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Asynchronous Delay Model

Two connected operative processes
One sends a message 7 to the other

How long will it take for » to be received?

0 Communication delay cannot be bounded with certainty
How long will it take to process the received m?

0 Processing delay also cannot be bounded with certainty

Asynchronous model captures environments, where

0 Processing loads and network traffic can fluctuate by arbitrary
amounts at arbitrary instances,

0 Processes’ clocks cannot be kept synchronised (free of time)
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Cost of Asynchrony: where and why

Some critical services are always needed
o E.g., Chubby Lock Service

Service replication against host failures

State updates must be done in an identical order at
all operative replicas

Ordering update requests = strong consistency

Asynchronous ordering is expensive due to this
(FLP) dilemma:

o A process waits on a timeout and timeout expires
o Does it mean a failure or timeout duration was too small?

Cause of ‘performance bottleneck’ in Paxos
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Alternative to Asynchronous model

Emergence of Managed Environments
o Cluster computing, Data-centres

Do delays fluctuate so arbitrarily here?

With Proactive measurements, delay bounds can be
predicted in probabilistic terms

In probabilistically synchronous model, the
following are known

o Loss probability,

o Delay distribution,

o Jitter

Claim

o We can design protocols, minimising the likelihood of
having to go the Paxos way for order/ strong consistency
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The hypothesis behind the new model

The central hypothesis

o Most of the time, performance in recent past is
iIndicative of performance to unfold in near future

Inspiration: congestion control

o RTO expires = multiplicatively reduce
transmission rate

o RTT and variations in RTT (jitter) are proactively
measured and are assumed to hold now

o Assumes adherence to the same hypothesis
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Design Steps

Measure delays proactively and predict
delays in probabilistic terms

Design protocol with tuneable parameters

A Schema for run-time choice of parameter
values

o probability of correct ordering is chosen
Mistakes occurring are detected
Exceptions on detecting mistakes
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Order Protocol — a very briet sketch

For brevity, assume

o sites fail by Crash

o clocks are synchronised

0 messages are not lost (not so in the paper)

Po, Po, .., P, are stateful replicas
Say, Po receives an update request

It sends m twice to P4, Po, .., Py:
o copy 0 at time tand copy 1 at t+n);

Each of P4, Py, .., P, also sends m twice, if it does
not receive copy 1 within a timeout;

Every P; (including Pg) applies update in m at time ¢
+D
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Value of D

Evaluated for the desired probability of correct ordering
o can be chosen to be arbitrarily close to 1

D is also a function of

o Measured delays — fact of life

o Number of ‘nasty’ crashes expected while m being ordered
A value of 1 is safe and 2 is optimistic

In Paxos, (t+D) is when

o a majority of processes are known to have settled on the same
order number for m

What if D used happens to be small?
o All operative P; ‘eventually’ receive m
o Incorrect ordering is detected for initiating exception

o In PL experiments, no incorrect ordering when there are no
‘nasty’ crashes [8]
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So, the full picture

With a chosen probability p, run the order/
consistency protocol

a Wait for D and act
nconsistencies occur with (1-p)
Detection assured

Deal with inconsistency in an application
specific way

In the extreme, exception handler will have
Paxos-like complexity + potential roll-back
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Crash-Signal Abstraction

What if the hypothesis cannot hold most of the time?
o Say, due to malicious (or seemingly malicious) activities

Say, a process were to signal prior to crash
Timeout-based failure detection not needed

For crash-signal, we need
o A pair of order processes checking each other
o And a trusted link connecting the pair

A crash-tolerant order protocol + crash-signalling =
Byzantine-tolerant order protocol [11]

o for the same node redundancy as BFT
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Conclusions

In managed hosting environments, delays
are

o Neither synchronous (can be bounded with
certainty)

o Nor asynchronous (cannot be bounded with
certainty)

They are probabilistically synchronous
o Can be bounded with certainty most of the time

On-going work: development of exceptions

Open environments are asynchronous
o On-going work: Crash-signal Menicus
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‘ Questions..
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