Learning from the Past for
Resolving Dilemmas ot
Asynchrony

Paul Ezhilchelvan and Santosh Shrivastava

Newcastle University
England, UK



Outline

11 October 2009

Asynchronous model and Motivation for
seeking alternatives

An alternative model for managed
environments and a design approach

An alternative design approach for the
Asynchronous model

LADIS09



Asynchronous Delay Model

Two connected operative processes
One sends a message 7 to the other

How long will it take for » to be received?

0 Communication delay cannot be bounded with certainty
How long will it take to process the received m?

0 Processing delay also cannot be bounded with certainty

Asynchronous model captures environments, where

0 Processing loads and network traffic can fluctuate by arbitrary
amounts at arbitrary instances,

0 Processes’ clocks cannot be kept synchronised (free of time)

11 October 2009 LADIS09 3



Cost of Asynchrony: where and why

Some critical services are always needed
o E.g., Chubby Lock Service

Service replication against host failures

State updates must be done in an identical order at
all operative replicas

Ordering update requests = strong consistency

Asynchronous ordering is expensive due to this
(FLP) dilemma:

o A process waits on a timeout and timeout expires
o Does it mean a failure or timeout duration was too small?

Cause of ‘performance bottleneck’ in Paxos

11 October 2009 LADIS09 4



Alternative to Asynchronous model

Emergence of Managed Environments
o Cluster computing, Data-centres

Do delays fluctuate so arbitrarily here?

With Proactive measurements, delay bounds can be
predicted in probabilistic terms

In probabilistically synchronous model, the
following are known

o Loss probability,

o Delay distribution,

o Jitter

Claim

o We can design protocols, minimising the likelihood of
having to go the Paxos way for order/ strong consistency

11 October 2009 LADIS09



The hypothesis behind the new model

The central hypothesis

o Most of the time, performance in recent past is
iIndicative of performance to unfold in near future

Inspiration: congestion control

o RTO expires = multiplicatively reduce
transmission rate

o RTT and variations in RTT (jitter) are proactively
measured and are assumed to hold now

o Assumes adherence to the same hypothesis

11 October 2009 LADIS09



Design Steps

Measure delays proactively and predict
delays in probabilistic terms

Design protocol with tuneable parameters

A Schema for run-time choice of parameter
values

o probability of correct ordering is chosen
Mistakes occurring are detected
Exceptions on detecting mistakes

11 October 2009 LADIS09



Order Protocol — a very briet sketch

For brevity, assume

o sites fail by Crash

o clocks are synchronised

0 messages are not lost (not so in the paper)

Po, Po, .., P, are stateful replicas
Say, Po receives an update request

It sends m twice to P4, Po, .., Py:
o copy 0 at time tand copy 1 at t+n);

Each of P4, Py, .., P, also sends m twice, if it does
not receive copy 1 within a timeout;

Every P; (including Pg) applies update in m at time ¢
+D

11 October 2009 LADIS09



Value of D

Evaluated for the desired probability of correct ordering
o can be chosen to be arbitrarily close to 1

D is also a function of

o Measured delays — fact of life

o Number of ‘nasty’ crashes expected while m being ordered
A value of 1 is safe and 2 is optimistic

In Paxos, (t+D) is when

o a majority of processes are known to have settled on the same
order number for m

What if D used happens to be small?
o All operative P; ‘eventually’ receive m
o Incorrect ordering is detected for initiating exception

o In PL experiments, no incorrect ordering when there are no
‘nasty’ crashes [8]

11 October 2009 LADIS09



So, the full picture

With a chosen probability p, run the order/
consistency protocol

a Wait for D and act
nconsistencies occur with (1-p)
Detection assured

Deal with inconsistency in an application
specific way

In the extreme, exception handler will have
Paxos-like complexity + potential roll-back

11 October 2009 LADIS09

10



Crash-Signal Abstraction

What if the hypothesis cannot hold most of the time?
o Say, due to malicious (or seemingly malicious) activities

Say, a process were to signal prior to crash
Timeout-based failure detection not needed

For crash-signal, we need
o A pair of order processes checking each other
o And a trusted link connecting the pair

A crash-tolerant order protocol + crash-signalling =
Byzantine-tolerant order protocol [11]

o for the same node redundancy as BFT

11 October 2009 LADIS09 11



Conclusions

In managed hosting environments, delays
are

o Neither synchronous (can be bounded with
certainty)

o Nor asynchronous (cannot be bounded with
certainty)

They are probabilistically synchronous
o Can be bounded with certainty most of the time

On-going work: development of exceptions

Open environments are asynchronous
o On-going work: Crash-signal Menicus

11 October 2009 LADIS09



‘ Questions..

11 October 2009

LADIS09

13



