
Learning from the Past for Resolving Dilemmas of Asynchrony

Paul Ezhilchelvan and Santosh Shrivastava
School of Computing Science, Newcastle University, UK

Paul.Ezhilchelvan@ncl.ac.uk

Abstract

This paper presents two design approaches to avoid

many complications introduced at both user and
developer levels by the FLP impossibility. The first
approach is appropriate in managed hosting
environments, such as datacenters, and involves
offering service guarantees with tunable success
probabilities and remedial actions in the unlikely
scenarios. The second is appropriate in open
environments and advocates building fail-signal
abstractions for hosting application-level replication.

1. Introduction
In a recent paper, Aguilera and Walfish [1] critically
examine the implications, from both user and
developer perspectives, of using Paxos style [14]
solutions for building fault-tolerant systems for
datacenters and enterprise network based applications.
They then lay down a convincing rationale for seeking
design alternatives to considering asynchronous model
augmented with imperfect fail-detectors such as ◊S [5]
or Ω oracles. Two such alternative design approaches
are presented here.

Unlike [1], which advocates novel ways for
building perfect fail-detectors, we take a step back and
examine how the war on uncertainties intrinsic to
systems is waged in other areas of system engineering.
It appears that several problems are routinely
addressed by taking a view that there is a statistical
correlation between the past and the future behavior of
a system most of the times. This is true even when a
myriad of low- to medium-probability events affect the
system behavior randomly. We believe that such a
view holds in managed hosting environments, such as
datacenters. Our first design approach is proposed for
these environments and is a refinement on our earlier
proposal [9]. It advocates modeling communication
and processing delays as random variables, and
proactively measuring the variables and their
distribution. The resulting model is called the

probabilistically synchronous model. Considering the
identical message ordering (which is equivalent to
consensus [5]) as the problem of interest here, we
argue that parameterized protocols can be developed in
this model and probabilistic guarantees on termination
and correctness can be given to the degree practicably
possible. When such guarantees are not met, remedial
actions need to be initiated and such actions are
outlined in the context of replicated processing.

In some environments, e.g., those exposed to
intrusive attacks, it is not realistic to anticipate a
statistical correlation between the past and the future
behavior. For such environments, we propose the
second design approach which advocates using
redundancy to build fail-signal abstractions and then
solving the ordering problem.

In motivating these approaches, we will be liberally
drawing from the past work, such as synchronous
atomic broadcast [7], fail-stop [15], and TCP
congestion control [12]. Borrowing ideas from the past
work, while proposing practical alternatives, only
reinforces the viability of the approaches being
proposed. For example, the principles behind taking
estimates for congestion control are similar to those
behind our first approach. Congestion control requires
congestion detection which amounts to resolving a
dilemma: is the transmitted packet really lost or merely
being slow? If deemed lost, packet (re)transmission
rate needs to be reduced, typically halved; else, do
nothing. (This is similar to resolving FLP dilemma to
be described shortly.) An incorrect detection has its
cost - increased latency and reduced throughput; in an
ideal set-up, it should be eliminated all together.

An implicit ‘proof of viability’ for our first
approach follows from the observation that congestion
control solutions used in practice do not seek mistake-
free congestion detection, yet they work acceptably
well; they expend best efforts towards minimizing the
probability of making mistakes and mitigate the effects
of any mistakes made. The former involves continually
estimating re-transmission timeout using recent round-
trip-time measurements and the latter additive

increasing of transmission rate. Thus, if uncertainties at
the network level can be managed well, it is not
unreasonable to suppose that a similar approach
pursued in managed application environments would
also yield attractive dividends in practice.

The paper is structured as follows. Section 3
presents the hypothesis of statistical correlation
between the past and the future, and introduces the
notion of benign and malicious adversaries which
prevail when the hypothesis does and does not hold
respectively. The two design approaches are described
in Sections 4 and 5, and Section 6 concludes the paper.
Next section briefly re-visits the arguments of [1] and
presents the motivation behind our work.

2. Motivation
In the synchronous model, processing and
communication delays are distributed on a known
range whereas in the asynchronous model, these delays
have some unknown (but finite) upper bound that
cannot be estimated with certainty. Realizing the
former requires careful provisioning of resources and a
complete prior knowledge of user environment. So,
considering the asynchronous model seems appropriate
when designing dependable distributed systems on an
open network such as the Internet. However, the
asynchronous model introduces the FLP dilemma [10]:
is the remote process of interest really crashed or
merely being slow? Theoretically elegant, message-
ordering solutions (e.g., Paxos) handle this dilemma by
ensuring correctness of ordering (safety) at the cost of
protocol not being able to terminate until the presumed
upper bound on delays is realized (when ◊S or Ω
oracles are used) or until the random choices made by
processes converge (in randomized solutions).

One of the arguments in [1] against using Paxos
style solutions for building real systems is that they
require, rather unrealistically, the user to wait
patiently, trusting on the guarantee that the termination
will occur eventually. It is also pointed out that if an
‘impatient’ user re-issues his command, the very safety
that is so painstakingly preserved by these solutions
could be undermined. The first motivation behind our
work is to reverse this situation when the statistical
correlation holds: the user is provided with termination
guarantees while conscious efforts are made to reduce
safety violations into low probability events and to
mitigate the effects of any violation that might occur.

The second criticism in [1] is that implementing
these solutions in an asynchronous environment is
hardly practicable, and ‘corners are cut’ inevitably by
assuming the use of synchronous devices at some
level; implementations, such as Chubby [3], assume

clocks with known and/or bounded drift rates. Yet, this
is a reasonable assumption; modern systems have quite
reliable clocks which can be synchronized (using
external means) within some known and small bound -
a core assumption in real-time and embedded systems.
Arbitrary clock drift is a low-probability transient. Our
second motivation is that well justified use of
synchronous components, where possible, should be
preferred (rather than sticking with pure asynchrony,
just for the sake of it). Finally, complexity of the
known solutions leads to buggy implementations. Our
aim is to seek solutions that are simple to implement.

3. A Hypothesis and Adversaries
We formulate a hypothesis regarding variations in
system performance observed over time and then
define two types of adversaries depending on whether
or not an adversary permits that the hypothesis to hold.
The hypothesis is that, for the same set of input events,
the performance measured in the past reasonably
accurately indicates the performance to unfold in near
future. Differences between past measurements and
future behavior are attributed mainly to environmental
perturbs affecting the subsystem performance, and also
to measurement errors to some extent.

Designers of real-time systems realize the
synchronous model by controlling all possible perturbs
that could afflict system performance. This is done in
two ways: either eliminating perturbs altogether or
estimating a priori the maximum impact that perturbs
might have on performance. An example of perturb
elimination is the MARS operating system [13], which
is at the core of time-triggered technology
(http://www.tttech.com/) for building fault-tolerant
real-time systems, not permitting process interrupts.
Having thus controlled all perturbs, the designers are
in a position to establish firm bounds on system
performance. Outside the realm of such carefully-
engineered synchronous systems, however,
uncontrolled perturbs will always be present, or at least
their absence cannot be confidently ascertained. We
will term all sources of perturbs whose effect on
performance is not fully controlled as the adversary. In
other words, the adversary is not fully controllable but
the effects of his actions are observable.

An adversary is said to be a benign adversary if the
hypothesis holds despite perturbs he generates and his
perturbs are called the benign perturbs. Thus, the
impact of benign perturbs on future performance can
more often be anticipated based on past observations;
also, it can be accounted for in our attempts at
predicting system performance. Of course, when the
impact is different from the anticipated, the predicted

performance will deviate from the actual. Such
deviations need to be detected and the degree of
deviations measured. The latter feeds into the
predictive process and the former must be handled as
exceptions at the higher level; in the extreme, the user
may have to handle an exception.

Typical examples of perturbs generated by a benign
adversary are garbage collection, spawning of new
threads, arrival of high priority inputs, excessive disk
writes, so on. So, managed hosting environments, such
as datacenters, can be regarded to be affected only by a
benign adversary. When the hypothesis does not hold,
the underlying adversary is said to be malicious. The
classical asynchronous model, characterizing an open
hosting/networking environment, assumes the presence
of a malicious adversary who can arbitrarily delay
completion of a task or delivery of a message.
Obviously, any approach that relies on past
measurements cannot be pursued, even in fail-free
environments. Therefore, our search for practical
alternatives to deal with a malicious adversary leads us
to using redundancy for reducing the adversary into a
benign one. Abstractions such as fail-stop [15] and
TTCB [16] are examples of pursuing such a
reductionist approach. We will elaborate a similar
abstraction in Section 5.
Failures. A correct node or a process behaves
according to its specification. The adversary perturbs it
to fail at the moment of his choosing. A malicious
adversary causes failures of arbitrary nature and a
benign adversary causes failures of such nature that
can be predicted with high probability. In this paper,
we will assume that, with probability 1, benign failures
are crashes and arbitrary failures are subject to
cryptographic assumptions, i.e., failures caused by a
malicious adversary are authenticated Byzantine ones.

For non-fault-tolerant embedded systems, e.g.,
mobile phones, the adversary, including his ability to
cause failures, is (regarded to be) fully controlled over
the (limited) system lifetime (through testing and
reliability engineering). A crash-tolerant, synchronous
(or asynchronous) system assumes a fully controlled
adversary (or a malicious adversary, respectively)
except for his ability to cause failures which are
benign. An asynchronous system tolerant of Byzantine
faults, such as [4], deals with a malicious adversary.

Finally, note that if a malicious adversary at a given
level is reduced to be benign (using redundancy), then
measurements taken at higher levels could be used for
predicting the behavior of the sub-system below the
level of reduction. For example, a TMR system with a
Byzantine faulty replica responds to its clients as a
system with benign adversary, and predicting its future
client response times based on its past responses is

meaningful, while performance prediction is
meaningless for a Byzantine faulty node. Thus,
building abstractions that reduce the maliciousness of
the adversary at one level allows performance to be
predicted for the abstract system.

We present next a design approach for each
adversary by considering a system of n distributed
processes, pi, 1≤ i ≤ n, forming a group to support state
machine replication (SMR). We assume that adversary
is constrained not to be able to fail more than f nodes, f
< n/2, over a presumed life-time of the system. The
support offered to the SMR layer is by identically
ordering requests for replicated processing.

4. Design Approach for Benign Adversary
The Philosophy. Processes periodically measure the
performance of the subsystem below in terms of
parameters such as delay distribution, loss probability,
jitter etc. These parameters thus abstract the lower-
level performance that is relevant to the functionality
provided by these processes. The order protocol is
designed with loss- and fault-tolerance efforts which
are also parameterized. The probability ∆ that the
ordering is safe when accomplished within D time is
analytically estimated in terms of the protocol
parameters and the ones being measured.

 It is assumed that ∆ is fixed (to be close to 1) by the
SMR layer. Prior to ordering a request, pi evaluates
values for protocol parameters and D which are
appropriate to ∆ and to the lower-level subsystem
performance. Unsafe ordering within D can occur with
probability (1-∆). If it does, it is detected and an
exception is raised. Given that our hypothesis holds
and the estimation of ∆ is pessimistic to account for
unanticipated deviations, exceptions should be rare.

4.1. Probabilistically Synchronous model
The model is characterized as follows.
1. All correct processes have clocks
synchronized within a known bound ε.
2. If a correct pi forms a message m at time t to
be sent to all other processes,

2.1. a correct process pj receives m with
probability (1-q) that is estimated in advance;

2.2. if m is not lost for pj, it is received at
time t+d, where d is a random variable whose
distribution P(d > x) is also estimated in advance.
3. If a correct pi sends messages m1 and m2 at
times t1 and t2 respectively, t1 > t2, and if both
messages are received by a correct pj at t1+d1 and t2+d2
respectively, then the jitter (t2+d2 - (t1+d1)) is bounded
by ω with a probability close to 1 and the value of ω is
estimated in advance.

Realizing the model: We assume that the first
property is achieved through periodic clock
synchronization using a trusted external time source.
The rest are by processes sending probe messages
periodically, measuring round-trip-times (RTT), and
estimating the parameters using the techniques
employed in TCP congestion control [12]. These
techniques have matured over years of use and are
particularly suited here as the retransmission timeout
(RTO) estimate must be small, but not too small to
cause unnecessary re-transmissions which only make
the existing congestion worse. Variations in RTTs are
used to estimate ω and RTO estimates to decide
message losses. Any acknowledgement (to probes)
taking longer will be counted as a ‘loss’. Thus, we
account for the effects of spikes in network traffic in
the estimation of q.

We note here that though a delayed message is
counted as a loss in a (pessimistic) estimation of q, it is
not discarded as in Timed Asynchronous protocols [6]
but are received by destinations as normal ones (and
used for detecting exceptions).

4.2. Order Protocol
The protocol is an extension of our earlier work [8]
developed for reliable multicasting. For space reasons,
we outline the order protocol and work out an
analytical estimation of D for a given ∆ assuming
single-packet messages (which are like the probe
messages). Developing a general protocol and
verifying the accuracy of estimations (using
simulations) are left for a future paper.

We assume that pi invokes the protocol at time t to
order m and, for simplicity, ε = 0. Central idea is to
ensure that m is transmitted at least ρ times in a crash-
uninterrupted manner. A transmission is crash-
uninterrupted if the transmitting process does not crash
until the transmission is completed. Let R be the
probability that all correct processes receive m at least
once. After ρ crash-uninterrupted transmissions of m,

if transmission losses are independent. () 1
1

−
−=

n
qR ρ

pi computes ρ so that R is close to 1. It then sends m
(ρ+1) times to all processes at the interval of η which
is set to one half of its current RTO estimate. Control
fields of m contains t and pi’s estimate of D, η, ω and
ρ. Each of (ρ+1) copies of m sent is numbered as k = 0,
1, .., ρ. The η-separation between successive
transmissions is to realize the loss independence
assumption in the derivation of R. If pi is correct, m is
sent (ρ+1) times and the probability of delivery will be
larger than R.

To account for possible crashing of pi, any process
pj that receives copy k of m ensures that it either
receives copy ρ or itself sends copy ρ. So, after having
received copy k < ρ, if pj does not receive copy k+1
within (η+ω), it starts sending to all processes copy k,
copy k+1, .., copy ρ, at η intervals. Since a timeout on
copy k+1 triggers a sequence of transmissions
beginning with copy k, there are at least ρ crash-
uninterrupted transmissions of m, if a correct pj
receives m for any k, 0 ≤ k < ρ.

Any process (including pi) orders m at time t+D, if
it has first received (some copy of) m before t+D;
otherwise, it raises an ‘unsafe’ exception. Note that a
process that crashes in (t, t+D) does not order m even
if it has received m.

To avoid redundant transmissions, a suppression
mechanism is in force that works based on process
ranking for m with the owner pi ranked highest. Any pj
that is transmitting m halts the activity if a higher
ranked pj’ is observed to be doing the same. Our
simulations in [8] indicate that the suppression
mechanism is effective in reducing message cost from
O(n2ρ) to O(nρ).

4.3. Analytical Estimation
The worst-case dissemination scenario that results in
the largest D is: φ, φ ≤ f, processes (starting with pi)
sequentially crash, with exactly one other process
receiving m due to each crash [7]. φ is the expectation
on the number of processes to crash during the order
protocol execution for a given m and is assumed to
have been estimated.
Let dφ denote the sum of φ independent transmission
delays. The cumulative function P(dφ>x) can be
evaluated using RTT measurements. Let Fφ(x) be the
probability that the first correct process in the worst
case scenario receives m within t+x. Given that the last
(φ-1) successive transmissions in the worst-case
scenario are triggered by timeout (η+ω),
Fφ(x) = P(none of the φ successive transmissions is lost
and dφ ≤ x - (φ-1) (η+ω)).

))])(1((1[)1()(ωηφφ
φ

φ +−−>−−= xdPqxF .
Let Gn-φ(y) be the probability that all (n-φ) processes
(assuming that all n-φ are correct) receive m within y
time of the first correct process transmitting m.

()
1

0
)(1

−−

=
− ⎥⎦

⎤
⎢⎣
⎡ ∏ −−=

φρ

φ η
n

k
n kyhyG where () () ()xdPqqxh >−+= 1 .

Distribution of the total time for all correct processes
to receive m is the convolution:

).()(, xGFxH nn φφφ −∗= Note that as x increases,
increases. Hence D is chosen to be the)(, xH nφ

smallest: If p.)(, ∆≥DH nφ i is correct, we have
).()()(,0, DGDHDH nnn ==φ

We note that the analytical estimation assumes that
all but φ processes are correct. When this is not the
case, estimation of D becomes pessimistic, i.e., a larger
value for D than necessary is chosen; further,
considering the worst-case failure scenario as the norm
also makes the estimation of D pessimistic. All these
provisions make the value of D used larger than
minimally required and hence unsafe ordering will be
unlikely even when the actual network performance
deviates from that predicted. Moreover, the actual
value of R is larger than what is considered here when
more than ρ crash-free transmissions occur - which
would be the most likely case. This means that if a
correct process has not ordered m, it receives an
‘unsafe’ exception with a probability ≥ R.
Handling Ordering Failure
A correct pj can receive m not before t+D with a small
probability (1-∆). When this unlikely event occurs, pj it
cannot safely order m. Moreover, jth replica is put in an
incorrect state, if m is a write request, and its
subsequent responses will not be correct. Therefore,
the following client-side requirement is necessary:
clients should majority-vote server’s responses. A
client cannot majority-vote an incorrect response so
long as a majority of servers do not develop an
identically incorrect state by not ordering an identical
set of inputs. We believe that the likelihood of such a
failure is expected to be negligibly small.

The mitigation against unsafe ordering is to
enable a correct replica to detect an unsafe ordering
and apply state correction. Recall that every correct pj
receives m eventually with a probability at least as
large as R; so, if it has not safely ordered m, it receives
an ‘unsafe’ exception with a high probability. State
correction will require rollback and processing the old
and the missed requests in the appropriate order.
Rollback in turn requires that every process
periodically checkpoint its state together the sequence
of requests processed thereafter. To keep the log size
small, a parameter C, C >> D, is chosen such that

is arbitrarily small. Thus, t+C defines the
time instance after which a message m sent at time t is
unlikely to be received and therefore receiving an
‘unsafe’ exception for any m sent at or before t is
hardly possible after t+C. So, a check-point can be
deleted if it relates to ordered messages that are older
by C or more.

)(1 , CH nφ−

We note that handling unsafe ordering is
extremely crucial to the proposed design approach and
the solution outlined here illustrates that the likelihood

of unsafe ordering can be minimized to arbitrarily
small values and a recovery involves only local check-
pointing and processing, and no message exchange.
We plan to carry out investigations in real or simulated
datacenter environments to establish the cost of
handling order failures which in turn will demonstrate
the relative merits in pursuing this design approach.

5. Approach for Malicious Adversary

The proposed approach involves building at least f
processes, say p1, p2, .., pf, as fail-signal processes. A
fail-signal pi works correctly or signals its stopping.
Fail-signal construction has been detailed in [2] and
requires less redundancy than Fail-Stop [15]. Briefly, a
fail-signal pi is indeed an abstraction and is composed
of two (Byzantine-prone) process replicas hosted on
distinct nodes connected by a dedicated link not
accessible to any other node. Replicas of pi check each
other’s output values and timing. Using the link, they
exchange and compare their signed outputs and
produce double-signed outputs on behalf of pi. An
undue delay or a mismatch detected during a check,
leads to halting of processing after outputting a pre-
formed, double-signed ‘fail-signal’ which would
indicate that pi has halted.

The fail-signal process abstraction works if its
environment ignores any of its unauthentic outputs and
regards it to be correct until an authentic fail-signal is
received. It requires: (i) both of its constituent process
replicas not fail simultaneously and, (ii) their
interconnection remain synchronous. Note that the
synchrony requirement or, more precisely, the validity
of the time bounds being used needs to hold only when
both the constituent process replicas are correct. This
aspect simplifies the realization of (ii), together with
the fact that the end processes, as replicas, execute the
same program and also send each other whatever is
received from the environment: each replica
continually modifies the bound based on the local
processing load. The bound estimate used by each
process will be realistic so long as the adversary
affects both the process replicas nearly identically.

A significant advantage in building and working
with fail-signal processes, is that the FLP impossibility
ceases to exist altogether [10]; the operative status of a
remote process in an asynchronous system does not
have to be determined by timeouts. A fail-signal
process can be assumed to be operative until a signal
arrives to the contrary. This feature can be leveraged to
achieve asynchronous, Byzantine fault tolerant
ordering by re-using asynchronous, crash-tolerant
order protocols (such as Paxos).

Consider a system with f fail-signal processes and
(f+1) ordinary (Byzantine-prone) ones. The system has
a total of 3f+1 ordinary processes with 2f of them
(additionally) engaged in pair-wise output checking
and authentication. These processes can execute any
known crash-tolerant, coordinator based, protocol for
input ordering, so long as an ordinary pj becomes the
coordinator only after all fail-signal pi have signaled.
(Randomized protocols cannot be used due to pair-
wise checking within fail-signal processes.)

Reducing Byzantine failures to fail-signal ones and
then carrying out message ordering has performance
advantages over straightforward Byzantine fault
tolerant ordering, such as BFT in [4]. Primarily, best
case ordering latency reduces from 3 asynchronous
rounds to 2 asynchronous ones plus the delay for pair-
wise comparison over dedicated channels [11]. In
BFT-like systems, clients select f+1 identical and
authentic responses out of at most 2f+1 signed
responses. This overhead can be reduced by having
(f+1) fail-signal processes and f ordinary processes,
and by having clients wait for the first response from
any fail-signal process. These advantages come with
the cost of extra hardware (one additional node and
dedicated channels) and a restriction that two nodes of
a fail-signal process cannot fail simultaneously.

6. Conclusions
Several practical systems occupy the space between
well-managed synchronous systems and open,
asynchronous systems. It appears that there is no one
middle-way to build all of these ‘in-between’ systems.
Those that can be regarded to be closer to the
synchronous end can be conveniently built and
adaptively maintained by considering probabilistically
synchronous model. The challenges in this design
approach are developing parameterized protocols,
deriving analytical estimations, assessing the effect of
any simplifying approximations taken and measuring
the system performance accurately without imposing
serious overhead. We have outlined that each
challenge can be addressed for a specific problem.
When systems are, or are close to, asynchronous and
Byzantine, fail-signal abstractions are proposed as an
intermediate design step. Multi-core machines permit a
fail-signal process to be implemented on a single
machine with distinct cores acting as its internal
replicas, at an increased risk of both cores failing at the
same time. However, multi-core fail-signal nodes are
an effective deterrent against increased occurrences of
soft-errors due to tera-scale hardware integration.

7. References
[1] M.K. Aguilera and M. Walfish, “No time for
asynchrony”, Usenix Workshop on Hot Topics in Operating
Systems, May 2009.
[2] F.V. Brasileiro, P.D. Ezhilchelvan, S.K.
Shrivastava, N.A. Speirs and S. Tao, “Implementing Fail-
Silent Nodes for Distributed Systems”, IEEE Transactions
on Computers, 45(11): pp 1226-1238, 1996.
[3] M. Burrows, “The Chubby Lock Service for
Loosely Coupled Systems”, In OSDI, pp. 335-350, 2006.
[4] M. Castro and B. Liskov, “Practical Byzantine
Fault Tolerance and Proactive Recovery”, ACM Transactions
on Computer Systems (TOCS), 20(4), November 2002.
[5] T.D. Chandra and S. Toueg, “Unreliable Failure
Detectors for Reliable Distributed Systems”, JACM, 43(2),
225-267, March 1996.
[6] F.Cristian and C. Fetzer, The Timed Asynchronous
Distributed System Model, In IEEE Transactions on Parallel
and Distributed Systems, 10 (6): 642-57, June 1999.
[7] F. Cristian, H. Aghili, R. Strong and D. Dolev,
"Atomic Broadcast: From Simple Message Diffusion To
Byzantine Agreement," Proc. 15th Int'l. Symp. on Fault-
Tolerant Computing (FTCS), pp. 200-206, June 1985.
[8] A. Di Ferdinando, P.D.Ezhilchelvan, and I Mitrani,
Design and Evaluation of a QoS-Adaptive System for
Reliable Multicasting, In Proc. 23rd SRDS, pp 31-40,
October 2004.
[9] P.D. Ezhilchelvan and S.K. Shrivastava, “A Model
and a Design Approach to Building QoS Adaptive systems”,
in Architecting Dependable Systems II, Lecture Notes in
Computer Science, 3069, Springer, pp, 215 – 238, 2004.
[10] M.J. Fischer, N.A. Lynch, and M.S. Paterson,
“Impossibility of Distributed Consensus with one faulty
Process”, Journal of the ACM, 32(2): 374-382, April 1985.
[11] Q. Inayat and P.D. Ezhilchelvan, “A Performance
Study on the Signal-On-Fail Approach to Imposing Total
Order in the Streets of Byzantium”, In Proceedings of the
DSN, pp. 578-587, 25-28 June 2006.
[12] V. Jacobson and M. Karels. “Congestion
Avoidance and Control”, In ACM SIGCOMM Symposium
on Communications Architecture and Protocol, August 1988.
[13] H. Kopetz, “Real-Time Systems: Design Principles
for Distributed Embedded Applications”, Kluwer Academic
Publishers, 1997, ISBN 0-7923-9894-7.
[14] L.Lamport, “Paxos Made Simple”, Distributed
Computing Column, ACM SIGACT News, 32(4), pp. 51-58,
Dec 2001.
[15] F. Schneider, "Byzantine Generals in Action:
Implementing Fail-Stop Processors", ACM Transactions on
Computer Systems, Vol. 2(2), pp. 145-154, May 1984.
[16] P. Verissimo and A. Casimiro, “The Timely
Computing Base: Model and Architecture”, IEEE
Transaction on Computers, 51(8): 916-930, August 2002.

	1. Introduction
	2. Motivation
	3. A Hypothesis and Adversaries
	4. Design Approach for Benign Adversary
	4.1. Probabilistically Synchronous model
	4.2. Order Protocol
	4.3. Analytical Estimation
	Handling Ordering Failure

	5. Approach for Malicious Adversary
	6. Conclusions
	7. References

