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Why Cassandra? 

•  Lots of data 
– Copies of messages, reverse indices of 

messages, per user data. 
•  Many incoming requests resulting in a lot 

of random reads and random writes. 
•  No existing production ready solutions in 

the market meet these requirements. 



Design Goals 
•  High availability 
•  Eventual consistency 

–  trade-off strong consistency in favor of high 
availability 

•  Incremental scalability 
•  Optimistic Replication 
•  “Knobs” to tune tradeoffs between consistency, 

durability and latency 
•  Low total cost of ownership 
•  Minimal administration 



Data Model 
KEY 

ColumnFamily1  Name : MailList     Type : Simple    Sort : Name  

Name : tid1 

Value : <Binary> 

TimeStamp : t1 

Name : tid2 

Value : <Binary> 

TimeStamp : t2 

Name : tid3 

Value : <Binary> 
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Name : tid4 

Value : <Binary> 

TimeStamp : t4 

ColumnFamily2       Name : WordList       Type : Super        Sort : Time  

Name : aloha 
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Write Operations 

•  A client issues a write request to a random 
node in the Cassandra cluster. 

•  The “Partitioner” determines the nodes 
responsible for the data. 

•  Locally, write operations are logged and 
then applied to an in-memory version. 

•  Commit log is stored on a dedicated disk 
local to the machine. 



Write Properties 

•  No locks in the critical path 
•  Sequential disk access 
•  Behaves like a write back Cache 
•  Append support without read ahead 
•  Atomicity guarantee for a key per replica 
•  “Always Writable” 

– accept writes during failure scenarios 



Read 

Query 

Closest replica 

Cassandra Cluster 
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Result 
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Cluster Membership and Failure 
Detection 

•  Gossip protocol is used for cluster membership. 
•  Super lightweight with mathematically provable properties. 
•  State disseminated in O(logN) rounds where N is the number of 

nodes in the cluster. 
•  Every T seconds each member increments its heartbeat counter and 

selects one other member to send its list to. 
•  A member merges the list with its own list . 



Accrual Failure Detector 
•  Valuable for system management, replication, load balancing etc. 
•  Defined as a failure detector that outputs a value, PHI, associated 

with each process.  
•  Also known as Adaptive Failure detectors - designed to adapt to 

changing network conditions. 
•  The value output, PHI, represents a suspicion level. 
•  Applications set an appropriate threshold, trigger suspicions and 

perform appropriate actions. 
•  In Cassandra the average time taken to detect a failure is 10-15 

seconds with the PHI threshold set at 5. 



Properties of the Failure Detector 

•  If a process p is faulty, the suspicion level  
   Φ(t)  ∞as t  ∞. 

•  If a process p is faulty, there is a time after which Φ(t) is monotonic 
increasing. 

•  A process p is correct  Φ(t) has an ub over an infinite execution. 
•  If process p is correct, then for any time T,  

   Φ(t) = 0 for t >= T. 



Performance Benchmark 

•  Loading of data - limited by network 
bandwidth. 

•  Read performance for Inbox Search in 
production: 

Search Interactions Term Search 
Min 7.69 ms 7.78 ms 
Median 15.69 ms 18.27 ms 
Average 26.13 ms 44.41 ms 



Lessons Learnt 

•  Add fancy features only when absolutely 
required. 

•  Many types of failures are possible. 
•  Big systems need proper systems-level 

monitoring. 
•  Value simple designs 



Questions? 


