GridCloud Cloud-hosted high-assurance system to monitor the electric power grid

Demonstration and Experiments

sponsored by the Department of Energy ARPA-E program

Ouestion

How can today's computing clouds support high-reliability, real-time power grid monitoring software?

Requirements

- Work at the scale of major North American Interconnects
- Accept and process thousands of sensor data streams, at rates of multiple samples per second per stream

Proposed Answer

- Develop a platform that exploits the cloud's raw speed and elasticity and hides its **complexity** from power grid application developers
- Use **redundant** communication and computation to mask failures and performance transients that frequently occur in the cloud
- Use Isis²'s advanced distributed computing techniques to provide consistent views of replicated computations and data

Lessons Learned

About cloud instance sizing

Good performance requires sufficient resources in cloud instances: Amazon EC2 *C3: Large* and *C3: Extra Large*

About process creation and monitoring

 The demonstration uses thousands of processes on tens of cloud virtual machine instances: DMake is invaluable for creating and monitoring these processes

About the SE

- 1 to 5 solutions/sec is apparently feasible at grid scale
- Solutions are available about 400ms after measurements are made
- Replicated data delivery and substation computation are needed to reliably achieve this performance
- Variability of end-to-end latency is now attributable to performance of the unreplicated Control Center SE

Cornell

Theo Gkountouvas

Carl Hauser

www.cs.cornell.edu/Projects/Gridcontrol/

Cornell University

