
Learning from the Past for
Resolving Dilemmas of
Asynchrony

 Paul Ezhilchelvan and Santosh Shrivastava
 Newcastle University
 England, UK

11 October 2009 LADIS09 2

Outline

  Asynchronous model and Motivation for
seeking alternatives

  An alternative model for managed
environments and a design approach

  An alternative design approach for the
Asynchronous model

11 October 2009 LADIS09 3

Asynchronous Delay Model

  Two connected operative processes
  One sends a message m to the other
  How long will it take for m to be received?

  Communication delay cannot be bounded with certainty

  How long will it take to process the received m?
  Processing delay also cannot be bounded with certainty

  Asynchronous model captures environments, where
  Processing loads and network traffic can fluctuate by arbitrary

amounts at arbitrary instances,
  Processes’ clocks cannot be kept synchronised (free of time)

11 October 2009 LADIS09 4

Cost of Asynchrony: where and why

  Some critical services are always needed
  E.g., Chubby Lock Service

  Service replication against host failures
  State updates must be done in an identical order at

all operative replicas
  Ordering update requests ≡ strong consistency
  Asynchronous ordering is expensive due to this

(FLP) dilemma:
  A process waits on a timeout and timeout expires
  Does it mean a failure or timeout duration was too small?

  Cause of ‘performance bottleneck’ in Paxos

11 October 2009 LADIS09 5

Alternative to Asynchronous model
  Emergence of Managed Environments

  Cluster computing, Data-centres
  Do delays fluctuate so arbitrarily here?
  With Proactive measurements, delay bounds can be

predicted in probabilistic terms
  In probabilistically synchronous model, the

following are known
  Loss probability,
  Delay distribution,
  jitter

  Claim
  We can design protocols, minimising the likelihood of

having to go the Paxos way for order/ strong consistency

11 October 2009 LADIS09 6

The hypothesis behind the new model

  The central hypothesis
  Most of the time, performance in recent past is

indicative of performance to unfold in near future
  Inspiration: congestion control

  RTO expires ⇒ multiplicatively reduce
transmission rate

  RTT and variations in RTT (jitter) are proactively
measured and are assumed to hold now

  Assumes adherence to the same hypothesis

11 October 2009 LADIS09 7

Design Steps

  Measure delays proactively and predict
delays in probabilistic terms

  Design protocol with tuneable parameters
  A Schema for run-time choice of parameter

values
  probability of correct ordering is chosen

  Mistakes occurring are detected
  Exceptions on detecting mistakes

11 October 2009 LADIS09 8

Order Protocol – a very brief sketch
  For brevity, assume

  sites fail by Crash
  clocks are synchronised
  messages are not lost (not so in the paper)

  P0, P2, .., Pn are stateful replicas
  Say, P0 receives an update request
  It sends m twice to P1, P2, .., Pn:

  copy 0 at time t and copy 1 at t+η;
  Each of P1, P2, .., Pn also sends m twice, if it does

not receive copy 1 within a timeout;
  Every Pi (including P0) applies update in m at time t

+D

11 October 2009 LADIS09 9

Value of D
  Evaluated for the desired probability of correct ordering

  can be chosen to be arbitrarily close to 1
  D is also a function of

  Measured delays – fact of life
  Number of ‘nasty’ crashes expected while m being ordered

  A value of 1 is safe and 2 is optimistic
  In Paxos, (t+D) is when

  a majority of processes are known to have settled on the same
order number for m

  What if D used happens to be small?
  All operative Pi ‘eventually’ receive m
  Incorrect ordering is detected for initiating exception
  In PL experiments, no incorrect ordering when there are no

‘nasty’ crashes [8]

11 October 2009 LADIS09 10

So, the full picture

  With a chosen probability p, run the order/
consistency protocol
  Wait for D and act

  Inconsistencies occur with (1-p)
  Detection assured
  Deal with inconsistency in an application

specific way
  In the extreme, exception handler will have

Paxos-like complexity + potential roll-back

11 October 2009 LADIS09 11

Crash-Signal Abstraction

  What if the hypothesis cannot hold most of the time?
  Say, due to malicious (or seemingly malicious) activities

  Say, a process were to signal prior to crash
  Timeout-based failure detection not needed
  For crash-signal, we need

  A pair of order processes checking each other
  And a trusted link connecting the pair

  A crash-tolerant order protocol + crash-signalling =
Byzantine-tolerant order protocol [11]
  for the same node redundancy as BFT

11 October 2009 LADIS09 12

Conclusions
  In managed hosting environments, delays

are
  Neither synchronous (can be bounded with

certainty)
  Nor asynchronous (cannot be bounded with

certainty)
  They are probabilistically synchronous

  Can be bounded with certainty most of the time
  On-going work: development of exceptions
  Open environments are asynchronous

  On-going work: Crash-signal Menicus

11 October 2009 LADIS09 13

Questions..

