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Abstract 

 
This paper presents two design approaches to avoid 

many complications introduced at both user and 
developer levels by the FLP impossibility. The first 
approach is appropriate in managed hosting 
environments, such as datacenters, and involves 
offering service guarantees with tunable success 
probabilities and remedial actions in the unlikely 
scenarios. The second is appropriate in open 
environments and advocates building fail-signal 
abstractions for hosting application-level replication. 
 
1. Introduction 
In a recent paper, Aguilera and Walfish [1] critically 
examine the implications, from both user and 
developer perspectives, of using Paxos style [14] 
solutions for building fault-tolerant systems for 
datacenters and enterprise network based applications. 
They then lay down a convincing rationale for seeking 
design alternatives to considering asynchronous model 
augmented with imperfect fail-detectors such as ◊S [5] 
or Ω oracles. Two such alternative design approaches 
are presented here. 

Unlike [1], which advocates novel ways for 
building perfect fail-detectors, we take a step back and 
examine how the war on uncertainties intrinsic to 
systems is waged in other areas of system engineering. 
It appears that several problems are routinely 
addressed by taking a view that there is a statistical 
correlation between the past and the future behavior of 
a system most of the times. This is true even when a 
myriad of low- to medium-probability events affect the 
system behavior randomly. We believe that such a 
view holds in managed hosting environments, such as 
datacenters. Our first design approach is proposed for 
these environments and is a refinement on our earlier 
proposal [9]. It advocates modeling communication 
and processing delays as random variables, and 
proactively measuring the variables and their 
distribution. The resulting model is called the 

probabilistically synchronous model. Considering the 
identical message ordering (which is equivalent to 
consensus [5]) as the problem of interest here, we 
argue that parameterized protocols can be developed in 
this model and probabilistic guarantees on termination 
and correctness can be given to the degree practicably 
possible. When such guarantees are not met, remedial 
actions need to be initiated and such actions are 
outlined in the context of replicated processing. 

In some environments, e.g., those exposed to 
intrusive attacks, it is not realistic to anticipate a 
statistical correlation between the past and the future 
behavior. For such environments, we propose the 
second design approach which advocates using 
redundancy to build fail-signal abstractions and then 
solving the ordering problem.  

In motivating these approaches, we will be liberally 
drawing from the past work, such as synchronous 
atomic broadcast [7], fail-stop [15], and TCP 
congestion control [12]. Borrowing ideas from the past 
work, while proposing practical alternatives, only 
reinforces the viability of the approaches being 
proposed. For example, the principles behind taking 
estimates for congestion control are similar to those 
behind our first approach. Congestion control requires 
congestion detection which amounts to resolving a 
dilemma: is the transmitted packet really lost or merely 
being slow? If deemed lost, packet (re)transmission 
rate needs to be reduced, typically halved; else, do 
nothing. (This is similar to resolving FLP dilemma to 
be described shortly.) An incorrect detection has its 
cost - increased latency and reduced throughput; in an 
ideal set-up, it should be eliminated all together.  

An implicit ‘proof of viability’ for our first 
approach follows from the observation that congestion 
control solutions used in practice do not seek mistake-
free congestion detection, yet they work acceptably 
well; they expend best efforts towards minimizing the 
probability of making mistakes and mitigate the effects 
of any mistakes made. The former involves continually 
estimating re-transmission timeout using recent round-
trip-time measurements and the latter additive 

 



increasing of transmission rate. Thus, if uncertainties at 
the network level can be managed well, it is not 
unreasonable to suppose that a similar approach 
pursued in managed application environments would 
also yield attractive dividends in practice. 

The paper is structured as follows. Section 3 
presents the hypothesis of statistical correlation 
between the past and the future, and introduces the 
notion of benign and malicious adversaries which 
prevail when the hypothesis does and does not hold 
respectively. The two design approaches are described 
in Sections 4 and 5, and Section 6 concludes the paper. 
Next section briefly re-visits the arguments of [1] and 
presents the motivation behind our work. 
 
2. Motivation 
In the synchronous model, processing and 
communication delays are distributed on a known 
range whereas in the asynchronous model, these delays 
have some unknown (but finite) upper bound that 
cannot be estimated with certainty. Realizing the 
former requires careful provisioning of resources and a 
complete prior knowledge of user environment. So, 
considering the asynchronous model seems appropriate 
when designing dependable distributed systems on an 
open network such as the Internet. However, the 
asynchronous model introduces the FLP dilemma [10]: 
is the remote process of interest really crashed or 
merely being slow? Theoretically elegant, message-
ordering solutions (e.g., Paxos) handle this dilemma by 
ensuring correctness of ordering (safety) at the cost of 
protocol not being able to terminate until the presumed 
upper bound on delays is realized (when ◊S or Ω 
oracles are used) or until the random choices made by 
processes converge (in randomized solutions).  

One of the arguments in [1] against using Paxos 
style solutions for building real systems is that they 
require, rather unrealistically, the user to wait 
patiently, trusting on the guarantee that the termination 
will occur eventually. It is also pointed out that if an 
‘impatient’ user re-issues his command, the very safety 
that is so painstakingly preserved by these solutions 
could be undermined. The first motivation behind our 
work is to reverse this situation when the statistical 
correlation holds: the user is provided with termination 
guarantees while conscious efforts are made to reduce 
safety violations into low probability events and to 
mitigate the effects of any violation that might occur. 

The second criticism in [1] is that implementing 
these solutions in an asynchronous environment is 
hardly practicable, and ‘corners are cut’ inevitably by 
assuming the use of synchronous devices at some 
level; implementations, such as Chubby [3], assume 

clocks with known and/or bounded drift rates. Yet, this 
is a reasonable assumption; modern systems have quite 
reliable clocks which can be synchronized (using 
external means) within some known and small bound - 
a core assumption in real-time and embedded systems. 
Arbitrary clock drift is a low-probability transient. Our 
second motivation is that well justified use of 
synchronous components, where possible, should be 
preferred (rather than sticking with pure asynchrony, 
just for the sake of it). Finally, complexity of the 
known solutions leads to buggy implementations. Our 
aim is to seek solutions that are simple to implement. 

 
3. A Hypothesis and Adversaries 
We formulate a hypothesis regarding variations in 
system performance observed over time and then 
define two types of adversaries depending on whether 
or not an adversary permits that the hypothesis to hold. 
The hypothesis is that, for the same set of input events, 
the performance measured in the past reasonably 
accurately indicates the performance to unfold in near 
future. Differences between past measurements and 
future behavior are attributed mainly to environmental 
perturbs affecting the subsystem performance, and also 
to measurement errors to some extent.  

Designers of real-time systems realize the 
synchronous model by controlling all possible perturbs 
that could afflict system performance. This is done in 
two ways: either eliminating perturbs altogether or 
estimating a priori the maximum impact that perturbs 
might have on performance. An example of perturb 
elimination is the MARS operating system [13], which 
is at the core of time-triggered technology 
(http://www.tttech.com/) for building fault-tolerant 
real-time systems, not permitting process interrupts. 
Having thus controlled all perturbs, the designers are 
in a position to establish firm bounds on system 
performance.  Outside the realm of such carefully-
engineered synchronous systems, however, 
uncontrolled perturbs will always be present, or at least 
their absence cannot be confidently ascertained. We 
will term all sources of perturbs whose effect on 
performance is not fully controlled as the adversary. In 
other words, the adversary is not fully controllable but 
the effects of his actions are observable.  

An adversary is said to be a benign adversary if the 
hypothesis holds despite perturbs he generates and his 
perturbs are called the benign perturbs. Thus, the 
impact of benign perturbs on future performance can 
more often be anticipated based on past observations; 
also, it can be accounted for in our attempts at 
predicting system performance.  Of course, when the 
impact is different from the anticipated, the predicted 

 



performance will deviate from the actual. Such 
deviations need to be detected and the degree of 
deviations measured. The latter feeds into the 
predictive process and the former must be handled as 
exceptions at the higher level; in the extreme, the user 
may have to handle an exception.  

Typical examples of perturbs generated by a benign 
adversary are garbage collection, spawning of new 
threads, arrival of high priority inputs, excessive disk 
writes, so on. So, managed hosting environments, such 
as datacenters, can be regarded to be affected only by a 
benign adversary. When the hypothesis does not hold, 
the underlying adversary is said to be malicious. The 
classical asynchronous model, characterizing an open 
hosting/networking environment, assumes the presence 
of a malicious adversary who can arbitrarily delay 
completion of a task or delivery of a message. 
Obviously, any approach that relies on past 
measurements cannot be pursued, even in fail-free 
environments. Therefore, our search for practical 
alternatives to deal with a malicious adversary leads us 
to using redundancy for reducing the adversary into a 
benign one. Abstractions such as fail-stop [15] and 
TTCB [16] are examples of pursuing such a 
reductionist approach. We will elaborate a similar 
abstraction in Section 5. 
Failures. A correct node or a process behaves 
according to its specification. The adversary perturbs it 
to fail at the moment of his choosing. A malicious 
adversary causes failures of arbitrary nature and a 
benign adversary causes failures of such nature that 
can be predicted with high probability. In this paper, 
we will assume that, with probability 1, benign failures 
are crashes and arbitrary failures are subject to 
cryptographic assumptions, i.e., failures caused by a 
malicious adversary are authenticated Byzantine ones.  

For non-fault-tolerant embedded systems, e.g., 
mobile phones, the adversary, including his ability to 
cause failures, is (regarded to be) fully controlled over 
the (limited) system lifetime (through testing and 
reliability engineering). A crash-tolerant, synchronous 
(or asynchronous) system assumes a fully controlled 
adversary (or a malicious adversary, respectively) 
except for his ability to cause failures which are 
benign. An asynchronous system tolerant of Byzantine 
faults, such as [4], deals with a malicious adversary.  

Finally, note that if a malicious adversary at a given 
level is reduced to be benign (using redundancy), then 
measurements taken at higher levels could be used for 
predicting the behavior of the sub-system below the 
level of reduction. For example, a TMR system with a 
Byzantine faulty replica responds to its clients as a 
system with benign adversary, and predicting its future 
client response times based on its past responses is 

meaningful, while performance prediction is 
meaningless for a Byzantine faulty node. Thus, 
building abstractions that reduce the maliciousness of 
the adversary at one level allows performance to be 
predicted for the abstract system.   

We present next a design approach for each 
adversary by considering a system of n distributed 
processes, pi, 1≤ i ≤ n, forming a group to support state 
machine replication (SMR). We assume that adversary 
is constrained not to be able to fail more than f nodes, f 
< n/2, over a presumed life-time of the system. The 
support offered to the SMR layer is by identically 
ordering requests for replicated processing. 
 
4.  Design Approach for Benign Adversary 
The Philosophy. Processes periodically measure the 
performance of the subsystem below in terms of 
parameters such as delay distribution, loss probability, 
jitter etc. These parameters thus abstract the lower-
level performance that is relevant to the functionality 
provided by these processes. The order protocol is 
designed with loss- and fault-tolerance efforts which 
are also parameterized. The probability ∆ that the 
ordering is safe when accomplished within D time is 
analytically estimated in terms of the protocol 
parameters and the ones being measured. 

 It is assumed that ∆ is fixed (to be close to 1) by the 
SMR layer. Prior to ordering a request, pi evaluates 
values for protocol parameters and D which are 
appropriate to ∆  and to the lower-level subsystem 
performance. Unsafe ordering within D can occur with 
probability (1-∆). If it does, it is detected and an 
exception is raised. Given that our hypothesis holds 
and the estimation of ∆ is pessimistic to account for 
unanticipated deviations, exceptions should be rare.  

 
4.1. Probabilistically Synchronous model 
The model is characterized as follows. 
1. All correct processes have clocks 
synchronized within a known bound ε.  
2. If a correct pi forms a message m at time t to 
be sent to all other processes, 

2.1. a correct process pj receives m with 
probability (1-q) that is estimated in advance; 

2.2.  if m is not lost for pj, it is received at 
time t+d, where d is a random variable whose 
distribution P(d > x) is also estimated in advance. 
3. If a correct pi sends messages m1 and m2 at 
times t1 and t2 respectively, t1 > t2, and if both 
messages are received by a correct pj at t1+d1 and t2+d2 
respectively, then the jitter (t2+d2 - (t1+d1)) is bounded 
by ω with a probability close to 1 and the value of ω is 
estimated in advance.  

 



Realizing the model: We assume that the first 
property is achieved through periodic clock 
synchronization using a trusted external time source. 
The rest are by processes sending probe messages 
periodically, measuring round-trip-times (RTT), and 
estimating the parameters using the techniques 
employed in TCP congestion control [12]. These 
techniques have matured over years of use and are 
particularly suited here as the retransmission timeout 
(RTO) estimate must be small, but not too small to 
cause unnecessary re-transmissions which only make 
the existing congestion worse. Variations in RTTs are 
used to estimate ω and RTO estimates to decide 
message losses. Any acknowledgement (to probes) 
taking longer will be counted as a ‘loss’.  Thus, we 
account for the effects of spikes in network traffic in 
the estimation of q. 

We note here that though a delayed message is 
counted as a loss in a (pessimistic) estimation of q, it is 
not discarded as in Timed Asynchronous protocols [6] 
but are received by destinations as normal ones (and 
used for detecting exceptions). 

 
4.2. Order Protocol 
The protocol is an extension of our earlier work [8] 
developed for reliable multicasting. For space reasons, 
we outline the order protocol and work out an 
analytical estimation of D for a given ∆ assuming 
single-packet messages (which are like the probe 
messages). Developing a general protocol and 
verifying the accuracy of estimations (using 
simulations) are left for a future paper. 

We assume that pi invokes the protocol at time t to 
order m and, for simplicity, ε = 0.  Central idea is to 
ensure that m is transmitted at least ρ times in a crash-
uninterrupted manner. A transmission is crash-
uninterrupted if the transmitting process does not crash 
until the transmission is completed.  Let R be the 
probability that all correct processes receive m at least 
once. After ρ crash-uninterrupted transmissions of m, 

if transmission losses are independent.  ( ) 1
1

−
−=

n
qR ρ

pi computes ρ so that R is close to 1. It then sends m 
(ρ+1) times to all processes at the interval of η which 
is set to one half of its current RTO estimate. Control 
fields of m contains t and pi’s estimate of D, η, ω and 
ρ. Each of (ρ+1) copies of m sent is numbered as k = 0, 
1, .., ρ. The η-separation between successive 
transmissions is to realize the loss independence 
assumption in the derivation of R.  If pi is correct, m is 
sent (ρ+1) times and the probability of delivery will be 
larger than R. 

To account for possible crashing of pi, any process 
pj that receives copy k of m ensures that it either 
receives copy ρ or itself sends copy ρ. So, after having 
received copy k < ρ, if pj does not receive copy k+1 
within (η+ω), it starts sending to all processes copy k, 
copy k+1, .., copy ρ, at η intervals. Since a timeout on 
copy k+1 triggers a sequence of transmissions 
beginning with copy k, there are at least ρ crash-
uninterrupted transmissions of m, if a correct pj 
receives m for any k, 0 ≤ k < ρ. 

Any process (including pi) orders m at time t+D, if 
it has first received (some copy of) m before t+D; 
otherwise, it raises an ‘unsafe’ exception. Note that a 
process that crashes in (t, t+D) does not order m even 
if it has received m.  

To avoid redundant transmissions, a suppression 
mechanism is in force that works based on process 
ranking for m with the owner pi ranked highest. Any pj 
that is transmitting m halts the activity if a higher 
ranked pj’ is observed to be doing the same.  Our 
simulations in [8] indicate that the suppression 
mechanism is effective in reducing message cost from 
O(n2ρ) to O(nρ). 

 
4.3. Analytical Estimation  
The worst-case dissemination scenario that results in 
the largest D is: φ, φ ≤ f, processes (starting with pi) 
sequentially crash, with exactly one other process 
receiving m due to each crash [7]. φ is the expectation 
on the number of processes to crash during the order 
protocol execution for a given m and is assumed to 
have been estimated.  
Let dφ denote the sum of φ independent transmission 
delays. The cumulative function P(dφ>x) can be 
evaluated using RTT measurements. Let Fφ(x) be the 
probability that the first correct process in the worst 
case scenario receives m within t+x. Given that the last 
(φ-1) successive transmissions in the worst-case 
scenario are triggered by timeout (η+ω), 
Fφ(x) = P(none of the φ successive transmissions is lost 
and dφ  ≤ x - (φ-1) (η+ω)).  
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φ
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Let Gn-φ(y) be the probability that all (n-φ) processes 
(assuming that all n-φ are correct) receive m within y 
time of the first correct process transmitting m.  
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Distribution of the total time for all correct processes 
to receive m is the convolution: 

).()(, xGFxH nn φφφ −∗=  Note that as x increases, 
increases. Hence D is chosen to be the )(, xH nφ

 



smallest:  If p.)(, ∆≥DH nφ i is correct, we have 
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We note that the analytical estimation assumes that 
all but φ processes are correct. When this is not the 
case, estimation of D becomes pessimistic, i.e., a larger 
value for D than necessary is chosen; further, 
considering the worst-case failure scenario as the norm 
also makes the estimation of D pessimistic. All these 
provisions make the value of D used larger than 
minimally required and hence unsafe ordering will be 
unlikely even when the actual network performance 
deviates from that predicted. Moreover, the actual 
value of R is larger than what is considered here when 
more than ρ crash-free transmissions occur - which 
would be the most likely case. This means that if a 
correct process has not ordered m, it receives an 
‘unsafe’ exception with a probability ≥ R. 
Handling Ordering Failure 
A correct pj can receive m not before t+D with a small 
probability (1-∆). When this unlikely event occurs, pj it 
cannot safely order m. Moreover, jth replica is put in an 
incorrect state, if m is a write request, and its 
subsequent responses will not be correct. Therefore, 
the following client-side requirement is necessary: 
clients should majority-vote server’s responses. A 
client cannot majority-vote an incorrect response so 
long as a majority of servers do not develop an 
identically incorrect state by not ordering an identical 
set of inputs. We believe that the likelihood of such a 
failure is expected to be negligibly small. 

The mitigation against unsafe ordering is to 
enable a correct replica to detect an unsafe ordering 
and apply state correction. Recall that every correct pj 
receives m eventually with a probability at least as 
large as R; so, if it has not safely ordered m, it receives 
an ‘unsafe’ exception with a high probability.  State 
correction will require rollback and processing the old 
and the missed requests in the appropriate order. 
Rollback in turn requires that every process 
periodically checkpoint its state together the sequence 
of requests processed thereafter. To keep the log size 
small, a parameter C, C >> D, is chosen such that 

is arbitrarily small. Thus, t+C defines the 
time instance after which a message m sent at time t is 
unlikely to be received and therefore receiving an 
‘unsafe’ exception for any m sent at or before t is 
hardly possible after t+C. So, a check-point can be 
deleted if it relates to ordered messages that are older 
by C or more.  

)(1 , CH nφ−

We note that handling unsafe ordering is 
extremely crucial to the proposed design approach and 
the solution outlined here illustrates that the likelihood 

of unsafe ordering can be minimized to arbitrarily 
small values and a recovery involves only local check-
pointing and processing, and no message exchange.  
We plan to carry out investigations in real or simulated 
datacenter environments to establish the cost of 
handling order failures which in turn will demonstrate 
the relative merits in pursuing this design approach. 

  
5. Approach for Malicious Adversary 

The proposed approach involves building at least f 
processes, say p1, p2, .., pf, as fail-signal processes. A 
fail-signal pi works correctly or signals its stopping. 
Fail-signal construction has been detailed in [2] and 
requires less redundancy than Fail-Stop [15]. Briefly, a 
fail-signal pi is indeed an abstraction and is composed 
of two (Byzantine-prone) process replicas hosted on 
distinct nodes connected by a dedicated link not 
accessible to any other node.  Replicas of pi check each 
other’s output values and timing. Using the link, they 
exchange and compare their signed outputs and 
produce double-signed outputs on behalf of pi. An 
undue delay or a mismatch detected during a check, 
leads to halting of processing after outputting a pre-
formed, double-signed ‘fail-signal’ which would 
indicate that pi has halted.  

The fail-signal process abstraction works if its 
environment ignores any of its unauthentic outputs and 
regards it to be correct until an authentic fail-signal is 
received. It requires: (i) both of its constituent process 
replicas not fail simultaneously and, (ii) their 
interconnection remain synchronous. Note that the 
synchrony requirement or, more precisely, the validity 
of the time bounds being used needs to hold only when 
both the constituent process replicas are correct. This 
aspect simplifies the realization of (ii), together with 
the fact that the end processes, as replicas, execute the 
same program and also send each other whatever is 
received from the environment: each replica 
continually modifies the bound based on the local 
processing load. The bound estimate used by each 
process will be realistic so long as the adversary 
affects both the process replicas nearly identically.  

A significant advantage in building and working 
with fail-signal processes, is that the FLP impossibility 
ceases to exist altogether [10]; the operative status of a 
remote process in an asynchronous system does not 
have to be determined by timeouts. A fail-signal 
process can be assumed to be operative until a signal 
arrives to the contrary. This feature can be leveraged to 
achieve asynchronous, Byzantine fault tolerant 
ordering by re-using asynchronous, crash-tolerant 
order protocols (such as Paxos). 

 



Consider a system with f fail-signal processes and 
(f+1) ordinary (Byzantine-prone) ones. The system has 
a total of 3f+1 ordinary processes with 2f of them 
(additionally) engaged in pair-wise output checking 
and authentication. These processes can execute any 
known crash-tolerant, coordinator based, protocol for 
input ordering, so long as an ordinary pj becomes the 
coordinator only after all fail-signal pi have signaled. 
(Randomized protocols cannot be used due to pair-
wise checking within fail-signal processes.) 

Reducing Byzantine failures to fail-signal ones and 
then carrying out message ordering has performance 
advantages over straightforward Byzantine fault 
tolerant ordering, such as BFT in [4]. Primarily, best 
case ordering latency reduces from 3 asynchronous 
rounds to 2 asynchronous ones plus the delay for pair-
wise comparison over dedicated channels [11]. In 
BFT-like systems, clients select f+1 identical and 
authentic responses out of at most 2f+1 signed 
responses. This overhead can be reduced by having 
(f+1) fail-signal processes and f ordinary processes, 
and by having clients wait for the first response from 
any fail-signal process. These advantages come with 
the cost of extra hardware (one additional node and 
dedicated channels) and a restriction that two nodes of 
a fail-signal process cannot fail simultaneously.  
 
6. Conclusions 
Several practical systems occupy the space between 
well-managed synchronous systems and open, 
asynchronous systems. It appears that there is no one 
middle-way to build all of these ‘in-between’ systems. 
Those that can be regarded to be closer to the 
synchronous end can be conveniently built and 
adaptively maintained by considering probabilistically 
synchronous model. The challenges in this design 
approach are developing parameterized protocols, 
deriving analytical estimations, assessing the effect of 
any simplifying approximations taken and measuring 
the system performance accurately without imposing 
serious overhead. We have outlined that each 
challenge can be addressed for a specific problem. 
When systems are, or are close to, asynchronous and 
Byzantine, fail-signal abstractions are proposed as an 
intermediate design step. Multi-core machines permit a 
fail-signal process to be implemented on a single 
machine with distinct cores acting as its internal 
replicas, at an increased risk of both cores failing at the 
same time. However, multi-core fail-signal nodes are 
an effective deterrent against increased occurrences of 
soft-errors due to tera-scale hardware integration.  
 

7. References 
[1]  M.K. Aguilera and M. Walfish, “No time for 
asynchrony”, Usenix Workshop on Hot Topics in Operating 
Systems, May 2009. 
[2] F.V. Brasileiro, P.D. Ezhilchelvan, S.K. 
Shrivastava, N.A. Speirs and S. Tao, “Implementing Fail-
Silent Nodes for Distributed Systems”, IEEE Transactions 
on Computers, 45(11): pp 1226-1238, 1996. 
[3]  M. Burrows, “The Chubby Lock Service for 
Loosely Coupled Systems”, In OSDI, pp. 335-350, 2006. 
[4]  M. Castro and B. Liskov, “Practical Byzantine 
Fault Tolerance and Proactive Recovery”, ACM Transactions 
on Computer Systems (TOCS), 20(4), November 2002. 
[5]  T.D. Chandra and S. Toueg, “Unreliable Failure 
Detectors for Reliable Distributed Systems”, JACM, 43(2), 
225-267, March 1996. 
[6]  F.Cristian and C. Fetzer, The Timed Asynchronous 
Distributed System Model, In IEEE Transactions on Parallel 
and Distributed Systems, 10 (6): 642-57, June 1999. 
[7]  F. Cristian, H. Aghili, R. Strong and D. Dolev, 
"Atomic Broadcast: From Simple Message Diffusion To 
Byzantine Agreement," Proc. 15th Int'l. Symp. on Fault-
Tolerant Computing (FTCS), pp. 200-206, June 1985. 
[8]  A. Di Ferdinando, P.D.Ezhilchelvan, and I Mitrani, 
Design and Evaluation of a QoS-Adaptive System for 
Reliable Multicasting, In Proc. 23rd SRDS, pp 31-40, 
October 2004.
[9]  P.D. Ezhilchelvan and S.K. Shrivastava, “A Model 
and a Design Approach to Building QoS Adaptive systems”, 
in Architecting Dependable Systems II, Lecture Notes in 
Computer Science, 3069, Springer, pp, 215 – 238, 2004. 
[10] M.J. Fischer, N.A. Lynch, and M.S. Paterson, 
“Impossibility of Distributed Consensus with one faulty 
Process”, Journal of the ACM, 32(2): 374-382, April 1985. 
[11] Q. Inayat and P.D. Ezhilchelvan, “A Performance 
Study on the Signal-On-Fail Approach to Imposing Total 
Order in the Streets of Byzantium”, In Proceedings of the 
DSN, pp. 578-587, 25-28 June 2006. 
[12] V. Jacobson and M. Karels. “Congestion 
Avoidance and Control”, In ACM SIGCOMM Symposium 
on Communications Architecture and Protocol, August 1988. 
[13] H. Kopetz, “Real-Time Systems: Design Principles 
for Distributed Embedded Applications”, Kluwer Academic 
Publishers, 1997, ISBN 0-7923-9894-7. 
[14] L.Lamport, “Paxos Made Simple”, Distributed 
Computing Column, ACM SIGACT News, 32(4), pp. 51-58, 
Dec 2001. 
[15] F. Schneider, "Byzantine Generals in Action: 
Implementing Fail-Stop Processors", ACM Transactions on 
Computer Systems, Vol. 2(2), pp. 145-154, May 1984. 
[16] P. Verissimo and A. Casimiro, “The Timely 
Computing Base: Model and Architecture”, IEEE 
Transaction on Computers, 51(8): 916-930, August 2002. 

 

 


	1. Introduction
	2. Motivation
	3. A Hypothesis and Adversaries
	4.  Design Approach for Benign Adversary
	4.1. Probabilistically Synchronous model
	4.2. Order Protocol
	4.3. Analytical Estimation
	Handling Ordering Failure


	5. Approach for Malicious Adversary
	6. Conclusions
	7. References

