourier coefficients of the HG model
relate as

(2l + 1)pl+2 = (l + 1) ρ pl+1 − (2l + 3)pl, (15)

where ρ ∈ R does not depend on l. This suggests the following
simple implementation: after computing p0 and p1 using an arbi-
trary numerical or analytic approach, simply perform one sweep
for l = 2, . . . ,m, each time using Equation (15) to find the next pl
from pl−1 and pl−2. However, this does not work: after a few iter-
ations, severe cancellation and error amplification in Equation (15)
lead to errors that are larger than the magnitude of the correct an-
swer. Yanovitskij therefore uses the recurrence the other way, go-
ing from pl+2 and pl+1 to pl, where it is numerically well-behaved.
This leads to the somewhat unusual situation of having to start a
recurrence at the end of a desired range rather than its beginning,
but the resulting implementation is fast and numerically stable.

5.1.2 von Mises–Fisher phase function

Due to its inherent simplicity, the HG model is a common default
choice when simulating anisotropic volumetric scattering, but in
a recent study, Gkioulekas et al. [2013] analyzed the perceptual
significance of different phase function spaces and recommended
switching to a larger space containing linear combinations of the
HG model and lobes of the von Mises–Fisher distribution defined
as

pvMF(γ) =
κ

4π sinhκ
eκ cos γ (16)

We derive a recurrence for this phase function model which turns
out to be useful a second time to compute Fourier expansions of
rough boundaries in Section 5.2. We begin by noting that cos γ
expressed in terms of µ, φ and µ′, φ′ is equal to

cos γ = µµ′ +
√

(1− µ2) (1− µ′2) cos(φ− φ′). (17)

After rewriting Equation (16) in terms of the azimuthal difference
angle φd = φ − φ′ via (17) and applying an identity of the hyper-
bolic sine we have

pvMF(φd) =
κ

2π(1− e−2κ)
eA+B cosφd (18)

where A = κ(µµ′ − 1) and B = κ
√

(1− µ2)(1− µ′2) do not
depend on φd and can thus be considered constants for the purpose
of this derivation.

Using the Jacobi-Anger expansion (Abramowitz and Stegun,
9.6.34), we turn the trigonometric exponential in (18) into a Fourier
series involving modified Bessel functions of the first kind:

eA+B cos θ = eA
[
I0(B) + 2

∞∑
l=1

Il(B) cos(lθ)

]
. (19)

Technically, this completes the derivation of the Fourier projection,
but in practice Bessel functions are very costly to evaluate, and in
our system, they can be invoked with arguments that lead to over-
flows in floating point arithmetic due to their fast growth (consider
that I0(1000) ≈ 2.5 · 10432); this is particularly an issue with uses
of this expansion later in the paper. To address these issues, we
start by noting that Equation (19) actually takes on very reasonable
values in the interval [0, 1] since A + B cosφd ≤ 0. To always
remain in the representable number range, it is thus key that we
incorporate the exponential scaling by eA into the computation of
the coefficients. We use the following expression for computing the
l-th scaled Bessel function:

eAIl(B) = e−BI0(B)︸ ︷︷ ︸
= Ie0 (B)

eA+B
l∏

j=1

Ij(B)

Ij−1(B)
(20)

The first term Ie0(B) is the exponentially scaled modified Bessel
function of order zero which does not suffer from overflow and can
be found in standard numerical libraries. The last term is a product
of ratios of Bessel functions, which are close to 1 and easily rep-
resentable. These ratios satisfy a recurrence relation which we use
not only to evaluate (20) but also to efficiently find all series terms
of (16) for a pair of angles µ, µ′ (i.e. for constant A and B) in one
sweep. The recurrence is given by

Il+1(B)

Il(B)
=
Il−1(B)

Il(B)
− 2l

B
. (21)

Interestingly, similar to the Henyey-Greenstein recurrence in Sec-
tion 5.1.1 this relation also suffers from catastrophic cancellation



and error magnification when used in the upward sense (i.e. com-
puting the ratio for l + 1 from the previous one at l), while being
stable when used in the downward sense:

Il(B)

Il−1(B)
=

B

2l +B
Il+1(B)

Il(B)

(22)

Our implementation then starts with the maximum expansion order
l = m, and computes the ratios Il/Il−1, Il−1/Il−2 down to I1/I0
using recurrences. However, this requires knowing the last ratio
Il/Il−1 to bootstrap the recurrence formula: for this purpose, we
use a quickly converging continued fraction representation based
on Gauss’ work on ratios of hypergeometric functions (see Gautschi
and Slavik [1978] for a general discussion):

Il(B)

Il−1(B)
=

1

2
B
l +

1

2
B

(l + 1) +
1

2
B

(l + 2) + · · ·

(l > 0) (23)

Combining the continued fraction representation, the recurrence
over ratios and the exponentially scaled function Ie0 , we obtain an
efficient and stable method for computing azimuthal Fourier series
of the von Mises–Fisher distribution.

5.2 Boundaries between layers

To model boundaries of dielectrics and conductors, we use the mi-
crofacet model proposed by Walter et al. [2007]. Microfacet models
describe the interaction of light with random surfaces composed of
microscopic dielectric or conducting facets that are oriented accord-
ing to a microfacet distribution. Integration over this distribution
then leads to simple analytic expressions that describe the expected
reflection and transmission properties at a macroscopic scale. Val-
idations against real-world measurements have shown that micro-
facet models compare favorably against other families of paramet-
ric BRDF models [Ngan et al. 2005].

We begin with a short review of the microfacet model by Walter
et al., specifically the variant that uses the Beckmann distribution
derived from Gaussian random surfaces. This model consists of a
reflection and a transmission term

f(µi, φi, µo, φo)=fr(µi, µo, φi−φo)+ft(µi, µo, φi−φo). (24)

The reflection term fr is defined as

fr(µi, µo, φd) =
F (µh)D(µh)G(µi, µo)

4|µiµo|

where F specifies the Fresnel reflectance, D is the Beckmann dis-
tribution, G is a shadowing-masking term, and µh denotes the co-
sine of the angle between the normal and the half-direction vector
of the incident and outgoing directions. The refractive case is de-
fined analogously but involves a modified half direction vector and
different weighting terms. Note that while the paper by Walter et
al. only concerns itself with dielectrics, it is straightforward to gen-
eralize the model to also handle conductors by replacing F with the
general unpolarized Fresnel reflectance term for boundaries with
a complex-valued relative index of refraction and setting ft = 0.
We refer to the original papers for many further details and a full
discussion of the the refraction term ft.

To compute the azimuthal modes of f we must again integrate

Fl
[
f(µ, µ′, ·)

]
=

2− δ0l
π

∫ π

0

f(µ, µ′, φd) cos(lφd) dφd. (25)

However, we were not able to find an analytic expression for this
integral due to the significant complexity of the integrand. Forced
to turn to numerical integration, we encountered further problems:

• f varies greatly in magnitude with respect to φd: usually, only
a tiny portion of the of the domain contributes to the integral.

• Higher-order Fourier basis functions are oscillatory, i.e. they
have a large number of lobes of opposing signs, which almost
(but not quite) cancel each other.

The combination of these properties makes both general-purpose
and special oscillatory integration methods impracticably slow. To
sidestep these difficulties, we propose a semi-analytic integration
routine tailored to this specific problem.

We note that, although the full expression of the BSDF f has sev-
eral parts that depend on φd, the exponential term in the Beckmann
microfacet distribution is the one that, by far, dominates its behav-
ior. Splitting the integrand of (25) into this exponential term and a
function frem containing the remaining terms produces

Fl [f(µi, µo, ·)]=
2− δ0l
π

∫ π

0

frem(φd) e
A+B cosφd cos(lφd) dφd

where in the reflective case A and B are defined as

A =
µ2
i + µ2

o − 2

α2(µi − µo)2
, B =

2
√

1− µ2
i

√
1− µ2

o

α2(µi − µo)2
. (26)

In the refractive case, they are given by

A=
η2i
(
µ2
i−1
)
+η2o

(
µ2
o−1
)

α2(ηiµi − ηoµo)2
, B=

2ηiηo
√

1−µ2
i

√
1−µ2

o

α2(ηiµi − ηoµo)2
. (27)

We observe a striking similarity to the exponential-of-cosine
Fourier series in Equation (19) encountered during our treatment
of the von Mises–Fisher phase function, with the main change
being the extra term frem(φd) which contains normalization and
shadowing-masking terms as well as the Fresnel coefficient. Sup-
pose for a moment that we were able to obtain series representations
of these pieces separately, i.e. coefficients al and bl such that

eA+B cosφd =

∞∑
l=0

al cos(lφd) and frem(φd)=

∞∑
l=0

bl cos(lφd)

The Fourier series we actually wanted to obtain is the pointwise
multiplication of these two series. At this point, we note that as a
consequence of the convolution theorem, the frequency space ana-
log to a pointwise multiplication in the φd argument is the discrete
convolution of the number sequences (an) and (bn). If al and bl
are easily obtained, and if one of them decays quickly enough, this
yields an attractive way of finding the coefficients of the product.
We found that this is indeed the case: for conductors, frem is gener-
ally smooth enough to representable with relative error of 10−6 us-
ing only six series terms (we conservatively use 12). For dielectrics,
more coefficients are needed in certain cases (details in the supple-
mental material), but the average is still very low, around 14-20
depending on the parameters. Importantly, changing the roughness
α does not change the frequency content of frem, and we can there-
fore depend on the robustness of our exponential-of-cosine expan-
sion to handle low-roughness cases.

Our approach then is to compute two Fourier series and find their
discrete convolution: one of the high frequency exponential, where
we simply use the algorithm already developed in Section 5.1.2, and
another of frem(φd), which is handled using a traditional numerical
method for Fourier integrals (we use Filon quadrature [1928]).



Measured materials: It is also possible to import measured ma-
terials into our system to compose them with other layers. We
have implemented this for materials in the database of Matusik et
al. [2003], for which we approximately Fourier-project the BSDF
for each pair µi, µo by densely sampling it in azimuth [0, 2π] and
applying a Fast Fourier Transform. This is relatively fast but only
an approximation; also the required resolution depends on the mate-
rial’s specularity and must be determined manually. We leave better
integration schemes for such “black box” data as a future work.

5.3 Multiple scattering term

One issue with currently used microfacet models is that they only
account for a single scattering event at the microgeometry level;
light that interacts with multiple facets is effectively ignored. This
means that these models incur some energy loss which grows
steadily as the roughness of the interface is increased. In a simu-
lation of layered materials with multiple rough internal boundaries,
this loss is incurred many times due to interactions between layers,
potentially removing significant amounts of energy.

We propose an additive correction term to the microfacet model,
which reintroduces any energy lost to multiple scattering. This term
is approximate—in particular, we assume that, following multiple
interactions within the surface microgeometry, the scattered radi-
ation emerges with an angular distribution that is close to diffuse.
The main constraint on this correction is that it should be reciprocal
like other parts of our system. The discrete analog of continuous
reciprocity [Veach 1997] in our setting is a set of matrix equations:

Ftl = Ftl
T
, Fbl = Fbl

T
, η2tF

tb
l = η2bF

bt
l

T
(l = 0, . . . ,m)

The assumption of multiply scattered illumination emerging with
an approximately diffuse profile allows us to restrict the correction
to the 0th order Fourier mode (i.e. l = 0), and to preserve reci-
procity we use the following rank-1 update of F:

F̂t0 = Ft0 + rtrt
T
, F̂tb0 = Ftb0 +

tbtttb
T

η2b

and analogous for Ftb0 and Fbt0 . The vectors rt, rb, ttb and tbt are
chosen appropriately so that the final representation has no energy
loss. We derived expressions for these vectors for rough conductors
and dielectrics. Our approach is related to work by Kelemen et
al. [2001] who derived a continuous correction term for a specular-
matte BRDF. The derivation of these expressions is fairly technical,
hence we refer the reader to the supplementary material for details.
Figure 4 highlights the effect of our correction on dielectrics and
conductors of different roughness values.

5.4 Error analysis

To use Algorithm 1 in practice we need a way of selecting an ap-
propriate discretization n in elevation, and number m of Fourier
expansion terms. How these parameters should be set is not obvi-
ous; overly high values will cause unnecessary overheads while a
too low value may introduce unacceptable errors. Intuitively, their
choice relates to the “peakedness” of the ingredients, i.e. the pa-
rameter α for boundaries, and g or κ for scattering layers.

We propose a heuristic for each kind of layer in the supplemen-
tal material that specifies appropriate n and m if that layer were
be represented in isolation. These heuristics are simple functions
that map the relevant parameter to a discretization with less than
1% relative L2 representation error. We created these heuristics by
bounding n and m values found via a brute force search (Figure 5).

(a) α = 0.04 (b) α = 0.14 (c) α = 0.53 (d) α = 2

(e) α = 0.04 (f) α = 0.14 (g) α = 0.53 (h) α = 2

(i) α = 0.04 (j) α = 0.14 (k) α = 0.53 (l) α = 2

(m) α = 0.04 (n) α = 0.14 (o) α = 0.53 (p) α = 2

Figure 4: Traditional microfacet models for dielectrics and con-
ductors (rows 1 and 3) suffer from energy loss that is particularly
problematic in simulations of layered materials. We propose a mul-
tiple scattering term that reintroduces this energy (rows 2 and 4).

For a material made of multiple layers i = 1, . . . , N these heuris-
tics will generally recommend a set of incompatible parameter
values (n1,m1), . . . , (nN ,mN ). However, for Algorithm 1 to
work we must decide on a single value of n and m that are used
for the entire computation. For the n parameter, we simply set
n = maxi ni. In the parameter m we do not need to be as con-
servative: each layer i can be thought of as a low-pass filter that
removes azimuthal frequency content that is higher than order mi.
Therefore, all interior layers are “filtered” by the top and bottom
layers, and hence we set m = max{m1,mN}.

6 Evaluation and sampling

All elements of our system described until now tie into Algorithm 1
in one way or another. This algorithm runs as an offline process
prior to rendering and produces a sequence of scattering matrices
Rt
l ,R

b
l ,T

tb
l ,T

bt
l (l=0, . . . ,m). The last part of this pipeline is dis-

cussed below; its purpose is to convert the resulting data into a for-
mat that is more convenient for rendering before writing it to disk.

Recall Equation (13), which we previously used to turn a projected
BSDF model Fl into scattering matrices suitable for computations
involving the adding equations. We now apply this equation once
more in the reverse direction to convert the final set of matrices
Rt
l ,R

b
l ,T

tb
l ,T

bt
l back into a projected BSDF Fl (l = 0, . . . ,m).

We then transpose this tensor so that the Fourier coefficients (Fl)i,j
are contiguous with respect to the index l, matching the order in
which they will be accessed sequentially later on. To exploit spar-
sity, we also determine a minimal effective expansion orderm(i, j)
separately for each pair of elevation angles, satisfying (Fl)i,j = 0
for l > m(i, j). Only coefficients up to this order are stored.

The remainder of this section discusses how to use this information
in a rendering algorithm. In our experiments, we used a standard
Monte Carlo path tracer, which requires the ability to evaluate the
BSDF and importance sample directions proportional to it; we show
how to implement both of these operations efficiently.
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Figure 5: To develop a good heuristic for selecting the discretiza-
tion and expansion order (n,m), we instantiated the supported
layer types of our system over a range of parameters and ran a
search for the cheapest representation with less than 1% error. We
bounded the resulting values from above using a simple analytic ex-
pressions that capture the asymptotics (top row: bounds in normal
and log domain for a rough dielectric with η = 1.5, bottom row:
storage requirements and relative error achieved by our bound).

6.1 Model evaluation

To evaluate the model for a pair of directions µi, φi and µo, φo, we
determine the location in the sparse file that contains the azimuthal
Fourier expansion for the given elevations (µi, µo) and fetch the
associated coefficients a0, . . . , ak. The BRDF value is then simply

f(µi, φi, µi, φo) =

k∑
l=0

al cos(l(φi − φo)). (28)

This works when µi and µo are part of the set of discretized eleva-
tions, but this is generally not the case. For intermediate values, we
interpolate the Fourier coefficients from those of nearby elevation
angles on the fly using the 4× 4 interpolation stencil of a standard
2D tensor product Catmull-Rom spline.

A naı̈ve implementation of Equation (28) can lead to serious per-
formance issues during rendering due to very many trigonometric
function calls per BSDF evaluation. To reduce these to a minimum,
we use the multiple angle formula for cosines

cos(nφ) = 2 cos(φ) cos((n− 1)φ)− cos((n− 2)φ) (29)

as a recurrence while iterating through the terms of the sum. To
accelerate computations even further, we exploit instruction level
parallelism when evaluating (28). All sum terms are independent
from each other, and hence we can load and process groups of sev-
eral coefficients at a time, using iterated forms of (29) to find the
cosine values needed for the entire group in one step.

Texturing: To texture an arbitrary parameter of a layer (e.g. its
optical depth σt), we compute several BSDF models corresponding
to samples throughout the targeted parameter domain. To evaluate
the BSDF for a particular parameter value we simply interpolate
between these models. For parameters with a linear dependence,
two samples suffice; higher numbers are necessary to capture non-
linear effects. Multiple parameters can be textured simultaneously,
though eventually the exponential growth in the required number
of samples becomes burdensome. This scheme is approximate but
works very well in practice for many types of parameters, including
diffuse or phase function albedos or optical depth. Other parameters

are less suitable (e.g. index of refraction and boundary roughness)
and may require many samples when textured in this way. This is a
limitation of our system and an interesting avenue for future work.

6.2 Importance sampling

The spline interpolation scheme introduced in Section 6.1 induces
continuous extensions of the BSDF matrices Fl to piecewise poly-
nomial functions Fl : [−1, 1] × [−1, 1] → R. For any two angles
(µi, µj) from the initial discretization, Fl(µi, µj) simply returns
entry (i, j) from the underlying matrix; for arguments that lie be-
tween samples of the discretization, nearby entries are interpolated.

Note the special significance of the 0-th order function F0, which
describes the average value of the BSDF integrated over azimuth:

F0(µi, µo) =
1

π

∫ π

0

f(µi, µo, φd) dφd.

This means that the dependence on azimuth is effectively
“marginalized” out of the model, a fact which we use to build a
simple and efficient importance sampling method that is split into
separate elevation and azimuth angle sampling steps. Because both
can be implemented as smooth mappings from a single uniform
variate to an outgoing angle, they are particularly well-suited for
use with certain structured point sets, such as Sobol or Halton se-
quences, leading to reduced variance in renderings that use them.

Both steps involve a standard numerical inversion method for inte-
grals, which we review for completeness: to draw samples propor-
tional to a 1-dimensional density function q(x) ≥ 0 on an interval
[a, b], we generate a uniform variate ξ and solve for x inQ(x) = ξ,
where Q(x) =

∫ x
a
q(x′) dx′. Note that Q is continuous and mono-

tonically increasing; sinceQ(a) = 0 andQ(b) = 1, this guarantees
that a unique solution exists; [a, b] is known as a bracketing inter-
val. We rely on a hybrid Newton-Bisection method to invert Q,
which maintains a bracketing interval as an invariant, while using
Newton-Raphson steps whenever possible to benefit from quadratic
convergence rates near the solution.

Elevation sampling: Given a fixed incident elevation µi, this
step picks an outgoing elevation with a probability proportional to
the piecewise cubic spline function F0(µi, ·). For simplicity, let us
briefly assume that µi is equal to one of the elevation angles from
the discretization. Let Ii,k denote the definite integral of F0(µi, ·)
up to the k-th spline segment, i.e.

Ii,k :=

∫ µk

µ1

F0(µi, µ
′) dµ′ (k = 1, . . . , n).

We first use a O(logn) binary search to map a uniform variate
ξ1 ∈ [0, 1) to the segment k satisfying Ii,k ≤ ξ1Ii,n < Ii,k+1. Fol-
lowing this, we apply the discussed Newton-Bisection method to
robustly invert the integral of F0 (a quartic) on [µk, µk+1], produc-
ing the desired outgoing elevation µo. The entries of the matrix Ii,k
have analytic solutions that can be precomputed ahead of time. Ele-
vations µi that lie between samples of the discretization are easy to
handle due to the linearity of this setup: we can simply interpolate
the precomputed integrals Ii,k using the same Catmull-Rom basis.

Azimuth sampling: To sample the azimuthal component condi-
tioned on (µi, µo), we fetch the associated interpolated Fourier co-
efficients al := Fl(µi, µo) from the sparse coefficient storage and
pick an azimuth difference angle φd proportional to the resulting
Fourier expansion q(φd). Finally, we set φo = φi +φd. As before,
the main sampling operation involves the inversion of a definite in-
tegralQ using the hybrid Newton-Bisection approach. This integral



R: 1h 48m

(a) Analytic (8K spp)
R: 30s

(b) Analytic (38 spp)
R: 30s

(c) Ours (26 spp, eq. time)

Figure 6: Reflectance models generated by our system support ex-
act importance sampling, which can make them interesting even in
cases where an analytic reflectance model exists. The images on
the middle and right show equal-time renderings of a sand-blasted
vase modeled using a standard microfacet BSDF. Note improved
convergence in (c) despite the lower number of samples per pixel.

fortunately has a simple explicit form:

Q(φd)=

∫ φd

0

m∑
l=0

al cos(lφ′d) dφ′d=a0φd+

m∑
l=1

l−1al sin(lφd)

The recurrence from Section 6.1 can also be applied here to avoid
costly trigonometric function evaluations. Instruction level paral-
lelism offers further acceleration opportunities.

The proposed importance sampling scheme is exact in the sense
that it produces a constant importance weight≤ 1 over all scattered
directions when holding the incident direction fixed. Additional
terms (e.g. the cosine of the surface illumination integral) are easily
absorbed into the data to account for them as well.

This is a rare situation, since BSDF sampling techniques are al-
most never exact. This effectively means that our approach can be
interesting even when an analytic (and potentially faster to evalu-
ate) reflectance model is available. Figure 6 shows a rough glass
vase (η = 1.5, α = 0.3) rendered with the analytic evaluation and
sampling of Walter et al. [2007] and the approach presented in this
section. Renderings were performed using Quasi Monte-Carlo in-
tegration, specifically scrambled Halton points.

The analytic sampling technique only samples one factor of the
model (the microfacet distribution) and relies on a transformation
from microfacet normals to outgoing directions, which distorts the
equidistribution of the Halton points. In comparison, our technique
is able to sample all terms of the BSDF directly on the sphere of
outgoing directions.

6.3 Harmonic extrapolation

We found that for the special case of scattering and absorbing di-
electric slabs with smooth or rough boundaries, the azimuthal de-
pendence of the resulting BSDFs was well approximated by a sim-
ple 3-parameter family of functions created by mixing a uniform
and a wrapped Gaussian distribution on the circle, i.e.

gδ,β,σ2(φ) :=
δ

2π
+ β

∞∑
k=−∞

G(φ+ 2πk, σ2), (30)

for constants δ, β, and σ2. For such cases, our framework supports
what we refer to as harmonic extrapolation to obtain additional per-
formance improvements in preprocessing and rendering time.

This works by equating the computed Fourier modes of the scat-
tering matrices to the modes of (30) and solving for the parameters
δ, β, and σ2. Afterwards, the Fourier coefficients can be discarded
and (30) is used instead. Since this approach extrapolates the entire
behavior from the first three harmonics, Algorithm 1 can be stopped
afterm = 2, which significantly reduces the precomputation time.

P: 13 s 760ms R: 3m 54s

Figure 7: Gu et al. [2007] provide a database of measured surface
contaminants. We use one of their optical thickness maps to render
a shiny chrome cube with dried deposits due to salt water exposure.
Note how the salt blocks part of the caustic on the ground.

7 Results

We implemented this technique in C++ on top of the Mitsuba ren-
derer [Jakob 2010], relying on the Eigen library [Guennebaud et al.
2010] for sparse linear algebra computations. BSDF sampling and
evaluation exploit instruction parallelism using Intel’s AVX instruc-
tion set. To solve the sparse linear systems in the adding Equations
(Section 3.1), we use supernodal LU decompositions [Li 2005].

To ensure the correctness of our system, we routinely performed
validation tests—these included checking that projection of scatter-
ing models into the directional basis is accurate, comparing against
reference data including angular reflectance data of index-matched
isotropic and anisotropic slabs (Tables 12 and 35 of [van de Hulst
1980]) and albedo values for isotropic half-spaces with dielectric
boundaries [Williams 2006]. Finally, we also ran comparisons
against Monte Carlo renderings with explicit layer structure (these
comparisons are in the supplement). In all cases, our validations
showed excellent agreement, usually matching reference data in the
radiative transfer literature to four significant digits.

We now present a series of results produced using our system. Pre-
computation and rendering times are reported for an Intel Xeon E5-
2660 machine with 16 physical (32 hyper-threaded) cores.

Interior: Figure 1 depicts a range of layered materials generated
by our model. The corresponding layer structures are shown on the
sides, and detailed statistics regarding processing time and storage
requirements are presented in Table 2. The wooden kitchen counter
material is a coated diffuse surface with texture-mapped albedo; to
capture the material’s non-linear dependence on albedo we use four
BRDF samples over the admissible parameter range [0, 1]. Follow-
ing precomputation, the image was path traced at with a resolution
of 1800×1080 pixels using 2048 samples per pixel to resolve glossy
interreflections between objects, which took 1 hour and 23 minutes.

Contaminants maps: Figure 7 shows a shiny chrome cube with
dried salt water deposits rendered under daylight illumination. We
modeled this as a shiny chrome base (α = 0.03) with an index-
matched anisotropic layer (g = 0.7) whose optical thickness is
textured by a contaminant map of Gu et al. [2007]. To capture the
nonlinear dependence in σt, we precomputed six BRDF samples
over the parameter range. The combined BRDF with discretization
n = 158 and expansion order m = 2540 required 21.6 MiB as
opposed to 4.3 GiB for a dense version (a reduction to 0.5%) and
was computed in 13.7 s. Rendering using Manifold Exploration
MLT [Jakob 2013] using 64 mutations/pixel took 3m 54s.

Surface vs. volumetric scattering: The two classes of transport
operators in our framework—surface and volume—act on the in-
coming light fields in fundamentally different ways. It is instruc-



Material n m Time Storage Sparsity

Coffee table 394 671 3.34s 68.4MiB 5.7%
Red vase 196 267 2.09s 11.9 MiB 9.9%
Coated copper vase 196 267 2.52s 3 MiB 2.5%
Large purple bowl 196 267 4.31s 5.2 MiB 4.3%
Measured BRDF 200 200 1.69s 22.7MiB 24%
Coated measured BRDF 200 267 3.49s 3.2 MiB 2.5%
White brick wall 196 267 0.96s 1.3 MiB 3.2%
Kitchen sink 502 890 7.52s 9.6 MiB 1.1%
Kitchen counter (wood) 394 671 6.5s 55.5 MiB 1.2%
Kitchen counter (metal) 236 4194 1.41s 10.1 MiB 0.38%

Table 2: Discretization, preprocessing time, storage requirements,
and the percentage of nonzero coefficients of the objects in Figure 1.

P: 2s 515ms R: 1m 23s

(a) α = 0.05

P: 883ms R: 1m 15s

(b) α = 0.1

P: 576ms R: 1m 14s

(c) α = 0.2

P: 554ms R: 1m 12s

(d) α = 0.3

P: 129ms R: 1m 12s

(e) τ = 0.5, g = 0.0

P: 118ms R: 1m 7s

(f) τ = 1, g = 0.0

P: 168ms R: 1m 6s

(g) τ = 2, g = 0.0

P: 201ms R: 1m 3s

(h) τ = 5, g = 0.0

P: 236ms R: 1m 22s

(i) τ = 0.5, g = 0.8

P: 247ms R: 1m 9s

(j) τ = 1, g = 0.8

P: 274ms R: 1m 21s

(k) τ = 2, g = 0.8

P: 327ms R: 1m 19s

(l) τ = 10, g = 0.8

Figure 8: Comparing the visual loss in clarity as caused by sur-
face roughness versus volumetric scattering inside a layer. The top
row ((a)-(d)) shows the transmission through a dielectric plate with
identical roughness α on both faces. The lower two rows demon-
strate index-matched plates with volumetric imperfections simu-
lated by HG scattering (which may be appropriate for material with
air pockets or other inclusions). A variety of appearances is evident
as the thickness and anisotropy are varied ((e)-(l)). The rough di-
electric scattering produces a blurring effect, while the volumetric
scattering leads to a hazing of the transmitted signal.

tive to analyze their behaviors in isolation. Figure 8 compares the
different loss of clarity caused by transmission through layers with
rough surfaces versus layers with smooth surfaces, but with inter-
nal volumetric scattering. Roughening both sides of the glass plate
causes a uniformly blurred transmission of the background scene,
whereas forward-peaked volumetric scattering inside plates with
smooth surfaces causes more of a hazed appearance. The arbitrary
combination of this wide variety of operators yields a very flexible
system for building BSDFs.

Asperity Scattering and Diffuse Materials: Adding a volumetric
scattering layer to a base material can be used for asperity scatter-
ing [Koenderink and Pont 2003], useful for simulating fine layers
of dust or fibers on a surface. We illustrate this in Figure 9 by vi-
sualizing various forms of asperity layerings on a black base layer,
and then to simulate dust on a gold statue. Note that these render-
ings resemble those of Pharr and Hanrahan [2000], whose nonlinear
scattering equations provide an alternative way of solving for the in-
teraction between layers. However, their approach does not lead to
a reflectance model in explicit form: during the rendering process,
every interaction with a layered material triggers a nested Monte
Carlo integration over layers. Our system is the first to account
for all orders of interreflection between an asperity and underlying
layer, and to include multiple scattering in the asperity layer with-
out requiring a costly integration over layers at render time.

P: 10ms R: 7m 47s

(a) g = 0, τ = 0.5

P: 12ms R: 8m 23s

(b) g = 0.5, τ = 0.5

P: 215ms R: 8m 42s

(c) g = 0.9, τ = 2

P: 223ms R: 8m 34s

(d) g = 0.9, τ = 4

P: 300ms R: 8m 44s

(e) τ = 0.05

P: 236ms R: 8m 52s

(f) τ = 0.5

P: 254ms R: 8m 32s

(g) τ = 2

P: 226ms R: 8m 17s

(h) τ = 4

Figure 9: Top: asperity scattering using a volumetric scattering
layer on top of a black surface. Various thicknesses τ and HG
phase functions (with mean cosine g) are compared. The single-
scattering albedo is slightly orange in all cases. Because more
scattering events are required to scatter a similar amount of light
for g = 0.9 , the result is more saturated. Bottom: applying various
thicknesses τ of grey HG (g = 0.9) dust to a rough gold statue.

R: 6m 14s

(a) Lambert
R: 6m 7s

(b) Oren-Nayar
P: 100ms R: 7m 17s

(c) g = 0

P: 33ms R: 7m 49s

(d) g = 0.7

Figure 10: A wide variety of diffusive reflectance models are possi-
ble by combining volumetric scattering layers and Lambertian re-
flectors. Note the different silhouettes and overall subtle appear-
ance differences between the volumetric models in (c) and (d) vs.
the traditional diffuse BRDFs in (a) and (b). Parameters in (c), (d)
were chosen to yield the same albedo under normal illumination.

Volumetric scattering layers can yield a wide variety of new diffu-
sive BRDFs that complement that standard analytic models. Fig-
ure 10 compares Lambert and Oren-Nayar BRDFs to volumet-
ric scattering materials with isotropic or forward-peaked Henyey-
Greenstein scattering. The use of an isotropic scattering material
(c) yields a very dusty look, which is lessened in (d) by layering a
HG scattering layer g = 0.8, τ = 5 on top of a 90% Lambertian re-
flector. The volumetric-scattering renders were no more than 30%
slower, and the BSDFs were compactly stored in 3.5 KiB.

Approximate layered BRDFs: The model of Weidlich
and Wilkie [2007] supports texturable layered materials with
anisotropic interfaces but does not account for all orders of inter-
reflection between layers. This leads to incorrect albedos from
simple combinations, such as a smooth dielectric interface over a
Lambertian reflector. Figure 11 compares the total albedo of such a
model with refractive index 1.5 as a function of diffuse reflectance
kd of the underlying Lambertian surface. Due to internal scattering,
the total reflected energy has an inherently nonlinear dependence on
kd. Weidlich and Wilkie’s model discards such internal reflection
light paths and uses an heuristic scaling factor to compensate for
the resulting loss of energy. However, the nonlinear behavior of
the layers is not captured regardless of whether or not the heuristic
is used. Another limitation of this approach is that it cannot faith-
fully simulate the interaction of multiple rough boundaries, which
requires a full integration over internal reflection paths.

Fitting to measured data: Figure 13 shows transmission and
reflectance measurements for a milky light blue layer of vitreous
enamel. The black dots specify radiance recorded along the mate-
rial’s normal direction while a light source performs a 180◦ sweep
around the layer (the left half of the plot being transmission). We
replicated this lighting and viewing geometry in our framework and
performed an automated search for a layer that best fits the observed
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Figure 11: Comparing the total reflected energy R of a smooth
dielectric η = 1.5 on top of a Lambertian surface with reflectance
kd. A recent approximate model (dashed) proposes a linear relation
between kd and total reflectance, which is not seen in the exact
solution that considers all orders of interreflection.

Figure 12: We developed an interactive visual design tool to ex-
plore the space of layered BRDF models; the supplementary video
shows an editing session using it.

data. By fixing index of refraction and roughness (both approxi-
mately known), a three parameter family of models remained, in-
volving albedo, optical depth, and anisotropy. The search found the
fit shown in blue, which is in good agreement with the data.

Visual layer design tool: To conveniently assemble materials from
layers and render them, we developed a visual design tool shown in
Figure 12. The supplementary video contains a screen recording of
an interactive material editing session using this tool.

8 Conclusion

We have presented a new framework for rendering layered mate-
rials. Our system allows arbitrary layered combinations of any
known analytic or measured isotropic BSDF and produces new
energy-conserving, reciprocal BSDFs with importance sampling.
All interreflections between layers are computed at the same level
of accuracy that is used for the primary light transport through-
out the scene. This allows seamless level-of-detail transitions for
practically authoring complex scenes as well as allowing design of
layered materials in a fashion that is closely tied to their physical
constituents, which is useful for rapid authoring of heterogeneous
or temporally-varying materials and essential for predictive render-
ing. Combining smooth and rough interface BSDFs with volumet-
ric scattering layers produces a large variety of new layered BS-
DFs, including expressive generalizations of diffuse surfaces and
asperity scattering layers. We have demonstrated the practicality of
our approach, which hinges critically on novel methods for treat-
ing rough surfaces and scattering events in a stable fashion, a new
method for conserving energy at rough interfaces, and also sparse
methods and extrapolation techniques for compact storage and ac-
celerated computation of our BSDFs. Our system remains practical
over a large range of model parameters, scaling even to narrowly
peaked reflectance functions, but cannot represent perfect mirrors
or ideally smooth glass, which are Dirac delta functions in direc-
tion. Ultimately, analytic solutions exist for such cases that will be
preferable to numerical approaches like ours.
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Red channel summary:

rel. L1 error = 0.015974
g             = 0.890000
albedo        = 0.993494
eta           = 1.586000
tau           = 46.646118

Green channel summary:

rel. L1 error = 0.015004
g             = 0.750000
albedo        = 0.993003
eta           = 1.586000
tau           = 22.105927

Blue channel summary:

rel. L1 error = 0.021755
g             = 0.880000
albedo        = 0.997320
eta           = 1.586000
tau           = 49.218750

Figure 13: Our method can be used to determine suitable scatter-
ing parameters for measured materials; here we fitted it to trans-
mission and reflectance measurements of a 1 mm layer of a milky
light blue vitreous enamel used in jewelry design. This dielectric
had a known index of refraction and was very smooth, leaving only
a three parameter family of models to be explored involving albedo,
optical depth, and anisotropy. An automatic search found the fit
shown as a blue curve, which is in good agreement with the data
(left to right: RGB, top: radiance, bottom: log radiance).

Figure 14: Left: photograph of a flower art piece manufactured
by casting a 3D printed wax model into gold and manually coating
it with jewelry enamel. The petals use the same enamel also mea-
sured in Figure 13. Note the subtle hue shifts due to varying layer
thickness. Right: a rendering using our framework. For details,
please refer to the supplemental material.
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