Cloud9: A Software Testing Service

Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipoov, George Candea
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Swindrl

Abstract write test scripts. But such automation can suffer from
the tension between soundness and completeness—e.g.,
Cloud9 aims to reduce the resource-intensive and labstatic analysis can be complete on large code bases, but
intensive nature of high-quality software testing. Firstypically has a large number of false positives (i.e., is
Cloud9 parallelizes symbolic execution (an effective, buhsound), while model checking is sound, but takes too
still poorly scalable test automation technique) to lardgeng to achieve practical completeness on real, large code
shared-nothing clusters. To our knowledge, Cloud9 is thases. Of course, some level of assistance is inherently
first symbolic execution engine that scales to large clugecessary to specify the difference between correct and
ters of machines, thus enabling thorough automated tegtong behavior, but driving the program down execution
ing of real software in conveniently short amounts of timgaths should not require human effort.
Preliminary results indicate one to two orders of magni-)) _
tude speedup over a state-of-the-art symbolic executiofloud9 achieves high levels of automation by employ-
engine. Second, Cloud9 is an on-demand software td8@ Symbolic execution. Introduced in the 1970s [12],
ing service: it runs on compute clouds, like Amazon ECHis technique can explore all feasible execution paths in
and scales its use of resources over a wide dynamic rarfgefogram, thus being an ideal candidate for test automa-

proportionally with the testing task at hand. tion. Unfortunately, it faces serious challenges, namely
high memory consumpticand CPU-intensive constraint

solving both exponential in program size. On a present-
1 Introduction day computer, it is only feasible to test programs with a
few thousand lines of code; for larger programs, typically

only the shorter paths can be explored. Thus, symbolic

Software testing is resource-hungry, tme—consumm&ecution is virtually unheard of in the general software

labor-intensive, and prone to human omission and error. - :
. o . . ndustry, because real software often has millions of lines
Despite massive investments in quality assurance, serigLs . : . .
. . of code, rendering symbolic execution infeasible.

code defects are routinely discovered after software has

been released [17], and fixing them at so late a stage carc|oydg is the firsparallel symbolic execution engine
ries substantial cost [16]. to run onlarge shared-nothing clustesf computers, thus

~ Inthis paper, we introduce Cloud9, a cloud-based tefrnessing their aggregate memory and CPU resources.
ing service that promises to make high-quality testing fagyhile parallelizing symbolic execution is a natural way
cheap, and practical. Cloud9 runs on compute utilitigs improve the technique’s scalability, doing so in a clus-
like Amazon EC2 [1], and we envision the following thregsr presents significant research challenges: First, balan
use cases: First, developers can upload their softwargqg execution workload among nodes becomes a complex
Cloud9 and test it swiftly, as part of their development cynyti-dimensional optimization problem with several un-
cle. Second, end users can upload recently downloag@dwn inputs. Second, global coordination can only be
programs or patches and test them before installing, wifne infrequently, so new search strategies must be de-

no upfront cost. Third, Cloud9 can function as a qualised for exploring a program’s paths in parallel.
ity certification service, akin to Underwriters Labs [20],

by publishing official coverage results for tested applica- This paper presents preliminary steps toward solving
tions. In an ideal future, software companies would hkese problems. After presenting the concept of a soft-
required to subject their software to quality validation oware testing service in more detail (§2), we describe our
such a service, akin to mandatory crash testing of vehiclgsshniques for efficiently parallelizing symbolic execu-
In the absence of such certification, software compani&s (83). An initial prototype suggests that our approach
could be held liable for damages resulting from bugs. is practical and useful: compared to the state of the art,

For a software testing service to be viable, it must ai@loud9 reduced automated testing time of 32 real UNIX
for maximal levels of automation. This means the sautilities on average by a factor of 47, with a maximum
vice must explore as many of the software’s executioh 250-fold speedup (84). The paper closes with related
paths as possible without requiring a human to explicityork (85) and conclusions (86).

2 Software Testing asa Service tial that the pricing model capture the true value offered
by Cloud9. While compute clouds today adopt a rental
Unlike classic testing frameworks, Cloud9 runs as a Wetnodel (e.g., EC2 nodes cost $0.10/hour/node), a Cloud9
service. It is primarily meant to operate on public cloudser does not derive value proportional to this cost. We
infrastructures like Amazon EC2 [1], but can also be uséalror a model in which users are charged according to
privately on clusters running cloud software like Eucalypheir test goal specification. For example, if the goal is
tus [7]. Testing-as-a-service has several benefits. a certain level of coverage, then the user is charged a tele-
First, Cloud9 offers a cost-effective, flexible way to ruscoping amount:$for each percentage point of coverage.
massive test jobs with no upfront cost. Unlike owning léthe goal is to find crashes, then a charge of& each
private cluster, Cloud9 allows necessary machines to drash-inducing defect is reasonable. In both casesn
commissioned only when needed for testing, in a numb@r proportional to program size. A good pricing model
suitable to the complexity of the testing task. If a teaencourages frequent use of the service, thus increasing the
required, e.g., 1,000 nodes for one hour every fortnighggregate quality of the software on the market.
the corresponding yearly budget could be as low as $2,50Finally, a viable testing service must address issues re-
on EC2. This is orders of magnitude less than the costlafed to confidentiality of both uploaded material and cor-
acquiring and operating a private cluster of the same sieesponding test results, as well as multi-tenancy. There
Second, an automated-test service reduces the learmireg also opportunities for amortizing costs across cus-
curve associated with test frameworks. A standard Wedmers, e.g., by reusing test results for frequently used
service API can hide the complexity of operating an alibraries and frameworks, like libc, STL, log4j, etc.
tomated test infrastructure, thus encouraging developersn the rest of this paper, we focus on our main research
to use it more frequently and, especially for new hires, t@ntribution: parallelizing symbolic execution.
adopt thorough testing practices early on.
Third, running test infrastructure as a service offers
high flexibility in resource allocation. Whereasonewoul® Par alléel Q/m bolic Execution
normally have to reserve a test cluster ahead of time, a
cloud-based service can provision resources on-demadnnolic execution [12] offers great promise as a tech-
corresponding to the complexity of the testing task at hap@ue for automated testing [10, 15, 4], as it can find bugs
(e.9., depending on program size). It can also elasticajjithout human assistance. Instead of running the program
recruit more resources during compute-intensive phaggh regular inputs, a symbolic execution engine executes
of the tests and release them during the other phases. 5 program with “symbolic” inputs that are unconstrained,
The service interface requires a user to upload the pedg. | an integer input is given as value a symbal that
gram to test, a testing goal, and a resource policy. T@gn take on any integer value. When the program encoun-
programcan be in binary form, source code, or an intefers a branch that dependsxmprogram state is forked to
mediate representation like LLVM [14]. Thest goalells produce two parallel executions, one following the then-
the symbolic engine how to determine whether it reachgghnch and another following the else-branch. The sym-
a termination condition—e.g., the test goal might be ijic values are constrained in the two clones so as to
find inputs that crash the program or exercise a seculiigke the branch condition evaluate to true (exg:0), re-
vulnerability. Theresource policyndicates a cost budgetspectively false (e.gg>0). Execution recursively splits
along with guidance on how to resolve tradeoffs betweg{ip sub-executions at each relevant branch, turning an

the test goal and the budget. E.g., one may want as hightRerwise linear execution into an execution tree (Fig. 1).
coverage as possible, but all within a $1,000 budget.

Cloud9 returns to the user a set of automatically diSCOWoid read(int x){ x <0
ered input tuples that trigger conditions specified in the if (x < 0) { False True
test goal, together with statistical information. For exam £ % <=3 x>% xX -3
ple, if the test goal was 90% line coverage, Cloud9 would ~ e1se {
produce a test suite (i.e., a set of program input tuples,
or test cases) that, in the aggregate, exercise 90% of the, ilse {
uploaded program. Alternatively, the goal may be to test if (x > 5)
for crashes, in which case Cloud9 produces a set of patho- el::r{("’ ’
logical input tuples that can be used to crash the program,
prioritized based on severity. Each such input tuple can - --
be accompanied by a corresponding coredump and stack Figure 1: Example of an execution tree.
trace, to speed up debugging. Cloud9 does not require angymbolic execution, then, consists of the systematic
special software on the user’s side—the input tuples seesploration of this execution tree. Each inner node is a
as the most eloquent evidence of the discovered bugs. branching decision, and each leaf is a program state that
Upon receiving the results, users may be charged famtains its own address space, program counter, and set
the service based on previously agreed terms. It is essafneonstraints on program variables. When an execution

encounters a testing goal (e.g., a bug), the constraints cdhated across workers, to achieve the global goal while
lected from the root to the goal leaf can be solved to pravinimizing redundant work; but global coordination im-
duce concrete program inputs that exercise the path to piies high communication overhead. Test goals, like max-
bug. Thus, symbolic execution is substantially more effinizing test coverage, require more complex search strate-
cient than exhaustive input-based testing (it analyzes tfies than, e.qg., iterative deepening depth-first seartén of
behavior of code for entire classes of inputs at a timesed in model checkers.
without having to try each one out), and equally complete.Third, in a shared-nothing cluster, the risks of redun-
dancy in path exploration and the opportunities for mem-
ory duplication are many more than on a single node. For

3.1 Challenges instance, symbolic execution engines [5, 4] use copy-on
Classic symbolic execution faces three major challengeswrite to maximize sharing of memory between execution
path explosion, constraint solving overhead, and mefiates, substantially decreasing memory consumption. To
ory usage.Path explosioris due to the number of exe-achieve this in a cluster, load balancing must take into ac-
cution paths in a program growing exponentially in theount the memory sharing opportunities and group simi-
number of branch instructions that depend (directly or ifar states on the same worker. Deduplication techniques,
directly) on inputs; as a result, larger programs cause tegtch as bitstate hashing used in SPIN [11], are not read-
ing to take exponentially longer. Compounding this effedy usable for nodes in a symbolic execution tree, since
is the fact that the CPU-intensiw®nstraint solvemust different nodes in the tree can turn out to have identical
be invoked every time a branch instruction that depergféte (e.g., due to commutative path segments) and a dis-
on symbolic inputs is executed; we have found constratfibuted hashing data structure would need to be imple-
solving to consume on the order of half of the total execorented, which requires special effortand also incurs some
tion time. Finally, highmemory usageesulting from path performance penalties.
explosion causes symbolic execution engines to run out ofn general, the methods used so far in parallel model
memory before having explored a substantial fraction efieckers [19, 3, 13, 2, 11] do not scale to shared-nothing
a program’s paths. As a result, state-of-the-art symbofigisters. They also rely often on a priori partitioning a
execution engines [10, 4] can test only small prograrfigite state space.
with a few thousands of lines of code, while real software In a cloud setting, running parallel symbolic execu-
systems are orders of magnitude bigger. By parallelizitign further requires coping with frequent fluctuation in
symbolic execution on clusters, we aim for the equivaleiftsource quality, availability, and cost. Machines have
of a classic symbolic execution engine on a “machin#ariable performance characteristics, their network prox
with endlessly expandable memory and CPU power. imity to each other is unpredictable, and failures are fre-

Parallel symbolic execution brings three new chal-quent. A system like Cloud9 must therefore cope with
lenges: the need to do “blindfolded” work partitioningthese problems in addition to the fundamental challenges
distributing the search strategy without coordinatiord a®f parallel symbolic execution.
avoiding work and memory redundancy.

First, the path explor_ation work must be distribute 2 Overview of Our Solution
among worker nodes without knowing how much wor
each portion of the execution tree entails. The size of sutloud9 consists of multiple workers and a load balancer
trees cannot be known a priori: determining the propgee Fig. 2). Each worker independently explores a sub-
gation of symbolic inputs to other program variables réree of the program’s execution tree, by running a sym-
quires executing the program first. It is precisely thisolic execution engine—consisting of a runtime and a
propagation that determines which branch instructiossarcher—and a constraint solver. Upon encountering a
will create new execution states, i.e., nodes in the exmnditional branch in the program, thentimeinitializes
cution tree. As it turns out, execution trees are highsychild node in the execution tree corresponding to each
unbalanced, and statically finding a balanced partitionranch outcome. Theearchelis asked which node in the
ing of an unexpanded execution tree reduces to the haltireg to go to next (e.g., a DFS strategy would dictate al-
problem. In addition to subtree size, another unknownvsys choosing the leftmost unexplored child). Once the
how much memory and CPU will be required for a givesearcher returns a choice, the runtime calls uporctme
state—the amount of work for a subtree is the sum of alraint solverto determine the feasibility of the chosen
nodes’ work. Thus, work distribution requires (as we withode, i.e., whether there exist values that would satisfy
see later) a dynamic load balancing technique. the conjunction of the branch predicates along the path to

Second, distributed exploration of an execution tree e chosen node. If the path is feasible, the runtime fol-
quires coordinating the strategies of a large numberlofs it and adds the corresponding branch predicate to the
workers, which is expensive. Classic symbolic executigath’s constraints; otherwise, a new choice is requested.
relies on heuristics to choose which state from the execuA smart exploration strategy helps find sooner the paths
tion tree to explore first, so as to efficiently reach the tdstading to the requested goal. This is particularly relévan
goal. In the parallel case, local heuristics must be codor symbolic execution trees of infinite size. The searcher

Load balancer o Program underTest }

Runtime

Cworker #1) /- (Worker #n)

Constraint
solver

Searcher

Figure 2: Cloud9 architecture Figure 3: (a) Initial partition of the search space; (b)

Repartitioning:W; delegates ta\, the subtree rooted at
tgteSz;. Dotted circles indicate states that are remote;

can choose any node on the unexplored horizon of the € . Do
Y P Q_tted edges similarly indicate locally-unexplored paths

cution tree, not just the immediate descendants of the ¢
rent node.

The overall exploration is global, while Cloud9
searchers have visibility only into the execution trees

signed to their particular workers. Thus, worker-lev nsider the execution tree in Figure 1: callifop()

strategies must be coordinated—a tightly coordinatgf eyecute substantially more branch instructions that

strategy could achieve as efficient an exploration (i'ﬁ'epend ona than bar(a), thereby causing more new

with as little redundant work) as a single-node Symbo'é‘fates to be created in the corresponding subtree. Figure

execution engine. It is also possible to run multiple sh illustrates one of the simplest cases of work imbalance:

stances of_the rt_mtime and searcher_on the same phy ker\Ws finishes exploring its subtree befafé, soW;
machine, in which case the strategies of the co-locaﬁa egates tt\s the expansion of subtre® '

searchers can see all subtrees on that machine. But tigh, - generally, the load balancer declardsad im-
coupling limits the ability of workers to function indepenbalancewhen the’ most loaded work&V has at leask

dently of each other, and would thus hurt scalability. times the load of the least loaded workerWe obtained

In order to steer path exploration.toward the glob od results by using— 10, which helps preventing high
goal, Cloud9 employs several techniques: Two-phasgithiheads associated with frequent load balancing. At

load ba_\lancing (83.3) starts With an in_itial static splitioé .this point, the load balancer instrudt$ andw to nego-
execution tree and adjusts it dynamically, as exploraﬂﬁg

. . . te a way of equalizing their load. The two workers
progresses. Replacing a single strategy with a portfo ree on the set of staté§ | to delegate fronW to w,
of strategies (§3.4) not only compensates for the limitg

local visibilitv. b Iso b loit Cloud9’ sed not only on the number of states, but also on other
ocal visibility, but can aiso better exploit Cloud3d's parFocally-computed metrics, such as which states (subtrees)
allelism. Finally, we employ techniques for reducing reg

. . : X ppear to have highest constraint solving time or highest
dundanc_y, handling worker failures, and coping with herﬁiemory footprint. The main load balancing primitive is a
erogeneity (83.5).

worker-to-worker operatiodelegate(S,W,wjvhich shifts
the responsibility for exploring the subtree rooted atestat
3.3 Load Balancing Sfrom overloaded workeW to the lighter-loadedv. The
actual computation and delegation occur asynchronously,
A measure of a Cloud9 workeilisstantaneous loat$ the allowing the workers to continue exploring while load is
amount of work it is guaranteed to have in the near fututeeing balanced.
When a worker forks new states, it adds these states to &here are two ways to delegate subtrees: state copy-
work queue, and the length of this queue provides a lowrg and state reconstruction. btate copyingW mar-
bound on the amount of work left. In order to account fahals the states (roots of the subtrees to be explored) and
heterogeneity of both the states and the underlying hasénds them over the networkigwhich unmarshals them
ware, we are exploring other second-order metrics as walhd adds them to its work queue. $tate reconstruc-
such as states’ average queue wait time, amount of meion, the identity of a state§ is encoded as a bitvec-
ory they consume, number of queries passed to the ctor-representing the then/else decisions needed to reach
straint solver, etc. Workers periodically report theirdoafrom the program’s start state ®. For example, re-
to the central load balancer, which computes the glolfatring to Figure 3b, nod&, is encoded a, & as01,
load distribution. S; as000 etc. When delegating responsibility f§; W
When Cloud9 starts, there is no load information, soerely sends the bitvector encodingsfo w, after which
it statically partitions the search space (execution tregyeconstruct§ by rerunning the program symbolically
among workers. Figure 3(a) illustrates an initial choicdong the path indicated by the bitvector. Since the exe-
for a two-worker Cloud9: one branch of the first branatution tree is uniquely determined by the program under
instruction in the program is explored by work&f and test, each node can be deterministically reconstructed thi
the other branch by work&\b,. way. Our bitvector encoding resembles encodings used in

The search space must be repartitioned on the fly, be-
Ause the execution tree can become highly imbalanced.

stateless search, first introduced by Verisoft [9] for modehen testing multi-threaded programs. We intend to han-
checking concurrent programs. dle this problem by exploring commutative thread inter-
Choosing the best candidate for delegation is goverriedvings on the same machine, and perform state dedupli-
by the CPU vs. network tradeoff: sending bitvectors @tion locally, using dynamic partial order reduction [8].
network-efficient, but consumes CPU for reconstructiéd@ommutative (but different) path segments can also lead
on the target worker, while transferring states is CPUb different nodes being identical in terms of contents.
efficient, but consumes network bandwidth. State reconWe found constraint solving to account for half or more
struction is cheaper for subtrees whose roots are shall@iotal symbolic execution time. Some of this time goes
in the execution tree. In addition, to optimize reconstruito re-solving constraints previously solved. Thus, we
tion time, the target worker reconstructs from the deepre building a distributed cache of constraint solutions,
est common ancestor between already-explored nodeswhith allows workers to reuse the computation performed
the newly received subtree. Since Cloud9 uses copy-diy-other workers.
write to share common memory objects between statesfailing workers—a frequent occurrence in large
the longer the common prefix of two nodes in the exectiusters—also lead to redundancy, as other workers have
tion tree, the higher the memory sharing benefit will b&o redo the work of failed workers. In Cloud9 we em-
Finally, during reconstruction, Cloud9 need not invoke thgoy checkpointing at multiple levels to enable restarting
constraint solver, since the bitvector-encoded path is-gua failed search on a peer worker. Since symbolic execu-
anteed to be feasible. tion is memory and CPU-intensive, asynchronous check-
points to stable storage are cheap. Worker failure can
)] be thought of as an extreme case of worker performance
3.4 Exploration Strategy Portfolio heterogeneity, which is normally handled by monitoring

. . . eue lengths and constraint solving times, as mentioned
Load balancing provides the means of connecting lo %%3 3 g g

strategies to the global goal. For instance, if the goal is to

obtain high coverage tests, Cloud9 searchers will assign

a local score for each staandicating the expected cov-4 | nitial Pr ototype
erage one might obtain by explorii®) High-score states

are moved to the head of each worker’s queue and priaffe built a preliminary Cloud9 prototype that runs on
tized for delegation to less loaded workers, to be execulgghazon EC2 [1] and uses the single-node Klee symbolic
as soon as possible. Thus, each load balancing decisi@acution engine [4]. Preliminary measurements indicate
moves Cloud9 closer to the global goal. that Cloud9 can achieve substantial speedups over Klee.
In contrast to sequential symbolic execution, which for our measurements, we used single-core EC2 nodes
constrained to using one search strategy at a time, Cloeg®| instructed both Klee and Cloud9 to automatically gen-
can employ a portfolio of concurrent strategies. We thirgtate tests to exercise various UNIX utilities, with the aim
of this portfolio in analogy to financial investment portef maximizing test coverage, as in [4].
folios: if a strategy is a stock, workers represent cash,
and the portfolio’s return is measured in results per unit
of time, then we face the problem of allocating cash to
stocks so as to maximize overall return. By casting the
exploration problem as an investment portfolio optimiza-
tion problem, we expect to reuse portfolio theory results,

250
200 H
150 H
100 H

Speedup (tk; eg/tcioude)

. L e . . . 50 H
such as diversification and speculation, as well as quanti- 16 111
tative techniques for improving returns, such as efficient R A e
frontier and alpha/beta coefficients. For example, we can N e
speculatively devote a small number of workers to a strat- Tool

egy _that works exceptional_ly we_II, but only for a SmalIl—‘igure 4: Time to match Klee’s coverage with Cloud9
fraction of programs. Running this exploration on a CORM. - 1 6 iine represents linear speedu '
of the execution tree in parallel with a classic strategy tha P P P

bears less risk may improve the expected time of reachinqu measured how much faster a 16-node Cloud9 can

the overall goal. achieve the same level of coverage that Klee achieves in
one hour. We tested a random subset of 32 UNIX utilities,

3.5 Minimizing Redundant Work with a uniform distribution of binary sizes between the
smallest utility echo at 40 KB) and the largest oné ¢

An important aspect of achieving scalability is the avoigt 170 KB). Figure 4 shows the results: speedup ranges

ance of redundant work. One source of redundant wdrkm 2x to 250x, with an average speedup of¥7The

is state duplication, which occurs by expanding idenspeedup exceeds the 16-fold increase in computation re-

cal states on different machines, which occurs frequensigurces, because Cloud9 not only partitions the search

across 16 nodes, but also increases the probability thatydharnessing the aggregate resources of such clusters, we
given worker will find states with high coverage potentiaaim to make automated testing based on symbolic execu-
We also compared the amount of coverage obtained fion feasible for large, real software systems.
a given level of CPU usage. We ran Klee for 16 hours Cloud9 is designed to run as a Web service, thus open-
on one node and Cloud9 for 1 hour on 16 nodes (Fimg up the possibility of doing automated testing in a pay-
ure 5), thus giving each tool 16 CPU-hours. Cloud9 ows-you-go manner. We believe that a cloud-based test-
performed Klee in 28 out of 32 cases, reconfirming theg service can become an essential component of soft-
multiplicative benefit of parallel symbolic execution. ware development infrastructure: it provides affordable
and effective software testing that can be provisioned on-
100 demand and be accessible to all software developers.

Cloud9 (1 hr x 16 nodes) mm—

80 - Klee (16 hrs) |
ol l References
a i [1] Amazon EC2. http://aws.amazon.com/ec2.
[2] J.Barnat, L. Brim, and P. Rockai. Scalable multi-core.LT
2 i model-checking. Iintl. SPIN Workshop2007.
EASRTRE IR - [3] J.Barnat, L. Brim, and J. Stribna. Distributed LTL model

o checking in SPIN. Irintl. SPIN Workshop2001.
Tool [4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. Bymp. on Operating Systems

o =} o

Coverage (%)

o

o

o
RN
o

Figure 5: Coverage obtained by Cloud9 and Klee, using

identical number of CPU-hours. Design and Implementatio@008.
[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
5 Related Work D. R. Engler. EXE: Automatically generating inputs of

. . . death. InConf. on Computer and Communication Secu-
To our knowledge, we are the first to parallelize symbolic iy, 2006.

execution to clusters of computers. There has been worl¢) v. Chipounov, V. Georgescu, C. Zamifir, and G. Candea.
however, on parallel model checking [19, 3, 2]. Never- Selective symbolic execution. Workshop on Hot Topics
theless, there are currently no model checkers that can in Dependable Systen®009.

scale to many loosely connected computers, mainly dui@] Eucalyptus software. http://open.eucalyptus.com/.

to the overhead of coordinating the search across mufl C. Flanagan and P. Godefroid. Dynamic partial-order re-
tiple machines and transferring explicit states. SPIN is duction for model checking software SIGPLAN Not.

a mature model checker that parallelizes and diversifies 2005. _ _ _

its search strategy on a shared-memory multi-core sy)] P. Godefroid. Model checking for programming languages

. - . using Verisoft. InSymp. on Principles of Programming
tem [3, 11]; we cannot directly apply those techniques Languages1997.

to shar_ed—nothlng clusters. Moreover, for the prograrpy; p, Godefroid, N. Klarlund, and K. Sen. DART: Directed
tested in [3, 11], the search space could be statically par- 4,tomated random testing. Gonf. on Programming Lan-
titioned a priori, which is not feasible for Cloud9. guage Design and Implementatj005.

There have been previous efforts to scale symbolic xi] G. J. Holzmann, R. Joshi, and A. Groce. Swarm verifica-
ecution that do not involve parallelization. For example, tion. InIntl. Conf. on Automated Software Engineeting
concolic testing [18] runs a program concretely, while at 2008.
the same time collecting path constraints along the d%2] J.C. King. Symbolic execution and program testiGgm-
plored paths; the constraints are then used to find alternate Munications of the ACML976. _
inputs that would take the program along different pat{43] R.Kumar and E. G. Mercer. Load balancing parallel ex-
Another example is 2 [6], which improves scalability Plicit state model checking. Itl. Workshop on Parallel
by automatically executing symbolically only those par and Distributed Methods in Verificatio2004.

- . Oﬁ_ﬁ] C. Lattner and V. Adve. LLVM: A compilation framework
of a system that are of interest. Our tephmques aré Com- ¢qr jifelong program analysis and transformation. linl.
plzeme_ntary, and in our future work we intend to combine symp on Code Generation and Optimizati204.

S°E with Cloud9. In general, Cloud9 benefits from almogts] R. Majumdar and K. Sen. Hybrid concolic testing. itl.

all single-node improvements of symbolic execution. Conf. on Software Engineering007.
[16] S.McConnell.Code Completechapter 3. Microsoft Press,
) 2004.
6 Conclusion [17] Redhat security. http: //ww. redhat . cont

security/updates/classification/,2005.
This paper proposes Cloud9, a cloud-based parallel syl#8] K. Sen. Concolic testing. Imtl. Conf. on Automated Soft-
bolic execution service. Our work is motivated by the ware Engineering2007. . 3
severe limitations of symbolic execution—memory arld®] Y. Sternand D. L. Dill. Parallelizing the Myrverifier. In
CPU usage—that prevent its wide use. Cloud9 is dg. ~Intl- €onf.on Computer Aided Verificatiph997.
signed to scale gracefully to large shared-nothing clastdfCl Undenwriters Labsht tp: //waw. ul . com

