
Cassandra
Structured Storage System over a P2P Network

Avinash Lakshman, Prashant Malik

Why Cassandra?

•  Lots of data
– Copies of messages, reverse indices of

messages, per user data.
•  Many incoming requests resulting in a lot

of random reads and random writes.
•  No existing production ready solutions in

the market meet these requirements.

Design Goals
•  High availability
•  Eventual consistency

–  trade-off strong consistency in favor of high
availability

•  Incremental scalability
•  Optimistic Replication
•  “Knobs” to tune tradeoffs between consistency,

durability and latency
•  Low total cost of ownership
•  Minimal administration

Data Model
KEY

ColumnFamily1 Name : MailList Type : Simple Sort : Name

Name : tid1

Value : <Binary>

TimeStamp : t1

Name : tid2

Value : <Binary>

TimeStamp : t2

Name : tid3

Value : <Binary>

TimeStamp : t3

Name : tid4

Value : <Binary>

TimeStamp : t4

ColumnFamily2 Name : WordList Type : Super Sort : Time

Name : aloha

C1

V1

T1

C2

V2

T2

C3

V3

T3

C4

V4

T4

Name : dude

C2

V2

T2

C6

V6

T6

Column Families
are declared

upfront

Columns are
added and
modified

dynamically

SuperColumns
are added and

modified
dynamically

Columns are
added and
modified

dynamically

Write Operations

•  A client issues a write request to a random
node in the Cassandra cluster.

•  The “Partitioner” determines the nodes
responsible for the data.

•  Locally, write operations are logged and
then applied to an in-memory version.

•  Commit log is stored on a dedicated disk
local to the machine.

Write Properties

•  No locks in the critical path
•  Sequential disk access
•  Behaves like a write back Cache
•  Append support without read ahead
•  Atomicity guarantee for a key per replica
•  “Always Writable”

– accept writes during failure scenarios

Read

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ

Cluster Membership and Failure
Detection

•  Gossip protocol is used for cluster membership.
•  Super lightweight with mathematically provable properties.
•  State disseminated in O(logN) rounds where N is the number of

nodes in the cluster.
•  Every T seconds each member increments its heartbeat counter and

selects one other member to send its list to.
•  A member merges the list with its own list .

Accrual Failure Detector
•  Valuable for system management, replication, load balancing etc.
•  Defined as a failure detector that outputs a value, PHI, associated

with each process.
•  Also known as Adaptive Failure detectors - designed to adapt to

changing network conditions.
•  The value output, PHI, represents a suspicion level.
•  Applications set an appropriate threshold, trigger suspicions and

perform appropriate actions.
•  In Cassandra the average time taken to detect a failure is 10-15

seconds with the PHI threshold set at 5.

Properties of the Failure Detector

•  If a process p is faulty, the suspicion level
 Φ(t) ∞as t ∞.

•  If a process p is faulty, there is a time after which Φ(t) is monotonic
increasing.

•  A process p is correct Φ(t) has an ub over an infinite execution.
•  If process p is correct, then for any time T,

 Φ(t) = 0 for t >= T.

Performance Benchmark

•  Loading of data - limited by network
bandwidth.

•  Read performance for Inbox Search in
production:

Search Interactions Term Search
Min 7.69 ms 7.78 ms
Median 15.69 ms 18.27 ms
Average 26.13 ms 44.41 ms

Lessons Learnt

•  Add fancy features only when absolutely
required.

•  Many types of failures are possible.
•  Big systems need proper systems-level

monitoring.
•  Value simple designs

Questions?

