Towards Decoupling Storage and Computation in Hadoop with SuperDataNodes

George Porter* <gmporter@cs.ucsd.edu> Center for Networked Systems U. C. San Diego

LADIS 2009 / Big Sky, MT

^{*} Work performed at Sun Labs, Burlington, MA.

Data-intensive computing and Whedoop

 Hadoop is growing, gaining adoption, and used in production:

- Facebook imports 25 TB/day to 1K Hadoop nodes
- A key to that growth and efficiency relies on coupling compute and storage
 - Benefits of moving computation to data
 - Scheduling, locality, reduce network traffic, map parallelism
 - 'Grep' type workloads especially

When to couple storage with computation?

- Critical (yet complicated) design decision
- Emerging best practices with dedicated clusters
- Your datacenter design may not be based on needs of Hadoop
 - Adding Map/Reduce functionality to existing cluster
 - Small workgroups who like the programming model
 - Pig, Hive, Mahout...
- Mixture may change over time
 - Non-uniform data access patterns
 - Desire to power down some compute functionality during periods of low utilization
 - Without affecting storage functionality

Goal

- Support late binding between storage and computation
 - Explore alternative balances between the two
 - Specifically the extreme point of separating all storage from the workers and consolidating it into a SuperDataNode (SDN)
 - Facebook observations:
 - Small and medium sized jobs exhibit large rack-local workers, but not node-local workers
- Non-goal: Replacing traditional Hadoop deployments

SuperDataNode Approach

- Key Features
 - "Stateless" worker tier
 - Storage node with shared pool of disks under single
 O/S
 - O/S as central broker of disk requests
 - High bisection bandwidth to worker tier
 - 4x1GigE; 10GigE
- Artifacts of my experiments
 - Per net-interface VM exporting virtual storage nodes

Advantages

- Decouple amount of storage from number of worker nodes
- More intra-rack bandwidth than inter-rack bandwidth
- Support for "archival" data
 - Subset of data with low probability of access
- Increased uniformity for job scheduling and block placement
- Ease of management
 - Workers become stateless; SDN management similar to that of a regular storage node
- Replication only for node failures

Limitations

- Scarce storage bandwidth between workers and SDN
 - Effective throughput with N disks in SDN (@ 100MB/sec each)
 - 1:N ratio of bandwidth between local and remote disks
 - 4 Gbit/sec: min(100N, 400/N) MB/sec
 - 10 Gbit/sec: min(100N, 1000/N) MB/sec
- Effect on fault-tolerance
 - Disk vs Node vs Link failure model
 - Replication
- Cost
- Performance depending on the workload

Evaluation

Baseline

 10 1u servers, 2 disks each for data w/ ZFS; worker and storage node colocated

Experimental setup

 10 1u servers with no data;
 20 disks in SDN w/ ZFS (Thumper successor); 4
 virtual datanodes in SDN

Observations

 RandonWriter exhibits perfect parallelism and 100% local-only write behavior (worst case against SDN)

Impact of O/S on the disk pool

- Isolate block read/write latency within the host only
 - Ignoring network, JVM, Map function, ...
- Instrumented HDFS data path with X-Trace events
- Management of a central pool of disks based on visibility of every node using the SDN

Related Work

- Advantages of moving computation towards the data [Jim Gray, Queue, 2008]
- FAWN: A Fast Array of Wimpy Nodes [SOSP09]
- Archival workloads [SAM/QFS]
- Deployed Hadoop installations
 - 3800 node Terasort [Yahoo]
 - Counterpoint to the storage-to-I/O balance [Joseph M. Hellerstein]
 - As a service on EC2 [http://aws.amazon.com]

Conclusions

- Choosing the balance of storage to computation critical
 - Performance, efficiency, power, job scheduling
- Desire mechanism to delay this binding until runtime and decouple the two
 - Can support changing storage/CPU ratios, new datasets and workloads, conserve power during periods of low demand, greater management flexibility
- Comparable performance for a variety of workloads

Discussion

Thank you

Thanks to Hsianglung Wu, Matei Zaharia,
 Steve Heller