Bulletin Board: A Scalable and Robust Eventually Consistent
Shared Memory over a Peer-to-Peer Overlay”*

Vita Bortnikov, Gregory Chockler, Alexey Roytman, Mike Spreitzer
IBM Research

October 30, 2009

Abstract

We present the design and early experience with a com-
pletely new implementation of the Bulletin Board, a topic-
based distributed shared memory service employed by
commercial-grade application middleware, to achieve ro-
bustness and administrative simplicity with adequate la-
tency and costs at the required throughput and scale.
To facilitate scalability, only weak consistency is pro-
vided. For robustness and ease of use, the implementa-
tion is designed in a fully peer-to-peer fashion leveraging
the weakly consistent group communication services pro-
vided by a semi-structured overlay network. We discuss
issues in providing good (while not perfect) stability and
reliability at tolerable cost. We address scalability issues,
such as supporting large numbers of processes, large sub-
scription spaces, and complex interest patterns. We also
consider comprehensive API instrumentation.

1 Introduction

WebSphere Virtual Enterprise (WVE) is one of the key
products in the IBM’s middleware portfolio. Its primary
function is to manage physical (or virtual) resources in
a farm of servers hosting a collection of clustered web
applications.

The core component of WVE is a communication sub-
strate, called Bulletin Board (BB), supporting an eventu-
ally consistent topic-based shared memory abstraction.It
is used by various distributed controllers (which are the
“brain” of the system) to support a variety of control loops
involving agents and application containers running on
each one of the managed machines. The BB is used only
for management overhead, of which there is a relatively
fixed load, related only qualitatively to the application ac-
tivity. The BB needs to provide a reliable shared memory
with adequate latency and acceptable costs for the system

*This work is partially supported by the EU IST project CoMiFin
FP7-ICT-225407/2008.

size and throughput needed for that management work.

The implementation of the BB in the early releases of
the product was based on a virtually synchronous group
communication layer [3] with a limited scaling capacity
(from tens to about 100 server processes) and inherent ro-
bustness issues. The scaling limits were overcome by a
federation technique that exacerbated the robustness prob-
lems and introduced significant administrative complex-
ity. Noticing that the BB provides only eventual consis-
tency, and that the product already included an eventually
consistent P2P overlay, we supposed it would be easy to
re-implement the BB based on that overlay (and possible
to extend this work to make a more scalable BB based on
a better overlay later). In this paper we report on our ex-
perience with the first phase of this effort, which focused
on quickly producing a new implementation capable of
supporting moderately large server farms including on the
order of 1000 of server processes.

Robustness and administrative simplicity were the pri-
mary concerns affecting our design choices. Intended dy-
namicity as well as failures (such as process crashes and
network partitions) and flaky processes are common at the
scales we target; these should disrupt the system operation
to the minimum extent possible, and the recovery should
be autonomous involving minimum possible (if any) hu-
man intervention.

In addition, WVE supports a dynamic system in which
(even in the absence of faults) starts and stops of applica-
tion server processes, infrastructure processes, and even
machines can be common. The BB should therefore be
incrementally scalable allowing automated addition, re-
moval, and restart of processes with minimum configura-
tion effort. Also, accurate capacity planning is difficult,
and customers sometimes do extreme acceptance tests, so
it is also necessary to degrade gracefully under general
overload.

The above led us to focus on decentralized approaches
with a built-in ability to cope with dynamic changes in

an autonomous fashion (other approaches are surveyed in
Section 2). Our implementation is built in a fully peer-to-
peer fashion with each process maintaining a portion of
the shared memory state pertaining to its topics of interest.
It leverages an in-house semi-structured overlay network
substrate, called the Service Overlay Network (SON) [8, 7]
to track process subscriptions and writer connectivity (see
Section 6).

In order to inform our choice with respect to the up-
date propagation strategy, we studied the topic connectiv-
ity patterns exhibited in typical WVE deployments (see
Section 5). The study revealed that although each WVE
process can write and be subscribed to many topics, the
distribution of the number of processes related (either as
writers or as subscribers) to a given topic is bimodal (i.e.,
a topic’s popularity is either very high or low to modest).
That allowed us to design a simple and effective update
propagation mechanism, which depending on the number
of receivers, employed either SON broadcast or iterative
unicast (see Section 6).

As an initial assessment of the impact of the overlay-
based design on runtime costs (such as CPU), and up-
date propagation latencies, we studied the performance
of the BB implementation in medium-sized settings (see
Section 7). Our study was conducted using a stand-alone
version of the implementation which was separated from
the rest of the WVE components and environment, driven
by traces taken from a real WVE environment. Our find-
ings show that the write/notify part of the implementa-
tion has tolerable CPU cost (under 10%) for the needed
throughput at the needed scale and adequate latencies (al-
most all under 1 second). Further we noticed that two
specific parts of the implementation/usage showed CPU
cost per unit of work growing with system size; we men-
tion some ideas on how to address that. Our findings also
show that the subscription management part of the imple-
mentation needs a fundamental change to fully realize our
goals: it exchanges information at too large a granular-
ity. Performance evaluation in larger settings as well as
a comprehensive robustness study is a subject of ongoing
work.

The rest of this paper is organized as follows: Related
work is surveyed in Section 2. Section 3 outlines the most
important safety and liveness properties of the BB layer.
Section 5 briefly describes typical BB usage pattern in
WVE installations. The BB implementation and lessons
learned are discussed in Section 6. Performance study is
presented in Section 7. Section 8 concludes the paper.

2 Related Work

The initial BB implementation was built on top of a virtu-
ally synchronous group communication layer [3], whose

implementation requires tight coordination among the
processes, and therefore prone to performance and stabil-
ity problems at large scales.

In contrast, the techniques based on probabilistic shared
state maintenance (such as [2, 10]) are scalable and robust.
However, they lack sufficient determinism to address the
latency and reliability needs of the management control
loops employed by the WVE product.

The group communication systems based on IP Multi-
cast IPMC) [6, 5, 4, 9] off-load the message processing
burden from the application layer, and could therefore, be
an attractive alternative to the overlay-based design. At
present, however, this technology is not yet sufficiently
mature to support adequate stability and security in the
presence of large number of groups. The recent work [11]
looking into improving the IPMC robustness in data cen-
ters might lead us to reconsider this approach in the future.

Another known technique for pub/sub communication
is based on a carefully designed and managed backbone of
servers [1]. Our goal of low-to-no administration would
require adding a technique for automatically designing
and managing that backbone. We figured it would be eas-
ier to meet our needs with a technique that simply uses
direct communication (taking the overlay’s broadcast as
a given primitive) from writer to subscribers. Some of
the robustness problems with the first implementation of
the BB occur when critical intermediary processes suffer
problems that do not affect the writer and subscriber.

3 System Model

We consider an asynchronous distributed system consist-
ing of the set of processes P = {p1,pa,...,pn} Where
each pair of processes is connected by an intermittently
reliable communication channel. We do not mean “pro-
cess” as in Unix or Windows, but rather the fragment of
one of those that is a part of the BB’s distributed imple-
mentation. For brevity we expunge all concerns related to
local concurrency and assume the presence of a discrete
global clock. This clock is external to the system, and the
processes do not have access to it. We model an execution
of the system as a series of events, each of which happens
at a distinct point in time.

A process can be in one of three states: stopped,
started, or dysfunctional (corresponding to a running pro-
cess that is in some degree of local distress). Six kinds of
events model the transitions among those states; the initial
state is stopped. Each undirected pair of processes can be
in one of three connectivity states: disconnected, meaning
the network is completely unable to deliver service (not
even through intermediaries) in some direction between
the two processes, connected, meaning the two processes

can communicate in a reliable and timely way in both di-
rections, or partial, covering the in-between states. Six
kinds of events model the transitions among those states;
the initial state is connected.

4 The Service Definition

The BB external interface The BB supports write-
subscribe communication semantics, which is a hybrid of
pub/sub and read-write. The function is fundamentally a
memory, but the data is pushed out through notifications
rather than pulled out through reads; unlike pub/sub, there
is no requirement for every subscriber to be notified of
each individual update. Formally, we have a collection of
processes P that interact with each other through a collec-
tion T of topics. We fix V to be the set of values, with a
distinguished value L. Process p; can write a valuev € V/
to a topic ¢t € T'; doing so corresponds to a write(v,t);
event. For subsequent simplicity, before the real events of
an execution we insert a set of write(L,t); events for all
teT andp; € P.

p; can register (resp., unregister) its interest to be no-
tified of changes to t's content; doing so corresponds to
a subscribe(t); (resp., unsubscribe(t);) event. The sub-
scribers to a particular topic ¢ get informed of ¢’s content
through notify(M,t); events where M is a total function
from P to V such that M[p;] € V holds a value written
by process p;. It is positively desired that the BB deliver
a notification with M [p,] = L in response to p; stopping.

BB Correctness Properties Let A be an implementa-
tion of the BB, and E be an execution of A. A is cor-
rect if for each p;, p;, and ¢, there exists a total function
readsFrom; ; ; from the set of all the {norify(_,t);} events
to the set of all the events of the form write(_,t); in E
such that all of the following properties hold:

Property 1 (Integrity). Ler W = write(v,t); and
N = notify(M,t); be two events in E. If W =
readsFrom; ; ('), then, e precedes N in E, and either
Mjl=wvor M[j] = L.

Property 2 (Order). Let Ni, and Ns be two no-
tify events in E such that readsFrom; ;(N1) = ey,
readsFrom; ; (N2) = es, and ey # es. Then, Ny pre-
cedes Ns iff e1 precedes ey in E.

Property 3 (Notification Validity). Let N be a notify
event for topic t occurring at process p;. Then, N is pre-
ceded by S = subscribe(t); such that p; neither stops nor
unsubscribes from t between S and N.

The Eventual Inclusion property below has two parts. The
first one captures the essence of the eventual consistency
semantics. It asserts that in the absence of local and con-
nectivity problems, each value v written to a topic ¢ is
eventually delivered to each permanently connected and
functional subscriber of ¢. The second part requires that
transient problems have consequences for only a limited
time. Beyond this property, it is desired that the BB not
deliver a lot more notifications where M [p;] = L than
required.

Property 4 (Eventual Inclusion). Let T be a time such that
all of the following conditions are permanently true after
Tin E: (1) p; is subscribed to t, (2) both p; and p; are in
the started state, and (3) p; and p; are connected. Then,
there exists time T/ > T such that the following holds for
each event e € {write(_,t);, notify(M,t);} occurring af-
ter 7':

o If e = write(v,t);, then there exists a notify event
N = notify(M,t); such that readsFrom; j(N) =
W', and either W' = W, or W’ follows W at p;,
and

e [fe =notify(M,t);, and readsFrom(e) =
write(v,t), then M[j] = v.

The next property asserts that if p; was writing to a topic
t, and then, either permanently stopped, or became per-
manently disconnected from a process p;, then this fact is
eventually reported at each subscriber p; of ¢ (by deliver-
ing a notification with M[j] = L at p;).

Property 5 (Eventual Exclusion). Suppose that after
some point in F the following conditions are permanently
true: (1) either p; is stopped, or p; and p; are discon-
nected, (2) p; is in the started state, and (3) p; is sub-
scribed to t. Let N = notify(M,t); where M|[j] # L, be
a notify event occurring at time 7 in E. Then, there exists
time ' > T such that both of the following hold:

e The event occurring at 7' in E is notify(M',t); with
M'lj] = L, and

e For all notify events notify(M" | t); occurring at p;
after v/, M"'[j] = L.

5 Workload Characterization

We studied the connectivity and throughput patterns in the
way WVE uses the BB, for example WVE configurations
constructed in our lab and based on actual customer us-
age patterns. Note that WVE typically has multiple server

processes on a given server machine, an effect that we
expect to increase as the number of cores per machine in-
creases.

WYVE makes and cancels subscriptions only as conse-
quences (some of them rather indirect) of (a) process starts
and stops and (b) commencement of various categories
of application traffic. The establishment of writing rela-
tionships has the same correlation with activity. We stud-
ied the connectivity and throughput at times well removed
from such changes.

At a given time, a given topic can be described by a pair
of popularity numbers: the number of subscribing pro-
cesses and the number of writing processes. We found
the distribution of subscribing popularity was bi-modal:
each topic was either (a) subscribed by all or almost all of
the processes in the system or (b) subscribed by a modest
number of processes, at most about the number of pro-
cesses in an appserver cluster' or on a given single ma-
chine. We found the same bi-modality in the writing pop-
ularity. Both distributions, as well as the joint distribution,
were heavily skewed towards low popularity.

We also looked in the other direction, at the numbers
of topics to which a given process is related. We found
the average process subscribing hundreds to and writing
to tens of topics.

The very highly subscribed topics had no throughput at
times well removed from process starts and stops. Pro-
cess starts and stops did provoke writes and write retrac-
tions to these topics, mainly by the processes starting and

stopping.

6 The BB Implementation

The challenge was to quickly produce a reliable dis-
tributed shared memory that needs little to no administra-
tion and delivers adequate latency with acceptable costs
for the throughput and scale needed to do certain manage-
ment tasks in WVE.

The BB implementation consists of two parts, the Data
Layer and the Interest-Aware Membership (IAM) service,
with the former using the latter and both using the SON
overlay as shown in Figure 1.

The overlay network maintained by SON is a superpo-
sition of the following two graphs: (1) a random graph
with nearly constant vertex degree approximating a k-
regular random graph [12] and (2) a global deterministic
ring. There is a vertex for each process in the system.
The random topology establishes, with high probability,
that the overlay is strongly connected and has a logarith-
mic diameter; the ring guarantees eventual connectivity.

I These systems typically scale up by adding more appserver clusters
of modest size, rather than making large appserver clusters.

Data Layer

Subscription Interest Y

changes Views

Bcast/
Interest-Aware Unicast
Membership (IAM)

Send To A " Data
Neighbors Interest essages

Messages

Service Overlay Network (SON)

Figure 1: The BB Architecture

The SON overlay supports the node membership, FIFO
broadcast (implemented by flooding messages along the
overlay edges), and neighbor-to-neighbor communication
services as well as assistance in creating unicast TCP con-
nections.

The IAM layer utilizes the SON neighbor-to-neighbor
communication services to implement an anti-entropy-
style subscription tracking protocol and integrates SON’s
membership service. The Data Layer leverages SON’s
broadcast and unicast services for disseminating value up-
dates, and uses IAM for keeping track of the membership
and subscriptions. Below, we focus on the implementa-
tion of the Data Layer. For brevity we de-emphasize the
discussion of the IAM implementation. The details about
the SON services and their implementation can be found
elsewhere [8, 7].

6.1 Highlights and Lessons Learned

Below, we enumerate and discuss some more interesting
aspects of the BB implementation and the lessons learned.

Supporting the BB safety and liveness The BB im-
plementation must behave correctly (as described in Sec-
tion 3) in the presence of all possible combinations of fail-
ures including process stops (whether clean or not) and
starts, network connectivity outages (either short-lived
or long-term), and message delays. Since unlike virtu-
ally synchronous group communication service [3], SON
only guarantees best-effort message delivery, and does
not guarantees coherence between membership views and
message send/receive events, the BB layer had to include

the necessary logic to ensure correctness is never violated,
as discussed below.

BB Liveness We use multiple mechanisms to cope with
the fact that SON does not provide 100% reliable
messaging. Just one is sufficient for reliability (ig-
noring latency and cost): each write is periodically
re-sent (until overwritten, of course), and the period
is long (10 minutes). Most of the BB contents are
overwritten before this happens, so the periodic re-
sending affects few topics. SON broadcast is so re-
liable that no further steps are taken for those. For
unicasts, TCP provides reliability while a connec-
tion lasts. Because lower layers do not allow our BB
to distinguish clean connection closures from others,
we added an explicit TCP connection close hand-
shake to ensure that all outstanding updates have
been successfully transmitted. The bad news is that
the topics for which those periodic re-sends actu-
ally happen are ones for which it is most costly: a
few topics to which almost every process writes (al-
beit just once at startup) and almost every process
subscribes. This means the total system cost of the
re-sends per unit time grows proportionally to the
square of the system size. A better approach would
be to eliminate that mechanism in favor of more reli-
ability in the other mechanisms.

BB Safety Each newly issued update operation is tagged
with the pair consisting of the sender’s name and
a monotonically increasing® sequence number. The
BB stores the latest sequence number along with the
latest contents for each location, so this simple tag-
ging scheme is sufficient to guarantee update order-
ing as long as the set of the shared memory locations
can only grow. If the locations can also be eliminated
— and worse yet, if they can later be re-created —
then a little extra care is needed in order to reclaim
storage in this totally decentralized system. It is in-
deed important to reclaim storage because WVE is
intended for a dynamic environment; we need the
implementation to eventually forget about canceled
subscriptions and locally uninteresting writes.

To distinguish a process restart from a connectiv-
ity loss and regain we tag each message with not
only the sender’s process name but also a unique and
monotonically increasing epoch number assigned
during process startup.

To identify canceled and later recreated subscrip-
tions, we also tag each interest item with a short

Zamong the writes to one of the memory locations, remember each

has a single writer.

nonce. A retracted write is implemented by a write
carrying a special tombstone value. These are deleted
after lingering in the system for a configured timeout
as judged on local clocks. A write that originated
in a remote process is deleted locally after a long
time with no receipt of a resend. We do not have
to worry about confusing propagation of writes to
processes that have already forgotten them because
the BB layer only propagates writes one step, from
writer to each remote subscriber.

The cost of overlay-based broadcast Broadcast by
overlay flooding should be used sparingly. The perfor-
mance cost (in terms of network and CPU usage) is high.
This is due to the great redundancy in message transmis-
sions (the total cost is some multiple of & messages at a
process with k£ neighbors) and the facts that forwarding is
accomplished at the application level and involves serial-
ization/deserialization in the process. This is exemplified
by the relatively high proportion of CPU spent on broad-
cast of relatively few writes in the experimental study.
Circumventing options include more conservative thresh-
old, gossip or tree-based (requires more complex reliabil-
ity mechanisms) communication pattern instead of com-
plete flooding, avoid deserializing redundant messages.

Selecting the update propagation method The up-
dates are propagated either by SON broadcast or through
iterative unicast over direct TCP connections. The choice
of whether to use broadcast (as opposed to iterative uni-
cast) is made by testing (at the send time) whether the
number of intended receivers exceeds a dynamic quantity
called the broadcast threshold. That threshold is derived
from the system size by a configured monomial. Itera-
tive unicast always uses fewer messages in the system as
a whole, but broadcast can spread the load around better
and reduce latency — but only if the system is large. The
default configuration of the threshold monomial is thus set
to produce a large threshold for small system sizes and to
grow slowly with system size.

Flow control and overload protection Flow control re-
ally needs to be done. In initial experiments we saw
transient overloads at new subscribers to topics with very
many writers. To avoid that we added a random delay to
the procedure by which a writer reacts to new interest.
We also saw that a slow process P could cause mem-
ory exhaustion in another process () that is sending to
P (SON’s TCP abstraction unconditionally accepts mes-
sages for eventual delivery, buffering ones that can not be
written immediately.) To avoid that we modified the iter-
ative unicast dissemination to not send a write over a TCP

connection that is still being used for a previous transmis-
sion; we plan to go further and add explicit acknowledg-
ments in our protocol.

The SON message broadcast operation is very robust
against problems that are localized and/or short-lived, but
simple flooding has its limits. If a broadcast originating
at A and needing to be delivered at B runs into trouble
(that lasts longer than a flooded message lingers in the
system) while being transmitted from C' to D, A and B
will remain unaware of the problem and have no clue if
any recovery is needed. We originally expected SON to
avoid such problems by excluding flaky processes from
the overlay. We later came to realize our expectations
would not (and probably could not) be fully met. We
hope to replace the BB’s use of SON broadcast with anti-
entropy, which can be fundamentally robust and stable
with limited resource usage — the only lossage during
overloads will be in latency. The challenge will be to do
anti-entropy for a memory with the large number of loca-
tions used for popular BB topics. In the 4 X 70+ 7 scenario
there were about 1,100 such locations.

Message compression We found it advantageous to
compress messages in our protocol that are (before com-
pression) longer than fit in one Ethernet packet.

Testing and debugging Testing and debugging is a
huge challenge. One helpful technique is to produce a
tabular log of the events at the BB API for post-mortem
study. The log tables are loaded into a SQL database. SQL
statements derive tables of instances of missing notifica-
tions and excessive latency. This makes it easy to compre-
hensively comb through a large amount of logs looking for
problems.

7 Performance Evaluation

We have done an organized study of runtime costs and
latency distribution, and report on it here. We have also
done some informal testing of robustness against wedged
processes, with good results; time and space constraints
preclude reporting a thorough robustness study here.

topology | core-ms/pair | CPU % | lat. < 1 sec
2x354+5 1.3 | 047% 100%
3x474+6 2.1 | 0.84% 99.998%
4 %5247 29| 1.22% 99.9%
4x70+7 52| 2.92% 94.7%

Table 1: CPU Cost, Latency Distribution

We created WVE systems of 75, 147, 215, and 287 pro-
cesses — about a 1:2:3:4 ratio — and studied CPU usage

and latency results from a simple scenario that involved
starting the appservers one at a time and then running
some application load for about 10 minutes (during which
time no subscriptions were added or removed). Table 1
summarizes the results. We see the latencies are well con-
trolled, and the CPU cost is growing with system size.

The topology column summarizes the structure of the
WVE system, as the product of a number of machines
times the number of appservers per machine plus the num-
ber of infrastructure processes.

The performance measurements were obtained by us-
ing a stand-alone version of the BB implementation to re-
play the tabular API event traces captured from the runs
of the real WVE system. The latency results are from
the real WVE system, and CPU measurements were taken
from the replays. The CPU usage is reported in units of
core-milliseconds per unit of work, to study the growth
with system size, and in units of percentage of total CPU
power used, to show this is modest. We have four 16-core
machines, and used 2, 3, 4, and 4 (respectively) in the
four scenarios; since the ratio of number of processes to
number of available cores is not constant across these sce-
narios, you would not hope for constant CPU utilization.

To focus on the costs of the BB implementation, we
first did a crippled replay of each topology. The crippled
replay included the costs of the overlay, the replay frame-
work, and the BB subscription operations; the BB write
operations were no-ops. The cost of the crippled replay
was subtracted from the cost of the full cost of the regu-
lar replays, leaving just the cost of delivering the updates.
The CPU cost of the crippled replay was less than half
of the cost of a full replay. We ran three full replays of
each topology. The standard deviation of the CPU cost
results was about 1% of the average in each case except
the smallest, in which it was about 3.5%.

The CPU usage is the quotient of the total amount of
CPU work the system did delivering updates during the
roughly 10 minutes of light application load divided by
a BB usage metric. That metric is the number of (write,
matching subscription) pairs in that same interval of time;
this metric is well over the numbers of subscriptions and
writes, and so is a good summary of how hard the clients
are using the BB.

After studying the original traces and trace data from
the replay we realized that during the roughly 10 minutes
of light application load there is a large amount of refresh-
ing of writes to unscalable connectivity patterns (that is,
topics to which almost every process subscribes and al-
most every process writes). Even though the writes occur
only around process startup time, their refreshes continue
indefinitely. Lesson: refreshes can escalate a communi-

cation pattern that merely costs O(N?) memory into one
that also costs O(N?) CPU power.

topology | core-ms/pair | CPU %
2x354+5 0.78 | 0.27%
3x47+6 0.74 | 0.30%
4x52+7 0.90 | 0.38%
4x704+7 2.11 1.19%

Table 2: CPU cost without refreshes

We then investigated the runtime CPU cost when the
refreshes are simply deleted from the implementation; Ta-
ble 2 summarizes the results. We found the core-ms per
pair during the roughly 10 minutes of light application
load to be about 1 in the three smaller trials but about 2 in
the largest trial. Further study of the traces revealed that
during the roughly 10 minutes of light application load
the largest topology includes 116 writes whose popularity
is above the broadcast threshold and the other topologies
have no such writes. Even though the sizes of these writes
was short, so that the more efficient of the overlay’s two
flooding modes was used, the number of messages used in
the system for those flood operations was roughly similar
to the number of messages used for the non-flooded deliv-
eries. We tweaked up the broadcast threshold, so that no
writes during the roughly 10 minutes of light application
load were flooded, and saw the average amount of core-
ms per pair for the largest topology drop to about 1 and
the CPU utilization drop to 0.57%.

8 Conclusions

We presented our experience with improving robustness
and reducing administration complexity of the BB com-
munication layer of the WVE middleware. Our imple-
mentation is based on the peer-to-peer approach leverag-
ing the services provided by the SON overlay network.
The preliminary performance study using the API traces
from typical production environments demonstrates via-
bility of our approach in medium-sized settings. The per-
formance evaluation in larger deployments as well as the
detailed robustness study are under way.

Our ongoing effort focuses on reducing the update
propagation costs using the anti-entropy based message
dissemination mechanisms. We also plan to radically im-
prove scalability of our implementation by augmenting it
with a dynamically managed hierarchy.

References

[1] M. Astley, J. Auerbach, S. Bhola, G. Buttner, M. Ka-
plan, K. Miller, J. Robert Saccone, R. Strom, D. C.

(2]

(3]

(4]

[5

—_

[6

—_

(7]

[8

[}

(9]

(10]

(11]

[12]

Sturman, M. J. Ward, and Y. Zhao. Rc23103:
Achieving scalability and throughput in a pub-
lish/subscribe system. IBM Research Technical Re-
ports, 2004.

K. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Trans. Comput. Syst., 17(2):41-88, 1999.

K. Birman and T. Joseph. Exploiting Virtual Syn-
chrony in Distributed Systems. In Proceedings of
SOSP’87, pages 123-138, New York, NY, USA,
1987. ACM.

D. Dolev and D. Malki. The Transis approach to
high availability cluster communication. Commun.
ACM, 39(4):64-70, 1996.

K. Ostrowski, K. Birman, and D. Dolev. Live dis-
tributed objects: Enabling the active web. IEEE In-
ternet Computing, 11(6):72-78, 2007.

K. Ostrowski, K. Birman, and D. Dolev. Quicksilver
scalable multicast (qsm). In NCA, pages 9-18, 2008.

C. Tang, R. N. Chang, and E. So. A distributed ser-
vice management infrastructure for enterprise data
centers based on peer-to-peer technology. In IEEE
SCC, pages 52-59, 2006.

C. Tang, R. N. Chang, and C. Ward. Gocast: Gossip-
enhanced overlay multicast for fast and dependable
group communication. In DSN, pages 140-149,
2005.

R. van Renesse, K. Birman, and S. Maffeis. Horus:
a flexible group communication system. Commun.
ACM, 39(4):76-83, 1996.

R. Van Renesse, K. Birman, and W. Vogels. As-
trolabe: A robust and scalable technology for dis-
tributed systems monitoring, management, and data
mining. ACM Transactions on Computer Systems,
21(3), May 2003.

Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan,
K. Birman, and Y. Tock. Dr. Multicast: Rx for dat-
acenter communication scalability. In HotNets VII:
Seventh ACM Workshop on Hot Topics in Networks.
ACM, 2008.

N. Wormald. Models of random regular graphs. Sur-
veys in Combinatorics, 276:239-298, 1999.

