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GossIp

* Def: Exchange information with a
random node once per round.

* Has appealing properties:
— Bounded network traffic.
— Scalable in group size.
— Robust against failures.
— Simple to code.

* Per-node scalability?

— When # of groups scales up, lose
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Random gossip

* Recipient selection:
— Pick node d uniformly at random.

* Content selection:
— Pick a rumor r uniformly at random.
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Observations

* Gossip rumors usually small:
— Incremental updates.

— Few bytes hash of actual information.

 Packet size below MTU irrelevant.
— Stack rumors in @ message.

— But which ones?




Random gossip w/stacking

* Recipient selection:
— Pick node d uniformly at random.

 Content selection:

— Fill packet with rumors picked uniformly
at random.




Further ingredients

 Rumors can be delivered indirectly.

— Uninterested node might forward to an
interested one.

— Could use longer dissemination paths.

* Traffic adaptivity.

— Some groups have more to talk about
than others.

) — Could monitor traffic and optimize to
| allocate bandwidth.




GO Heuristic

* Recipient selection:

— Pick node d biased towards higher
group traffic.

e Content selection:

— Compute the utility of including rumor r

* Probability of r infecting an uninfected host
when it reaches the target group.

— Pick rumors to fill packet with
probability proportional to utility.



Target group of r

Incluc

* Probability of r infecting an uninfected host
when it reaches the target group.




Nunber of fresh rumnors received
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* 55 minute trace of the IBM WebSp
Enterprise (WVE) Bulletin Board layer.

— 127 nodes and 1364 groups

Nunber of Rumnors Generated/Round

126

166

40

208

Hebspﬁere traffic

1 i 1
8 1666 2606 30680 46086 50680 6608 700t

Round

Rumors
generated
per round in
the trace



* IBM WVE trace (127 nodes, 1364 grour
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IBM WVE trace (127 nodes,
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* IBM WVE trace (127 nodes, 1364 grour
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Conclusion

GO implements novel ideas:
— Per-node gossip platform.
— Rumor stacking.
— Utility-based rumor dissemination.
— Traffic adaptivity.
* GO gives per-node guarantees.
— Even when the # of groups scales up.

* Experimental results are compelling.

) — We plan to use GO as the transport for
N the Live Objects platform.



