Some Lessons Learned From
Operating Amazon’s Web Services



Talk Outline

Brief introduction to AWS

An analogy: Evolving a Cessnha prop-plane into
a 747 jumbo jet in-flight

Issues you will encounter
Keep it simple

CAE trade-off: cost-efficient, available, elastic:
pick any two

Don’t ignore your business model
Semantics of elastic resources



Brief Introduction to AWS

Elastic Compute Cloud (EC2)
Elastic block storage service (EBS)
Virtual Private Clouds (VPC)
Simple storage service (S3)
Simple queue service (SQS)
SimpleDB

Cloudfront CDN

Elastic Map-Reduce (EMR)




An Analogy for Building a Successful,
Evolving, Highly-Available Service

Start with a Cessna prop-plane

4-9’s availability means you get to land for 52 minutes every
year

— Includes scheduled maintenance

— Includes refueling

— Includes crash landings

Success => growth and evolution => rebuilding the plane in
mid-flight
— Passenger capacity goes from 4-person cabin to 747 jumbo
wide-body cabin
— Support for “scale out” means you add jet engines and remove
the propellers while flying

— Testing and safety inspections for these changes get done in-
flight — with passengers — as well



The Unexpected Happens

A fuse blows and darkens a set of racks

Chillers die in a datacenter and a fraction of servers are down
The electric plug of a rack bursts into flames

A Telco severs connectivity to a datacenter

Tornados and lightening strike a datacenter

A datacenter floods from the roof down

Simultaneous infant mortality occurs of servers newly-
deployed in multiple datacenters

Power generation doesn’t start because the ambient
temperature is too high

The DNS provider creates a black hole
Load



Networking Challenges

The IP protocol is deeply embedded in systems — you
de-facto have to use it

IP networks can have lost packets, duplicate packets,
and corrupted packets

Even if you use TCP your applications still need to

worry about lost packets, duplicate packets, and
corrupted packets

Software (and hardware) bugs can result in consistent
loss or corruption of some packets

You have to be prepared for message storms

Client software is sometimes written without a notion
of backing off on retries



Things You Should Be Able To Do
Without Causing Outages

Adding new hardware
Deploying a new version of software
Rolling back to a previous version of software

Recovering from the absence, loss, or corruption of
non-critical data

Losing a mirror of a DBMS

Recovering from having lost a mirror of a DBMS
Losing a host in its fleet

Losing a datacenter

Losing network connectivity between data centers



System Resources/Objects Have Lives of
Their Own

* Resources/objects in a service may live longer
than the accounts used to create them

— You have to be able to remap them between
accounts

* Resources/objects may live longer than
versions of the service
— You have to be able to migrate them forward

— ... with minimal or no disruption of their use



Downstream Dependencies Fail

* |t’s a service-oriented architecture

— The good news: your service has the ability to keep going
even if other services become unavailable

— The challenge: how to keep going and/or degrade
gracefully if you depend on the functionality of
downstream services

e Suppose all services are 4-9’s available

— If a downstream service fails for 52 minutes, how will you
meet your own SLA of failing no more than 52 minutes?

e (Cascading outages happen

— If multiple downstream services fail, how will you handle
it?



You Must be Prepared to Deal with
Data Corruption

e Data corruption happens
— Hardware can be flakey
— 1O sub-systems can lie
— Software can be wrong
— Evolution happens
— People can screw up
* End-to-end integrity checks are a must

— Straight-forward data corruption checking

— How do you know if your system is operating
correctly?

e Can your design do fsck in < 52 minutes?



Keep it Simple

* |t's 4AM on Sunday morning and the service has
gone down

— Can you explain the corner cases of your design to the
front-line on-call team over the phone?

— Can you figure out what’s going on in under 52
minutes?
* Simple brute force is sometimes preferable to
elegant complexity

— Eventual consistency considered painful (but
sometimes necessary)

— P2P can be harder to debug than centralized
approaches (but may be necessary)



Will Your Design Envelope Scale Far Enough? Do
You Understand Your Components Well Enough?

* Cloud computing has global reach

Services may grow at an astonishing pace
The overall scale is HUGE

* The scale of cloud computing tends to push systems outside their
standard design envelopes

The rule-of-thumb that you must redesign your system every time it
grows by 10x implies you must be prepared to redesign early and often

Modern systems use ever-more-sophisticated components

Software (and hardware) systems unavoidably have implicit design
assumptions built into them

When you go outside the design envelope you get to discover where
those assumptions no longer hold

The result may be data corruption, unexpected performance
behaviors, etc.

It’s 4AM and you have 52 minutes to figure out why things aren’t
working as expected...



CAE Trade-Off for Resources

 CAE: cost-efficient, available, elastic

* If cost is no concern then you can provide highly-
available, elastic resources by over-provisioning

* |f you don’t need elasticity (i.e. you know your
workload and environment exactly) then you can
provide high availability in the most cost-efficient way
possible

* If you don’t need it now then you can provide cost-
efficient, elastic resources by making the client wait

* Most everyone wants high availability

* The challenge is how to provide seemingly infinite
elasticity at competitive prices



Don’t Ignore the Business Model or
Your TCO

Do you know all the sources of cost? Can you
accurately measure them?

Do you know all the “dimensions of cost” that will
oe used in pricing? Can you meter them?

Have you thought about ways the system can be
abused?

How will you resolve billing disputes?

All these may affect the design of the service in
fundamental ways




Elastic Resources: What Boundaries to
Expose?

High availability applications require the notion of
independent failure zones = introduce the notion of
availability zones (AZ)

Concurrent applications want bounded, preferably low
message latency and high bandwidths = introduce the
notion of cluster affinity to an AZ

The challenges of AZ clustering

— Clumping effect since everyone will want to be near everyone
else

— Makes elastic scheduling harder

Fine-tuned applications are the enemy of elasticity

e Customers will try to divine your intra-AZ topology (co-location
on the same rack, etc.)

 Eventual evolution to different network infrastructures and
topologies means you don’t want to expose more than you have
to.



o« T

Summary and Conclusions

he unexpected happens: in large systems even

extremely rare events occur with a non-negligible
frequency; what’s your story on handling them?

Keep it simple: It's 4AM and the clock is ticking —

can you debug what’s going on in your system?

* C
a
e

oud computing is a business: you have to think
oout cost-efficiency as well as availability and

asticity



©2009 Amazon Web Services LLC.

This presentation is provided for informational
purposes only. Amazon Web Services LLC is not
responsible for any damages related to the
information in this presentation, which is
provided “as is” without warranty of any kind,
whether express, implied, or statutory. Nothing
in this presentation creates any warranties or
representations from Amazon Web Services
LLC, its affiliates, suppliers, or licensors. This
presentation does not modify the applicable
terms and conditions governing your use of
Amazon Web Services technologies, including
the Amazon Web Services website. This
presentation represents Amazon Web Services'
current product offerings as of the date of
issue of this document, which are subject to
change without notice.



