GridCloud

Killer Apps Enabled by GridCloud

sponsored by the Department of Energy ARPA-E program

Context

- **▶** Challenging questions with highly elastic apps
 - Rapid elasticity at scale
 - Predictability /consistency of such elasticity

#1: Mitigation Control

- ➤ Rare combination of events do happen
 - Have led to many blackouts when not mitigated!
- > E.g., N-3 contingency never planned for
 - Infrequent but hugely expensive to analyze
 - GridCloud commissions thousands of nodes analyzing candidate mitigation steps in parallel
- >Acknowledgements: Prof. Mani V. (WSU)

#2: Robust Adaptive Topology Control

- ➤ Use software to optimize grid topology switching as the control resource
- ➤ Technology: use topology control to enhance ops and manage disruptions in grid
- ➤ Massively parallel computations to
 - Detect, classify, and respond to grid disturbances
 - Ensure the grid maintains efficient operations while guaranteeing reliability
- >Acknowledgements: Prof. Mladen Kezunivoc (Texas A&M University)
 - Funded by the ARPA-E GENI program

#3: Ultimate Scale: Tertiary Monitoring Centers

- ➤ Balancing authorities (144 in NAmer) must have remote backup control centers
- >TVA found great value in having a tertiary control center
 - Limited to monitoring: control outputs computed but not used
 - Obvious candidates for the cloud
- ➤ Major problem today: balancing authorities have almost no visibility anywhere in grid except for a few places in a few neighbors
 - "Flying blind", The Economist, 2004
 - Why not just share more?
 - Data stored at another utility is problematic for owner
- **➤**Storing in cloud could alleviate this
 - Only access a subset of data and/or derived info
- ➤ Above so far is static (default steady state)
- ➤ Could also drill down on demand with elastic computations & data feeds
 - Using higher-fidelity algorithms and higherresolution data
- Acknowledgements: Russell Robertson (Grid Protection Alliance), for the TVA example (though not the cloud possibilities)

#4: Multi-dimensional Computations over Space & Time (A *Family* of Apps)

- ➤ Two existing WSU/GridSim apps can be combined in rich ways possible only with cloud computing
- 1. Hierarchical linear state estimation (see poster #1)
- 2. Oscillation monitoring
 - Uses moving window of time (a few seconds typically)
 - Over streaming data
 - Produces a single number: damping factor
 - Obvious parallel computations over different sets of data with different time windows and algorithms
- ➤ Combination: provide rich set of twodimensional (space, time) data to any desired location
 - Enables extremely powerful new families of applications operating coherently over both space and time
 - At each location: different time windows, different algorithms, different sets of data
- If available, people would inevitably think of many uses for this data
- ➤ Acknowledgements: Prof. Anjan Bose (Washington State University)

#5: Oscillation Alarm Processing

- **≻**Grids oscillate between regions
 - Negatively damping can lead to blackout
 - E.g., Oregon/California in July 1996: 0.3 Hz (!!)
- ➤ GridCloud commissions massive parallel computations exploring huge permutation space
 - Looking for trends and correlations of alarm data
 - Also huge number of model-based simulation's too
 - Finds root cause much faster than possible today in much broader set of conditions
- ➤ Acknowledgements: Prof. Mani Venkatasubramanian (Washington State U.)

#6: Multi-Res. Frequency Disturbance Visualization

- ➤ Grid operates in very narrow range unless stressed
- Frequency disturbance recorder (FDR): new device recording frequency disturbances at high rates (1.44 Khz)
- ➤ GridCloud commissions thousands of parallel frequency rendering computations
 - Provide operators a rich suite of visualizations with which to better understand present excursion
- Acknowledgements: Prof. Yilu Liu (University of Tennessee, Knoxville)