Ymir Vigfasson Ken Birman Qi Huang Deepak Nataraj
IBM Research Cornell University Cornell University Cornell University
Haifa Labs

GossIp

* Def: Exchange information with a
random node once per round.

* Has appealing properties:
— Bounded network traffic.
— Scalable in group size.
— Robust against failures.
— Simple to code.

* Per-node scalability?

— When # of groups scales up, lose

The GO Platform

Gossip Mechanism
Event Loop
GO Heuristic

GO Platform

Neighbor
Lists

Random gossip

* Recipient selection:
— Pick node d uniformly at random.

* Content selection:
— Pick a rumor r uniformly at random.

S
1 N\ o /’ o
:'&\“‘*, N :’-’ g

Observations

* Gossip rumors usually small:
— Incremental updates.

— Few bytes hash of actual information.

 Packet size below MTU irrelevant.
— Stack rumors in @ message.

— But which ones?

Random gossip w/stacking

* Recipient selection:
— Pick node d uniformly at random.

 Content selection:

— Fill packet with rumors picked uniformly
at random.

Further ingredients

 Rumors can be delivered indirectly.

— Uninterested node might forward to an
interested one.

— Could use longer dissemination paths.

* Traffic adaptivity.

— Some groups have more to talk about
than others.

) — Could monitor traffic and optimize to
| allocate bandwidth.

GO Heuristic

* Recipient selection:

— Pick node d biased towards higher
group traffic.

e Content selection:

— Compute the utility of including rumor r

* Probability of r infecting an uninfected host
when it reaches the target group.

— Pick rumors to fill packet with
probability proportional to utility.

Target group of r

Incluc

* Probability of r infecting an uninfected host
when it reaches the target group.

Nunber of fresh rumnors received

imulated but ‘clean’

the GO strategy.

Randon w/Stacking
50000 - Randon
ao000 [Individual -
rumors
30000 [

delivered

20000

16000

%] 50 160 150
Tine {rounds}

200

250

Nunber of fresh rumnors received

700

560 -

400

360

200

1606

topology

Topology

60 ——
| GO w/o utility

Rumors
delivered
indirectly

a 58 160
Tine {rounds)

1586

200

* 55 minute trace of the IBM WebSp
Enterprise (WVE) Bulletin Board layer.

— 127 nodes and 1364 groups

Nunber of Rumnors Generated/Round

126

166

40

208

Hebspﬁere traffic

1 i 1
8 1666 2606 30680 46086 50680 6608 700t

Round

Rumors
generated
per round in
the trace

* IBM WVE trace (127 nodes, 1364 grour

1200 1 1 1 1 1 1
G0 ——
Randon w/Stacking
1068 Randon i

460 I

Nunber of Hsgs Sent/Round

200 |

2]
2] 1666 26686 3608 4666 50806 60060 7006t

Round

Network
traffic

IBM WVE trace (127 nodes,

Nunber of fresh rumnors received

360000

2500060

200000

1560600

1660600

Optinal

GO
| Randon w/Stacking
Randon

Y S S

1006 2060 3000 406680 50080 60600
Tine {rounds)

780t

Individual
rumors
delivered

* IBM WVE trace (127 nodes, 1364 grour

Nunber of rumors received

360000

2500060

200000

1560600

1660600

GO
GO without utility
Randon w/Stacking

Randop

1 1

600000 1.2e+06 1.8e+86 2.4e+86 3e+03
Nunber of nessages sent

Individual
rumors
delivered
VS. messages
sent

Conclusion

GO implements novel ideas:
— Per-node gossip platform.
— Rumor stacking.
— Utility-based rumor dissemination.
— Traffic adaptivity.
* GO gives per-node guarantees.
— Even when the # of groups scales up.

* Experimental results are compelling.

) — We plan to use GO as the transport for
N the Live Objects platform.

