
A Case for the Accountable Cloud

Andreas Haeberlen

Max Planck Institute for Software Systems (MPI-SWS)

Abstract

For many companies, clouds are becoming an interest-

ing alternative to a dedicated IT infrastructure. However,

cloud computing also carries certain risks for both the

customer and the cloud provider. The customer places

his computation and data on machines he cannot directly

control; the provider agrees to run a service whose details

he does not know. If something goes wrong – for exam-

ple, data leaks to a competitor, or the computation returns

incorrect results – it can be difficult for customer and

provider to determinewhich of them has caused the prob-

lem, and, in the absence of solid evidence, it is nearly im-

possible for them to hold each other responsible for the

problem if a dispute arises.

In this paper, we propose that the cloud should be

made accountable to both the customer and the provider.

Both parties should be able to check whether the cloud

is running the service as agreed. If a problem appears,

they should be able to determine which of them is re-

sponsible, and to prove the presence of the problem to a

third party, such as an arbitrator or a judge. We outline

the technical requirements for an accountable cloud, and

we describe several challenges that are not yet met by

current accountability techniques.

1 Introduction

Cloud computing is becoming increasingly popular.

Among other benefits, it offers customers a way to obtain

computation and storage resources ‘on demand’. Rather

than owning (and maintaining) a large and expensive

IT infrastructure, customers can now rent the necessary

resources as soon as, and as long as, they need them.

Thus, customers can not only avoid a potentially large

up-front investment (which is particularly attractive for

small companies and startups), they may also be able

to reduce their costs through economies of scale and by

paying only for the resources they actually use.

However, from the customer’s perspective, using a

cloud is also somewhat risky because he must to a large

extent relinquish control over his computation and data.

In the conventional model, where the computation runs

on a server farm on the customer’s premises, the cus-

tomer has physical access to the machines, he can di-

rectly observe their status, and he can have them man-

aged by people he trusts. In the new model, where the

computation runs on virtual machines in a cloud, the cus-

tomer can do none of these things. Management of the

physical machines is delegated to the cloud provider; the

customer retains some control over only the virtual ma-

chines, which he can manage remotely over a network

connection.

The loss of control is problematic when something

goes wrong. To illustrate this point, here is just a small

selection of potential problems:

• The machines in the cloud can be misconfigured

or defective and can consequently corrupt the cus-

tomer’s data or cause his computation to return in-

correct results;

• The cloud provider can accidentally allocate insuf-

ficient resources to the customer, which can de-

grade the performance of the customer’s services

and cause him to miss his SLAs;

• An attacker can exploit a bug in the customer’s soft-

ware to steal valuable data, or to take over the cus-

tomer’s machines for spamming or DoS attacks;

• The customer may not have access to his data be-

cause the cloud loses it, or simply because the data

is unavailable at an inconvenient time.

Some of these problems, such as the inadequate alloca-

tion of resources, are cloud-specific and could not occur

on a dedicated platform, whereas others, such as data loss

or broken hardware, are old and venerable systems prob-

lems whose severity is merely increased by the use of

a cloud. For example, machines can become defective

whether they are owned by the customer or by the cloud,

but in the former case the customer can mitigate the risk

by performing regular upgrades and by hiring capable

1



system administrators. If the customer uses a cloud, he

must trust the cloud provider to diligently perform these

tasks.

Unfortunately, since the management responsibilities

are divided between customer and provider, neither of

them is in a good position to address these problems.

Even detecting the presence of a problem can be surpris-

ingly difficult: on the one hand, the provider does not

know what to look for, since he does not know what the

computation is supposed to do; on the other hand, the

customer can only access the cloud machines remotely,

so he has only very limited information. Moreover, when

a problem is detected, the customer and the provider face

the potentially difficult task of deciding which of them is

responsible for it – it is quite natural for the provider to

initially suspect a problem with the customer’s software,

and vice versa. And if such a dispute cannot be resolved

amicably, it is nearly impossible for either of them to

convince a third party (such as an arbitrator or a judge)

that the other is responsible.

The absence of reliable fault detection and attribution

may not only discourage potential cloud customers, it

also complicates (or even rules out) certain applications

that require compliance with laws or regulations, such as

the Health Insurance Portability and Accountability Act

(HIPAA), which strictly regulates the use and disclosure

of protected health information (PHI). According to one

of Amazon’s own case studies, one of their customers

had to modify their software architecture to remove the

PHI before their data was uploaded to the cloud; the PHI

was then kept locally and reconnectedwith the processed

data upon its return [2].

We propose to use accountability [7, 13] to address

these challenges. In a nutshell, we say that a distributed

system is accountable if a) faults can be reliably detected,

and b) each fault can be undeniably linked to at least one

faulty node. More specifically, we consider systems that

have the following features:

• Identities: Each action (such as the transmission

of a message) is undeniably linked to the node that

performed it;

• Secure record: The system maintains a record of

past actions such that nodes cannot secretly omit,

falsify, or tamper with its entries;

• Auditing: The record can be inspected for signs of

faults; and

• Evidence: When an auditor detects a fault, it can

obtain evidence of the fault that can be verified in-

dependently by a third party.

Accountability appears to be a promising approach

to the problems we outlined above. Customers of an

accountable cloud would be able to check whether the

Cloud customer

(runs service S)

Cloud provider

Users of service S

Network

Service S

Agreement 

A

Figure 1: Cloud computing scenario. The customer runs

a service on the cloud, but he has no physical control over

the cloud machines, and he cannot directly observe their

state.

cloud is performing as agreed. If a problem occurs, the

customer and the provider could use the evidence to de-

cide who is responsible, and, if a dispute arises, they

could present the evidence to a third party, such as an

arbitrator or a judge.

However, existing accountability techniques fall short

of the requirements for cloud computing in several ways.

Since clouds are general-purpose platforms, the provider

should be able to offer accountability for any service

his customers may choose to run on it; this rules out

application-specific techniques like CATS [14] or Repeat

and Compare [10]. The application-independent tech-

nique in PeerReview [7], on the other hand, requires soft-

ware modifications and assumes that the behavior of the

software is deterministic, neither of which seems realis-

tic in a cloud computing scenario. Finally, even if these

limitations are overcome, the above techniques can only

detect violations of a single property (correctness of exe-

cution); they were not designed to check other properties

of interest in the cloud, such as conformance to SLAs,

protection of confidential data, data durability, service

availability, and so on.

This paper is intended as a call for action; its goal is to

motivate further research on accountable clouds. At this

time, we cannot present (nor do we claim to possess) a

technical solution that would address all the challenges

we outlined above. We do, however, define requirements

for an accountability service, and we sketch a set of tech-

niques that could form the basis of an accountable cloud.

2 The accountable cloud

In this section, we begin by discussing tradeoffs and

challenges related to building accountable clouds, and

we suggest a basic primitive called AUDIT that an ac-

countable cloud could provide.

2



2.1 Problem statement

Figure 1 illustrates the scenario we are concerned with in

this paper. A customer is interested in running a service

S on the cloud, which (optionally) can be accessed by a

group of external users. For this purpose, the customer

rents a number of (physical or virtual) machines from

a cloud provider.1 Significantly, the customer does not

have any physical control over the cloud machines, and

he cannot directly observe their status.

The customer and the provider also enter into an agree-

ment A that describes how the cloud is going to run ser-

vice S. Typically, A specifies at least that the cloud ma-

chines will faithfully execute the software provided by

the customer. However, A can also specify other prop-

erties, such as an SLA, an availability goal, or a promise

that the data used by S will not be revealed to a third

party.

Our goal is to implement a primitive called

AUDIT(A, S, t1, t2) on the cloud that can be invoked by

the customer to determine whether the cloud has fulfilled

agreement A for service S during the interval [t1 . . . t2].
AUDIT returns either OK, to indicate that S has con-

formed to A in the specified interval, or some evidence

that S has failed to conform to A.

2.2 What is the proper fault model?

We argue that an accountable cloud should be able to pro-

vide accountability even in the presence of Byzantine be-

havior [8], that is, even if the customer or the provider are

outright malicious, and even if they collude with some or

all of the users. At first glance, this requirement may

seem overly pessimistic. After all, current cloud plat-

forms are provided by reputable companies such as Ama-

zon, Microsoft, or Google, and these companies are un-

likely to intentionally commit fraud or act maliciously

against their customers.

We do not deny that cloud providers are unlikely to

be malicious. However, there are several other reasons

why the Byzantine fault model is appropriate. First, in-

tentional misbehavior is not the only source of Byzantine

faults; hacker attacks, software bugs, and manipulations

by disgruntled employees can cause similar effects, and

their detection is no less important than that of malicious

behavior. Second, for a general-purpose system like the

cloud that is used in so many different ways, it seems

difficult to come up with a more restricted fault model;

any assumption about the nature of potential problems is

likely to be violated.

Finally, consider the problem from the perspective of

the cloud provider. Malicious behavior by customers is

1In this paper, we focus on virtual machine rental as an example of

a general-purpose cloud service. However, we believe that other cloud

services could benefit from accountability as well.

certainly a possibility; for example, criminals could try

to extort money from the provider by threatening to tar-

nish his reputation, or competitors could try to frame him

by generating lots of complaints. Hence, it is likely that

most providers would refuse to offer accountability if

there was even the slightest chance that a correctly op-

erating cloud could be made to appear faulty. To get

accountability adopted, we need excellent arguments –

ideally, provable guarantees – to show that false positives

are impossible, no matter what customers and users do.

2.3 What are the provider’s incentives?

From the customer’s perspective, there are clear advan-

tages to using an accountable cloud: he can detect if

the cloud does not run the service as agreed, and he

can hold the cloud provider responsible. From the cloud

provider’s perspective, however, accountability may ap-

pear more as a potential source of problems: it can make

the cloud ‘look bad’ by revealing problems that might not

otherwise have been noticed, and it shifts some power to

the customer by providing him with evidence of faults.

Why should the cloud provider agree to be accountable?

One obvious reason is that accountability is likely to

be attractive to prospective customers. However, there

are also more direct benefits to the cloud provider: he

can use accountability to proactively detect and diagnose

problems, and he can more easily handle customer com-

plaints. Currently it is difficult for customers to distin-

guish between problems caused by the cloud, and prob-

lems they cause themselves; as a result, providers no

doubt receive many complaints for which they are not re-

sponsible. If such a complaint arises with an accountable

cloud, the customer and the provider can simply perform

an audit to determine who is responsible.

2.4 Is privacy an issue?

In some scenarios, there is a tension between privacy and

accountability, since the latter produces a detailed record

of a machine’s actions that can then be inspected by a

third party. However, it is important to consider what

is being recorded, and who the record is made available

to. An accountable cloud could keep separate logs for

each of its customers, and it could make each log avail-

able only to the customer who owns it. Thus, customer A

would not learn anything about the actions of customer B

(or even that other customers exist), and users would not

learn anything about the actions of either customer be-

cause they would not be allowed to audit the cloud at all.

The question remains whether accountability would

compromise the cloud provider’s privacy towards its cus-

tomers. At first glance, the answer is obvious, since the

customers are paying the cloud provider and therefore

3



have every right to learn what is being done on their

behalf. However, recall that AUDIT also returns evi-

dence of faults. If the evidence showedwhich component

(router, storage system, firewall, or server) of the cloud

had caused the fault, the customer might be able to make

inferences about the internal structure of the cloud. On

the other hand, this information is obviously valuable to

the provider, who is responsible for diagnosing and re-

solving the problem. To get around this, the cloud can

return evidence at different levels of detail, depending

on who invokes AUDIT.

2.5 Is fault tolerance an alternative?

As mentioned earlier, accountability can only detect and

report faults, but not mask their symptoms. Thus, if a

fault occurs in the cloud, it is possible that the customer

or some of the users will be affected by it. A natural

question to ask is why the customer should settle for such

a seemingly weak guarantee – after all, a number of fault

tolerance techniques are available, so shouldn’t it be pos-

sible to mask faults?

The problem is that most fault tolerance techniques re-

quire strong assumptions about the environment, such as

failure independence between components, or an upper

bound on the number of components that can be faulty at

any given time. There are ways to ensure that these as-

sumptions hold, such as the use of multiple software ver-

sions or the physical separation of replicas. However, the

customer cannot be sure whether the cloud provider has

taken any of these steps. For example, two apparently

independent virtual machines may be assigned to servers

that are connected to the same router, or the servers may

be managed by the same administrator.

Of course, we expect that most cloud providers will do

their best to provide good service, and to mask as many

faults as they can. However, we argue that it is still useful

to have accountability, so that 1) the customer can check

whether the cloud is really as reliable as promised, and

2) the customer and the provider together can detect and

resolve any problems that the cloud fails to mask.

2.6 Proposed guarantees

If accountability is to be adopted, it must strike a bal-

ance between the requirements of the customer and those

of the provider – that is, it must avoid both false neg-

atives (the customer’s concern) and false positives (the

provider’s concern), and it must provide them with ev-

idence to resolve disagreements, possibly with the help

of a third party. To achieve this, we propose that AUDIT

should have at least the following three properties:

• Completeness: If the agreement is violated, AUDIT

will report this eventually, and it will produce evi-

dence of the violation;

• Accuracy: If the agreement is not violated, AUDIT

will not report a violation; and

• Verifiability: Any evidence of an alleged violation

can be checked independently by a third party, even

if the third party trusts neither the customer nor the

provider.

Note that these guarantees are not intended to be final,

but rather as a basis for further discussion. There is no

single ‘correct’ way to define accountability, and differ-

ent variants may be appropriate for different applications.

2.7 Can these guarantees be relaxed?

Our proposed guarantees are very strong, and they rely

on very few assumptions; for example, they do not re-

quire that providers and customers trust each other, or

that the cloud will only be affected by faults of a par-

ticular type. Having rock-solid guarantees is certainly

reassuring, particularly in a technique like accountabil-

ity that is meant to be used when things are already go-

ing wrong. However, this strength is going to come at

a price. Can we relax some of these guarantees to get

different ‘shades’ of accountability?

Not all accountability guarantees can be relaxed

safely. We envision accountability not merely as a tool

for administrators, but as a technique for enforcing real-

world contracts between companies and organizations.

In this context, the detection of a fault can have seri-

ous legal and financial consequences for the responsible

party. Hence, the accuracy guarantee is absolutely essen-

tial; an accountable party must not be blamed for faults

caused by others, or for faults that did not actually occur.

If accuracy were relaxed, we doubt that cloud providers

would adopt accountability.

However, this concern does not necessarily apply for

the other guarantees. For example, completeness could

be made probabilistic; that is, the cloud could detect each

instance of a fault only with high probability. This should

be safe as long as neither the customer nor the provider

can influence the detection process. Alternatively, some

of the assumptions could be strengthened. For example,

if there is a third party that is trusted by both the provider

and her customers, auditing could be delegated to that

party to reduce overhead. This form of auditing is com-

mon in the financial world, where direct audits by cus-

tomers are impractical for various reasons.

3 Building blocks for an accountable cloud

Next, we describe a set of building blocks that could form

the basis of an accountable cloud. For some of the build-

ing blocks, we can rely on existing work; others have yet

to be developed, and we merely sketch them here.

4



3.1 Tamper-evident logs

To implement AUDIT, we need to know the past actions

of the various entities in the system (customer, provider,

users, cloud machines). For this purpose, we can use a

tamper-evident log, e.g., the log from PeerReview [7].

Each node maintains a log in which it records all of its

inputs and outputs, including anymessages it sends or re-

ceives, and it allows certain other nodes to audit this log.

The log is structured in such a way that auditors can de-

tect if any entries have been omitted, modified, or other-

wise tampered with. If the auditor detects tampering, he

also obtains evidence that can be verified independently

by a third party.

Tamper-evident logs can provide a solid basis for ac-

countable clouds. If the customer is able to audit the logs

of the cloud machines he is renting, he can be sure that

he either obtains a correct record of each machine’s past

actions (which he can then inspect for signs of faults) or

evidence that somemachines have not been keeping their

logs correctly and are therefore faulty. Tamper-evident

logs also offer strong, provable guarantees; in particular,

it is impossible to obtain valid evidence against a cor-

rect node. As mentioned in Section 2.2, such a guarantee

can help to dispel some of the provider’s concerns about

being blamed for non-existent faults.

3.2 Virtualization-based replay

How can the customer recognize faults in the log? If

the software is deterministic, he can simply replay the

inputs in the log to a local instance of the software he

has installed on the cloud, and compare the outputs to

the outputs in the log. Incorrect state transitions cause a

discrepancy and can thus be detected [7]. However, we

cannot assume that the customer’s software is necessar-

ily deterministic, and it is not always feasible to make

the modifications necessary for logging and replay (e.g.,

if the source code is not available). Fortunately, we can

achieve a similar effect in another way (following [6]):

during the original execution, we can run the unmodi-

fied software in a virtual machine, and we can record all

nondeterministic inputs or events, such as interrupts or

device I/O, that occur in the virtual machine. During an

audit, we can then reproduce this execution by initializ-

ing another virtual machine with the same image, and by

injecting the recorded inputs or events at the same points

during the execution.

Existing cloud platforms like EC2 are already based

on virtual machines, and it should not be difficult to add

the functionality for logging and replay to their VMMs.

A more serious concern is that replay might require log-

ging a large amount of information and/or impose a high

run-time overhead for the logging itself. However, re-

sults from [6] suggest that this overhead may be quite

reasonable; a virtual machine running SPECweb99 pro-

duced 1.4 GB/day of log data per day, and the run-time

overhead was less than 5%. Another concern is the cost

of auditing and replay; we discuss this further in Sec-

tion 3.4.

3.3 Trusted timestamping

Logging and replay can be used to detect incorrect exe-

cutions, but this is just one of the problems that a cloud

customer may be interested in detecting. SLA violations

are likely to be anothermajor concern; to detect these, we

must add timing information to the tamper-evident log.

For example, we can periodically (e.g., once per second)

include in the log a certificate from a trusted third-party

timestamping service, such as [1]. For obvious reasons,

the timestamping service should neither be controlled by

the customer nor by the cloud provider.

Once we have timing information in the logs, we can

use it to detect performance faults. One way to do this

is to replay the log on a machine of roughly the speed

promised by the cloud provider, and to check whether

the time required to replay a log segment between two

timestamps t1 and t2 is at most t2 − t1. This is ad-

mittedly a rather crude method that can detect only very

large deviations from the advertised speed. However, if

the provider agrees to a more detailed specification (e.g.,

in terms of latency or throughput), it should be possible

to check more fine-grain properties.

3.4 Sampling

If the customer is to detect faults by repeating every sin-

gle step made by a cloud machine, he would need a sec-

ond cloud to check the performance of the first, which

seems impractical for most applications. One way to mit-

igate this problem is to use a conservative abstraction [5]

and to check more coarse-grain properties. Another is to

use sampling: We can achieve a probabilistic guarantee

by having the cloud perform frequent checkpoints,2 and

by allowing the customer to randomly audit a small num-

ber of segments between consecutive checkpoints. Since

many serious problems (such as hardware faults) will af-

fect many or most of the segments, the customer can still

detect them with high probability even if the sampling

rate is low.

SLAs often include stochastic guarantees, and at first

glance, sampling does not appear to be sufficient to audit

these. For example, if the provider promises that 95%

of response times will be less than 100 ms, how can the

customer be sure that there is no fault without inspecting

2Since the size of the checkpoints depends on the amount of muta-

ble state in the service, sampling is only efficient if this state is not too

large.

5



all response times? The answer is that he cannot, but

he can achieve arbitrarily high confidence by sampling

a subset and by performing a χ2 test. If the result is

positive, the customer can confirm the presence of a fault

by downloading and checking a larger log segment.

3.5 Challenges

The above set of techniques could be used to make a

cloud accountable for correctness and, to a certain ex-

tent, for performance. However, it is not yet clear how

to achieve accountability for other properties, such as

confidentiality, at least not without the use of heavy-

weight primitives such as dynamic taint analysis [11].

Another difficult problem is support for services with

legacy users, who may access cloud machines but do not

maintain a tamper-evident log. However, it appears that

solving this problem for certain classes of applications

is feasible. For example, proxies could be used to add

accountability to a legacy web service.

Clearly, another important concern is performance.

Although there is evidence that the overhead will be

manageable [6], we have yet to demonstrate that the cost

of maintaining, transferring, and replaying the logs of a

realistic cloud-based service is acceptable.

4 Related Work

Cachin et al. [4] contains a survey of security issues in

the context of cloud storage services, and of recent re-

search addressing these issues; Armbrust et al. [3] is a

more general survey of cloud computing. Both of these

papers point out some of the same challenges that mo-

tivate our work. Previous work has shown how to ap-

ply accountability to individual applications [7, 10, 14];

however, to the best of our knowledge, this paper is the

first to propose accountability for an entire platform.

Trusted computing [12] is an alternative approach to

achieving some of the guarantees we propose. However,

it typically requires trusting the correctness of large and

complex codebases, such as hypervisors, device drivers,

or entire kernels, which are still beyond the reach of

state-of-the-art verification techniques. In contrast, some

forms of accountability have been implemented without

special hardware and with very little trusted code. Other

forms (such as accountability for data confidentiality)

may require some platform support, but we expect that

small and simple primitives comparable to TrInc [9] will

be sufficient.

5 Conclusion

In this paper, we have proposed that clouds be made ac-

countable to their customers, and we have argued that

both the customers and the cloud providers stand to ben-

efit – the former because they can check whether their

computations are being performed correctly, and the lat-

ter because they can more easily handle complaints and

resolve disputes. We have outlined requirements for an

accountable cloud, and we have sketched a set of build-

ing blocks that can form the basis of an implementation.

This paper is intended as a call for action; clearly,

much work remains to be done before accountable clouds

can become a commercial reality. We believe, however,

that accountability is a great opportunity for the cloud

industry: it can mitigate risks for both the customer and

the provider, and it can enable an entirely new range of

cloud-based applications.

References

[1] Carlisle Adams, Pat Cain, Denis Pinkas, and Robert Zuccher-

ato. RFC 3161: Internet X.509 public key infrastructure time-

stamp protocol (TSP). http://tools.ietf.org/rfc/

rfc3161.txt, August 2001.

[2] Amazon Web Services. TC3 Health case study. http:

//aws.amazon.com/solutions/case-studies/

tc3-health/.

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.

Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee,

David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia.

Above the clouds: A Berkeley view of cloud computing. Techni-

cal Report EECS-2009-28, University of California at Berkeley,

February 2009.

[4] Christian Cachin, Idit Keidar, and Alexander Shraer. Trusting the

cloud. ACM SIGACT News, 40(2):81–86, June 2009.

[5] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model

checking and abstraction. ACM Transactions on Programming

Languages and Systems, 16(5):1512–1542, 1994.

[6] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Bas-

rai, and Peter M. Chen. ReVirt: Enabling intrusion analysis

through virtual-machine logging and replay. In Proc. OSDI, De-

cember 2002.

[7] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerRe-

view: Practical accountability for distributed systems. In Proc.

SOSP, October 2007.

[8] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzan-

tine generals problem. ACM Transactions on Programming Lan-

guages and Systems, 4(3):382–401, 1982.

[9] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas

Moscibroda. TrInc: Small trusted hardware for large distributed

systems. In Proc. NSDI, Apr 2009.

[10] Nikolaos Michalakis, Robert Soulé, and Robert Grimm. Ensuring

content integrity for untrusted peer-to-peer content distribution

networks. In Proc. NSDI, April 2007.

[11] James Newsome and Dawn Xiaodong Song. Dynamic taint anal-

ysis for automatic detection, analysis, and signature generation of

exploits on commodity software. In Proc. NDSS, February 2005.

[12] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. To-

wards trusted cloud computing. In Proc. HotCloud, June 2009.

[13] Aydan R. Yumerefendi and Jeffrey S. Chase. Trust but verify:

Accountability for internet services. In ACM SIGOPS European

Workshop, September 2004.

[14] Aydan R. Yumerefendi and Jeffrey S. Chase. Strong accountabil-

ity for network storage. ACM Transactions on Storage, 3(3):11,

2007.

6


