
Learning from the Past for
Resolving Dilemmas of
Asynchrony

 Paul Ezhilchelvan and Santosh Shrivastava
 Newcastle University
 England, UK

11 October 2009 LADIS09 2

Outline

  Asynchronous model and Motivation for
seeking alternatives

  An alternative model for managed
environments and a design approach

  An alternative design approach for the
Asynchronous model

11 October 2009 LADIS09 3

Asynchronous Delay Model

  Two connected operative processes
  One sends a message m to the other
  How long will it take for m to be received?

  Communication delay cannot be bounded with certainty

  How long will it take to process the received m?
  Processing delay also cannot be bounded with certainty

  Asynchronous model captures environments, where
  Processing loads and network traffic can fluctuate by arbitrary

amounts at arbitrary instances,
  Processes’ clocks cannot be kept synchronised (free of time)

11 October 2009 LADIS09 4

Cost of Asynchrony: where and why

  Some critical services are always needed
  E.g., Chubby Lock Service

  Service replication against host failures
  State updates must be done in an identical order at

all operative replicas
  Ordering update requests ≡ strong consistency
  Asynchronous ordering is expensive due to this

(FLP) dilemma:
  A process waits on a timeout and timeout expires
  Does it mean a failure or timeout duration was too small?

  Cause of ‘performance bottleneck’ in Paxos

11 October 2009 LADIS09 5

Alternative to Asynchronous model
  Emergence of Managed Environments

  Cluster computing, Data-centres
  Do delays fluctuate so arbitrarily here?
  With Proactive measurements, delay bounds can be

predicted in probabilistic terms
  In probabilistically synchronous model, the

following are known
  Loss probability,
  Delay distribution,
  jitter

  Claim
  We can design protocols, minimising the likelihood of

having to go the Paxos way for order/ strong consistency

11 October 2009 LADIS09 6

The hypothesis behind the new model

  The central hypothesis
  Most of the time, performance in recent past is

indicative of performance to unfold in near future
  Inspiration: congestion control

  RTO expires ⇒ multiplicatively reduce
transmission rate

  RTT and variations in RTT (jitter) are proactively
measured and are assumed to hold now

  Assumes adherence to the same hypothesis

11 October 2009 LADIS09 7

Design Steps

  Measure delays proactively and predict
delays in probabilistic terms

  Design protocol with tuneable parameters
  A Schema for run-time choice of parameter

values
  probability of correct ordering is chosen

  Mistakes occurring are detected
  Exceptions on detecting mistakes

11 October 2009 LADIS09 8

Order Protocol – a very brief sketch
  For brevity, assume

  sites fail by Crash
  clocks are synchronised
  messages are not lost (not so in the paper)

  P0, P2, .., Pn are stateful replicas
  Say, P0 receives an update request
  It sends m twice to P1, P2, .., Pn:

  copy 0 at time t and copy 1 at t+η;
  Each of P1, P2, .., Pn also sends m twice, if it does

not receive copy 1 within a timeout;
  Every Pi (including P0) applies update in m at time t

+D

11 October 2009 LADIS09 9

Value of D
  Evaluated for the desired probability of correct ordering

  can be chosen to be arbitrarily close to 1
  D is also a function of

  Measured delays – fact of life
  Number of ‘nasty’ crashes expected while m being ordered

  A value of 1 is safe and 2 is optimistic
  In Paxos, (t+D) is when

  a majority of processes are known to have settled on the same
order number for m

  What if D used happens to be small?
  All operative Pi ‘eventually’ receive m
  Incorrect ordering is detected for initiating exception
  In PL experiments, no incorrect ordering when there are no

‘nasty’ crashes [8]

11 October 2009 LADIS09 10

So, the full picture

  With a chosen probability p, run the order/
consistency protocol
  Wait for D and act

  Inconsistencies occur with (1-p)
  Detection assured
  Deal with inconsistency in an application

specific way
  In the extreme, exception handler will have

Paxos-like complexity + potential roll-back

11 October 2009 LADIS09 11

Crash-Signal Abstraction

  What if the hypothesis cannot hold most of the time?
  Say, due to malicious (or seemingly malicious) activities

  Say, a process were to signal prior to crash
  Timeout-based failure detection not needed
  For crash-signal, we need

  A pair of order processes checking each other
  And a trusted link connecting the pair

  A crash-tolerant order protocol + crash-signalling =
Byzantine-tolerant order protocol [11]
  for the same node redundancy as BFT

11 October 2009 LADIS09 12

Conclusions
  In managed hosting environments, delays

are
  Neither synchronous (can be bounded with

certainty)
  Nor asynchronous (cannot be bounded with

certainty)
  They are probabilistically synchronous

  Can be bounded with certainty most of the time
  On-going work: development of exceptions
  Open environments are asynchronous

  On-going work: Crash-signal Menicus

11 October 2009 LADIS09 13

Questions..

