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Abstract

The Internet contains a wealth of rich geographic infor-
mation about our world, including 3D models, street maps,
and many other data sources. This information is potentially
useful for computer vision applications, such as scene under-
standing for outdoor Internet photos. However, leveraging
this data for vision applications requires precisely aligning
input photographs, taken from the wild, within a geographic
coordinate frame, by estimating the position, orientation,
and focal length. To address this problem, we propose a
system for aligning 3D structure-from-motion point clouds,
produced from Internet imagery, to existing geographic in-
formation sources, including Google Street View photos and
Google Earth 3D models. We show that our method can
produce accurate alignments between these data sources,
resulting in the ability to accurately project geographic data
into images gathered from the Internet, by “Googling” a
depth map for an image using sources such as Google Earth.

1. Introduction

The Internet has become an extremely important source
of imagery for computer vision, driving work in many areas,
including object recognition and 3D reconstruction. Beyond
images, the Internet is also increasingly a source of detailed
geographic information. By this, we mean accurately geo-
referenced information about the shape and content of the
world, ranging from accurately georegistered imagery from
mapping sites (e.g. Google Street View and Microsoft Bing
Maps), to 3D city models from Google Earth, to open source
vector street maps from OpenStreetMap'.

In combination with algorithms for estimating the geopo-
sition of an image, this geographic data can be of signifi-
cant value in computer vision tasks. For instance, if one
could compute the exact camera pose (position, orientation,
and camera intrinsics) of a photograph in the world, one
could imagine simply “Googling” a depth map for that im-
age (or at least the static parts of the scene such as streets
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Figure 1. Overview of our work: (a) we take unordered Internet
photos of a scene, reconstruct scene geometry using SfM , then (b)
align the resulting point cloud with online geographic data, includ-
ing (c) Street View images and Google Earth 3D models. These
georegistered point clouds allow us to project useful information,
such as depths of 3D building models, into images (see Figures 5
and 6).

and buildings), by rendering the world from that viewpoint
using online 3D city models. However, in order to make
use of such information, we need a way to determine the
geographic pose of an image to near pixel-level accuracy.
To this end, one could make use of recent work in image
localization that accurately registers an image with a 3D
structure-from-motion (SfM) point cloud [14, 11]. While
this process results in a 3D camera pose, the accuracy of
this pose in a geographic coordinate system is limited by
how well the point cloud itself is positioned on the Earth’s
surface.

Our work addresses this problem of accurately and
robustly georegistering SfM reconstructions, towards the
goal of automatically creating precisely georegistered point
clouds for many places around the world. We build each
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SfM model from a large collection of Flickr photos, and
georegister it using geographic data itself for alignment. We
draw on three sources of geographic information: (1) noisy
geotags from the input Flickr photos, (2) nearby Google
Street View images with more accurate geotags, and (3) 3D
city models from Google Earth. We propose a robust pipeline
that leverages this data, along with information estimated
from the SfM model such as vanishing points, to produce
an accurate georegistration. This process is illustrated in
Figure 1.

2. Related work

Location recognition and geographic reasoning. Photo-
sharing sites, such as Flickr, have accumulated vast collec-
tions of geotagged imagery, and over the past few years such
imagery has been used to create databases that enable geo-
registration of new query images [8, 1 1]. Of particular note
is the im2gps work of Hays and Efros [8], which goes fur-
ther in using this geolocation information to estimate rough
properties of a scene, such as how mountainous or populated
it is expected to be based on a coarse geolocation. Unfortu-
nately, the geolocation estimates produced by such methods
is limited by the accuracy of the geotagged image database.
Geotags on Flickr are extremely noisy, and hence only rough
attributes can be inferred. In our case, we want to make use
of detailed geographic information, such 3D models, and
require near pixel-accurate image georegistration.

Other methods use more accurately geotagged Street
View images to localize new query imagery [ 19, 3]. However,
these image-to-image matching techniques do not directly
produce an actual camera pose for a query image, and so
geographic data such as 3D building models cannot be pro-
jected into the photo. Moreover, many points of interest lack
such accurately calibrated images (including the photos from
the top of the Empire State Building shown in Figure 5). In
contrast, our framework is built on SfM models created from
collections of Internet photos and georegistered, enabling us
to compute explicit camera pose for input photos matched to
such models.

In graphics, Kopf et al. use 3D city models for photo
editing tasks, such as dehazing, relighting, and image anno-
tation [10]. However, they require the pose of an image to
be manually specified; our system is completely automated.

Alignment of point clouds to maps. As part of our work,
we align SfM reconstructions using georeferenced images
and 3D models. In related work, Kaminsky ef al. georegister
SfM models to an aerial image by aligning 3D points to
image edges [9]. Similarly, several researchers have sought
to align laser scans to aerial images [5, 6]. Strecha et al. use
geotags and 2D building footprints to help merge multiple
small 3D models together [15]. Others have aligned SfM
data to digital surface models (DSMs) or street maps, from

either aerial input photos [13], or input images with accurate
GPS information [18]. Taneja et al. align 360 panoramic
streetview images to cadastral 3D models (akin to the Google
Earth 3D models considered in our work) [17]. The combina-
tion of data sources we draw on differs from prior work; we
take SfM reconstructions with noisy GPS tags and register
them to 3D georeferenced models. While we find that this
setting requires robust alignment methods, we also found it
to be more accurate than alignment to 2D aerial images.

3. Accurate georegistration of SfM models

This section describes our algorithm for registering a
set of input images of a scene to a georeferenced coordinate
system, using geographic data from online mapping services.

3.1. Inputs and overview

Our input is an unstructured collection of Internet pho-
tos of a scene (e.g., the Empire State Building or Trafalgar
Square), some of which may be geotagged, found using In-
ternet search (we gather images from Flickr in our work). As
our algorithm runs, it also searches for nearby geographic
data sources, in particular Google Street View (GSV) im-
ages and Google Earth (GE) 3D building models, operating
differently depending on which sources of data are available
for the location of interest.

We first run feature matching and structure from motion
(SfM) on the input images, using the implementation of [1].
StM estimates the camera pose of a subset of the images,
and reconstructs a set of 3D points. This reconstruction is
only known up to a similarity transformation; the scale, 3D
rotation, and 3D translation of the model with respect to the
Earth’s surface are unknown. Our algorithm georegisters
this SfM model, estimating the seven unknown degrees of
freedom that position it on the globe (Figure 2). We achieve
this in several steps: first, we robustly compute the gravity
vector for the scene using analysis of vanishing points (VPs).
Second, we estimate a rough position, heading, and scale
using available geotags for the inputs photos themselves.
Next, we query Google Maps for nearby GSV images; if
enough are available, we add these to our SfM model, and
re-estimate its geo-alignment using these more accurately
geotagged images. If GSV images are unavailable, we use
a VP and scale matching algorithm to align the SfM model
with Google Earth 3D data. Finally, we run an ICP-like
process to refine the alignment to the Google Earth data.

Vanishing points. Our method first extracts vanishing
points (VPs) from the SfM model to facilitate the estimation
of scene orientation. We have found VPs to be more robust
than other oriented objects on SfM datasets, such as surface
normals or planes; such robustness is key to georegistering a
noisy SfM model.
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Figure 2. Overview of georegistration process: first the up vector of
the SfM model is determined, then the rough position/heading/scale
can be found by aligning cameras (black pyramids) with their
geotags (green dots). More precise information (e.g., Google Street
View images) can then be used to refine the alignment. The VPs
of the SfM model are used to find the up vector and dominant
orientations.

To find the VPs, we detect long, linear edges in each im-
age, and accumulate votes for VP directions using a Hough
transform on the space of 2D (6, ¢) (elevation, azimuthal)
angles. These votes account for the image’s estimated cam-
era rotation, so that the votes are for vanishing points in
the space of global 3D directions in the scene. We assume
that long edges are mostly from man-made objects, such
as buildings, and often correspond to vertical or horizontal
lines in the scene. (Accordingly, our technique primarily
works well for urban scenes.) We identify strong peaks in
the Hough transform, and save these as our detected VPs,
represented as a list of unit vectors v, va, ..., V,,, along
with their number of votes, w;.

3.2. Up vector estimation

As a first step in the georegistration, we estimate the
scene’s global up vector (i.e., the opposite of the gravity
vector) by combining a simple analysis of camera orienta-
tions with an analysis of vanishing points. In particular, we
first use the method of Szeliski [16] to compute an initial
up vector v.. This method fits a plane to the z-axes of each
camera’s reference frame, and takes the up vector v, to be
the normal of this plane, based on the observation that most
people take photos with only slight roll (rotation about the
viewing direction). We observed that the resulting vector is
usually close to correct, but can still deviate from true up by
several degrees (especially when most cameras are pointed
in a similar direction). Instead, we pick the pre-computed
VP direction v; that is in best agreement with v (i.e., which
maximizes |v; - v.|). We deem this vector to be the vertical
VP, and rotate the scene accordingly. We found this com-
bined method to be quite precise in determining which way
is up. Other VPs v; that are nearly orthogonal to v; are then

identified as potential horizontal VPs for later steps of our
pipeline.

3.3. Georegistration using geotags

The up vector fixes two degrees of freedom of the orien-
tation; what remains are the heading, 3D position, and scale.
We now compute an initial estimate for these parameters
using available geotags.

Georeferenced photos. Many online photos are now em-
bedded with GPS coordinates, either from hardware or
through manual tagging. With these, we can pose the geo-
registration problem as one of absolute orientation, in which
we seek a heading, 2D translation, and scale (i.e., a 4-DoF
similarity transformation) that best fits the SfM camera posi-
tions to their geotags. (Note that estimating the elevation of
the scene is usually ill-posed with geotags alone, since they
often lack altitude data.) We use RANSAC to find the 4-DoF
transformation 7j with the most inlier camera positions.

Unfortunately, geotags on Flickr photos are quite noisy,
often off by tens or hundreds of meters. We found that
for scenes covering a large area, accurate results are possi-
ble using geotags alone, but when cameras are quite close
together—e.g., on the viewing platform of the Empire State
Building—the resulting heading and scale estimates can be
quite inaccurate (Figure 4).

Street View photos. To address this problem, we turn
to Google Street View (GSV) for panoramas with accu-
rate GPS coordinates distributed around cities. 4.) Given
our initial geo-alignment 7p, we find and download nearby
GSV panoramas, along with their GPS coordinates. Each
panorama is then sampled into seven individual perspective
images and registered into our SfM model [ 1], and a new
4-DoF similarity transformation T gy is computed using
their high-quality geotags.

We find that using GSV photos produces a more accurate
georegistration when they are available. Unfortunately, there
are still many places around the world where we cannot find
Street View photos. For instance, there are no Street View
images available for datasets captured well above ground
level (e.g., photos taken on viewing platforms or Ferris
Wheels), and ground-level views that do exist near such
locations usually fail to match. This leads to our second
georegistration method: directly aligning point clouds to
georeferenced 3D models.

3.4. Georegistration using georeferenced 3D models

For many cities, Google Earth (GE) has a layer of geo-
registered 3D buildings and terrain. While GE isn’t the only
source of 3D data—e.g., some cities have been scanned using
LIDAR—GE is attractive because it serves as a centralized



storehouse of world-wide data. These 3D models are an al-
ternative to Street View images as a source of data to which
we can align our SfM reconstructions.

To do so, we first download from Google Earth a 3D
model of the geometry surrounding our SfM model, in the
form of a georegistered triangulated mesh. A standard ap-
proach to aligning two models to each other is the Iterated
Closest Point (ICP) [2] algorithm. Since ICP is a local op-
timizer, we expect it to work well if provided with a good
initial transformation, e.g., for T gy computed using GSV
as described above. However, when such an initialization is
not possible (e.g., due to lack of GSV photos), or is other-
wise poor, we need an alternative approach to obtain good
initial alignment.

We first assume that the first alignment 7} is centered
at the correct latitude and longitude (i.e., the geotags bring
us close to the correct mean camera location in the ground
plane). Given Tj, we compute a new set of candidate trans-
formations by separately estimating the heading, height, and
scale of the SfM model.

Heading. To obtain heading, we align the detected hori-
zontal vanishing points (VPs) of the SfM model with those
computed from the GE mesh. For the GE mesh, we compute
dominant horizontal VPs by first finding the subset of mesh
triangles that are nearly vertical; their normals tend to be
perpendicular to VPs in the SfM model. We have each nor-
mal vote for the headings 490 degrees of it, and then select
dominant directions as VPs for the mesh (Figure 3(a)).

Next, we match SfM and 3D model VPs to find several
candidate 1D rotations. The correspondence between VPs is
ambiguous, so we vote for possible 1D rotations based on
how well the VPs of the two models align under all possible
rotation. In particular, we score a candidate rotation as the
sum of the product of votes of pairs of VPs within 4°. All
unique rotations with scores within a given fraction of the
maximum are returned as candidate headings for the StM
model.

Height. As described above, one usually cannot reliably
determine the altitude of a model using geotags alone. In
cases such as the Empire State Building viewing platform,
there is a difference of several hundred meters between
ground and model. We compute a set of candidate heights
by observing that on the whole, most images are taken while
standing on top of surfaces. Accordingly, for each camera
position in our SfM model (under the initial registration
Ty), we find the highest point on the GE mesh at that lati-
tude/longitude, forming a histogram of possible heights as
shown in Figure 3 (b). Our algorithm selects a set of strong,
unique peaks from this histogram, and for each peak gener-
ates a candidate transformation that translates the SM model
so that its median camera height matches that elevation. This

assumes that photos are not taken from many different ele-
vations at the same location, and that photos were captured
from the highest point on the GE surface.

Scale. The scale estimate is most important in cases where
cameras are clustered close together; as the radius of a StM
model approaches the level of the geotag error, the uncer-
tainty in scale increases. In challenging situations such as the
top of the Empire State Building, we observed that the initial
transform T}y could have a scale off by as much as a factor
of two. To estimate the correct scale, we need some way of
measuring absolute distance; we propose a method based
on distances from cameras to points they observe, in both
the SfM and Google Earth coordinate frames. In particular,
for each ray from a camera to a visible 3D point in our StM
model, we find the ratio of (1) the length of that ray to (2)
the length of the ray from the same camera position to the
first object it hits in the GE model (computed by rendering a
depth map from the 3D model). From a collection of these
ratios, we employ a simple voting scheme and choose the
most prominent modes as our candidate scale estimates.

This procedure depends on having a roughly accurate
orientation, or else we would be comparing distances be-
tween pairs of rays that do not correspond. Hence, the order
of computation is as follows: we first compute candidate
headings and heights. For each combination of these two,
we compute candidate scales. Finally, we compose these
transformations, performing rotation and scaling around a
median camera, and we use all as initializations to a final
ICP stage, selecting the one with the lowest error after ICP
as the result.

Final ICP registration . We complete the alignment us-
ing ICP between the SfM model and the GE mesh with a
few modifications to aid in robust convergence. We compute
the cost function over only the 70" percentile inliers since
the SfM models tend to have a small set of spurious outlier
points (and sometimes there are missing buildings in the
GE models). Additionally, we constrain the median camera
position to be above the ground. Finally, we find that trying
to estimate a full rotation all at once can lead to unstable
alignments until ICP has gotten close to the optimum, so
we begin by optimizing over translation, scale, and rotation
about the zenith, and then run a second pass of ICP that
estimates a 3-DoF rotation.

Other alignment techniques If we sample a set of
points from the GE model, then the georegistration problem
can be reduced to a point cloud alignment task, for which
existing more global techniques can be applied. We tried one
such recent technique, the automatic point cloud registra-
tion method proposed by Makadia et al. [12]. This method
assumes that point normals are available, and uses these to



(a)
Figure 3. Initial orientation and height alignment for the SfM model from the Empire State Building viewing platform. (a) Initial SfM (red)
and Google Earth (blue) point clouds overlaid. Note the incorrect orientation of the SfM model. (b) Detected horizontal VPs for the STM
model (dashed) and GE 3D model (solid). (c) Histogram of estimated heights. Note that the mode of the height histogram corresponds with
the actual height of the observation deck, 320 meters.
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generate an extended Gaussian image (EGI) for each point
cloud. These EGIs are then efficiently aligned, providing a
good initialization for ICP. We tried two methods to estimate
normals for our SfM point clouds: (a) fitting normals to
neighborhoods of points, and (b) using multiview stereo to
reconstruct dense points with normals [7]. However, the EGI
alignment failed on both sets of normals; we suspect this is

due to the points in StM model being too noisy and sparse.

(This is particularly true for datasets such as the Empire State

(b)
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Figure 4. From top to bottom: alignment of the Colosseum, the top of the Empire State Building, and the Arts Quad SfM datasets. In column
(b), the Colosseum and the Arts Quad were aligned using Google Street View (GSV) imagery. Since this data is unavailable for the top of
the Empire State Building, we align based on Google Earth (GE) data as described in Section 3.4. Column (c) shows the results after further
applying ICP to refine the alignment.

Building, where the camera baselines are quite small relative
to the distance to the scene.) Our heuristics, on the other
hand, use VPs detected from images for rotational alignment,
which we found to be more robust than estimating normals
from reconstructed 3D points. However, in cases where VPs
cannot be estimated, our technique would likely fail as well.
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(d) Segmentation using refined alignment from ICP
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Figure 5. Geometric information computed for images using aligned 3D models. Each image in the middle three rows is segmented into
geometric categories using the Google Earth 3D model projected into the image (sky: red, vertical surface: yellow, ground: blue). (a) Input
photographs. (b) Geometric segmentation using baseline georegistration from geotagged images. (c) Geometric segmentation using improved
alignment using Google Street View images (or, in the case of the Empire State Building (last column), the Google Earth pre-alignment. (d)
Geometric segmentation using final ICP-refined georegistration. Note that the visual accuracy of the alignment improves from (b) to (d). (e)
Depth map created automatically by projecting the Google Earth 3D geometry into the image using the final georegistration.

4. Alignment Results

We ran our algorithm on several SfM datasets from differ-
ent parts of the world including Trafalgar Square (London),
the Pantheon (Paris), Union Square (NYC), and Piazza del
Popolo (Rome). We first show qualitative performance of
our methods by overlaying aligned SfM models on Google

Map satellite images or Google Earth point clouds (Figure 4),
and by rendering Google Earth models from the estimated
point of view of images in the SfM model (Figure 5). Each
figure shows a subset of our datasets; more results can be
found in the supplemental material. In general, the align-
ments using Google Street View or Google Earth 3D models



show clear improvement over the initial alignment computed
using only georeferenced online photos. While still not per-
fect, in general the alignments are qualitatively quite good;
we discuss sources of error later in this section. More results
of overlaying 3D information on georegistered photos are
shown in Figure 6.

The Colosseum dataset shown in Figure 4 is the same as
that described in the work of Kaminsky et al. [9], which uses
maps alone to perform alignments. While their technique
failed to produce an accurate registration on this dataset due
to the complexity of detected edges in the overhead map
view, our method produces a more visually accurate align-
ment. (Please see supplemental material for a qualitative
comparison to their result.) Note, however, that we require
different inputs (Street View and Google Earth data vs. an
overhead image).

Quantitative evaluation. The desired accuracy of geo-
alignment is somewhat task specific; if we care about using
Google Earth data, we may favor accuracy of alignment to
that data, rather than a more absolute measure.

Nonetheless, we would still like an objective error mea-
surement. To this end, we manually aligned the point clouds
with Google Map satellite images to obtain approximate
groundtruth camera locations. In addition, for the Arts Quad
dataset, we have 216 (out of 5,229) photos with precise geo-
tags from a differential GPS. (These geotags are not used
by our algorithm.) Using this ground truth, we measured
average errors in camera positions for all three alignment
methods: using the noisy camera phone geotags (GRP), us-
ing Street View images (GSV), and refining the alignment
using ICP to Google Earth 3D models (ICP). The results are
shown in the following table:

GRP | GSV | ICP
14.03 [ 7.81 [ 7.16

13.69 | 12.10 | 2.06
3455 | 5.62 | 5.60

Average error (meter) |

Colosseum
Union Square
Piazza del Popolo

Pantheon | 20.05 562 | 541

Trafalgar Square 942 | 10.81 8.69
Empire State Building | 595.20 — | 17.93
Rockefeller Center | 245.49 — 6.44

Arts Quad 3.41 2.56 1.86

As the table shows, the use of Street View images and
Google Earth models improves the results (except in Trafal-
gar Square dataset where the large number of georeferenced
photos already yields a good result). Note that there are no
Street View images available for the Empire State Building
and Rockefeller Center datasets; the initial alignment for
ICP is obtained using the heuristics in Section 3.4.

Limitations. Despite working well on many datasets, our
method has several limitations. First, the georegistration

process does not alter the SfM model beyond a similarity
transform; if the reconstructed model is incorrect, the georeg-
istration will fail. For example, our method cannot correct
low-frequency errors due to drift. Second, ICP highly de-
pends on having a good initialization. For places where we
have no good geotags (e.g., no Street View images and the
geotags are too noisy) and our heuristics for pre-alignment
fail to find good hypothesis, ICP can easily get stuck in local
minimum. Finally, our method relies on the quality of the
available geographic information. The quality of current
Google Earth models seems highly variable; some cities,
such as Paris, have well-georegistered models, while oth-
ers, such as London, seem much more haphazard. However,
we believe that high-quality models will only increase in
availability over time.

5. Conclusion

To make full use of the rich geographic information that
is becoming available through the Internet in vision, accurate
geolocation of imagery is critical. Such geographic data can
be used both as the means and an end: worldwide datasets,
such as Google Street View and Google Earth 3D buildings,
are valuable resources for accurately locating SfM models in
the world. Street View images and online 3D models. And
at the same time, we believe that accurately georegistered
datasets can yield new, geography-aware applications in
computer vision that leverage geographic data. As future
work, we plan to explore ways that additional forms of such
information, such as vector street maps, can be used as
powerful priors for scene understanding.
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