
Practical Memory Leak Detection using
Guarded Value-Flow Analysis ∗

Sigmund Cherem Lonnie Princehouse Radu Rugina
Computer Science Department

Cornell University
Ithaca, NY 14853

{siggi, lonnie, rugina}@cs.cornell.edu

Abstract
This paper presents a practical inter-procedural analysis algorithm
for detecting memory leaks in C programs. Our algorithm tracks
the flow of values from allocation points to deallocation points us-
ing a sparse representation of the program consisting of a value flow
graph that captures def-use relations and value flows via program
assignments. Edges in the graph are annotated with guards that de-
scribe branch conditions in the program. The memory leak analysis
is reduced to a reachability problem over the guarded value flow
graph. Our implemented tool has been effective at detecting more
than 60 memory leaks in the SPEC2000 benchmarks and in two
open-source applications, bash and sshd, while keeping the false
positive rate below 20%. The sparse program representation makes
the tool efficient in practice, and allows it to report concise error
messages.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Reliability; D.3.4 [Processors]: Compilers, Mem-
ory management; F.3.2 [Semantics of Programming Languages]:
Program Analysis

General Terms Algorithms, Languages, Reliability, Verification

Keywords Static error detection, memory leaks, memory manage-
ment, value-flow analysis

1. Introduction
The increasing importance of software reliability has led to a large
body of research aimed at identifying violation of various program
safety properties, including memory safety properties (such as null
pointer dereferences, or heap errors), resource usage properties
(e.g., file usage or locking discipline), or security properties (such
as the use of tainted data).

Among these, several important properties can be expressed as
properties of the following form: on any execution of the program,
the value v generated by a program event A must flow into (or

∗ This work was supported in part by National Science Foundation grant
CCF-0541217 and AFOSR grant FA9550-06-1-0244.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’07 June 11–13, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

be consumed by) exactly one occurrence of another event B. We
refer to such properties as source-sink properties. Examples include
detecting lock usage violations (where A is the lock acquire action,
B is the lock release, and the value is the pointer to the lock); or
detecting potential memory leaks or double frees (where A is the
heap allocation event, B represents heap deallocation, and the value
is the pointer to the allocated heap cell).

Current error-detection techniques include both general-purpose
tools for checking arbitrary finite-state machine properties [7, 5, 1];
as well as tools that have been used to check specific properties
such as memory leaks [11, 21, 14]. The existing approaches largely
fall into two categories: dataflow analysis approaches that track the
state of program values through the control-flow, computing in-
formation at each program point; and flow-insensitive approaches,
that track the flow of values using a sparse representation of the
program (for instance, using definition-use chains or SSA form),
but ignoring the control-flow otherwise. The latter is more efficient
due to the sparse representation of value flows, but it is not appli-
cable to checking arbitrary state-machine properties since it cannot
reason about events that must eventually take place on all program
paths, such as deallocating memory, releasing locks, or closing
files. To the best of our knowledge, all of the existing memory leak
detection techniques use flow-sensitive approaches.

This paper presents a novel inter-procedural analysis algorithm
for checking source-sink properties using a sparse representation
of value flows, and applies this algorithm to the detection of heap
memory errors, such as memory leaks or double frees. Our analysis
identifies value flows from malloc sources to free sinks through
program assignments and use-def chains using a value-flow graph
representation of the program. A simple case of a memory leak
occurs when a source never reaches a sink in the value-flow graph.
Checking the other cases, where a malloc source reaches a free
sink on all program paths, and only once on each path, is more
challenging. Our approach is to annotate the edges in the value-flow
graph with guards that represent branch conditions under which the
value flow happens, and then use the guard information to reason
about sink reachability on all paths.

The following list highlights the main features of our approach
to the source-sink problem:

• Efficiency: The analysis is efficient due to the sparse program
representation using value flows. The flows of data from sources
to sinks need not be tracked through all of the intermediate
program points, but only through the relevant ones;

• Analysis refinement: The analysis first uses simple techniques
to identify potential errors. It falls back on the more expensive
reasoning about guarded value-flows only when the simple ap-

proaches fail. Guards are computed in a demand-driven fashion,
only for the relevant portions of the program.

• Concise error reports: The use of sparse value-flows makes it
possible to report concise messages to point to a few relevant
assignments and path conditions that cause the error to happen.

We have implemented our memory leak detection analysis and
applied it to the set of SPEC2000 benchmark programs. Our re-
sults show that the analysis presented in this paper is substan-
tially faster than existing leak detectors. Compared to a backward
dataflow analysis memory leak detector that we have previously
proposed [14] and where we experimented with a similar set of
benchmarks, the value-flow analysis presented in this paper runs
faster, finds roughly the same number of errors, and yields a lower
number of false warnings.

We have also used our method to derive a classification of
heap allocation and deallocation patterns. We find this classification
useful for understanding how heap allocation is being used, and
how difficult is it to reason about deallocation in real programs.

The remainder of the paper is organized as follows. We first
present the problem statement in Section 2. Next, Section 3 presents
a motivating example. Section 4 presents an overview of our sys-
tem. We discuss the analysis algorithm in Section 5, present an
evaluation in Section 6, discuss related work in Section 7, and con-
clude in Section 8.

2. Problem Statement and Classification
We define a classification of value-flow problems and place the
memory leak and double free problems in this context.

DEFINITION 1. Consider a program P that consists of three kinds
of statements: source statements s that produce fresh values when
executed; assignment statements that copy values; and sink state-
ments k that receive values. A source-sink[n,m] safety-checking
problem is the problem of checking that each dynamic value in-
stance produced by a source will eventually flow into at least n and
at most m sinks in any execution of the program.

Example source statements include heap allocation statements,
opening files, acquiring locks, or loading untrusted values. Corre-
sponding sink statements include heap deallocations (frees), clos-
ing files, releasing locks, or storing values into trusted memory lo-
cations.

Given this definition, the memory leak detection problem is a
source-sink[1,∞] problem, since it requires that each allocated cell
must be eventually freed. On the other hand, the double-free prob-
lem is a source-sink[0,1] problem since it requires that each allo-
cated cell must be freed at most once. Checking both properties be-
comes a source-sink[1,1] problem, that is, each allocated cell must
be freed exactly once. We will refer to source-sink[1,1] problems
simply as source-sink problems.

In contrast, the problem of determining that an untrusted value
never flows into a trusted location is a source-sink[0,0] problem.
We will refer to such problems as source-not-sink problems.

Solving source-sink problems using a sparse representation of
value flows (such as def-use chains, or SSA form) is more difficult
than solving source-not-sink problems. This is the case because
value-flow edges are “may” edges, so value-flow paths indicate that
values may flow from sources to sinks. This information is enough
for source-not-sink problems, but not for source-sink problems.
The latter require more precise information to determine that values
must eventually flow into sinks.

This paper addresses the source-sink problem in the context of
memory leak detection. Our solution is to annotate each value-flow
edge with a guards that precisely describe the branch conditions
under which the value-flow takes place.

1 int func() {
2 int *p = malloc();
3 if (p == NULL)
4 return -1;
5
6 int *q = malloc();
7 if (q == NULL)
8 return -1;
9
10 ... /* use p[i] and q[j] */
11
12 free(p);
13 free(q);
14 return 0;
15 }

Figure 1. Example: leaked cell on an early exit path. A dealloca-
tion free(p) is needed before returning at line 8.

Finite-state machine properties form a more general class of
properties, of which source-sink and source-not-sink problems are
particular cases. More general finite-state machine problems in-
clude checking the absence of unsafe accesses through dangling-
pointers, or checking that file operations access opened files. This
paper does not address such problems.

In the remainder of the paper we will only discuss the memory
leak and double free problems, and will use the terms malloc and
source, and free and sink interchangeably.

3. Examples
This section discusses two examples that illustrate the main chal-
lenges of analyzing source-sink problems in the context of the
memory leak detection problem.

3.1 Example 1: Missing Free on Function Exit Path
The code fragment from Figure 1 shows a simplified version of
several leaks found in ammp, one of the SPEC2000 benchmarks.
The program manipulates two heap-allocated arrays: array p allo-
cated at line 2, and array q allocated at line 6. The function uses
the arrays locally, and deallocates them at the end of the function,
at lines 12 and 13. The omitted code at line 10 accesses array ele-
ments p[i] and q[j], but doesn’t store copies of pointers p or q
in other variables or program structures. After each allocation, the
program checks if the call to malloc() successfully returns a non-
null pointer (lines 3 and 7); if so, the function immediately returns
an error code. The program leaks memory at the return at line 8.
At that point, the function returns without freeing the successfully
allocated array p.

3.1.1 Leak Detection via Dataflow Analysis
This leak can be identified using any of the dataflow analyses
proposed in [7, 5, 10]. Starting from a (successful) allocation at line
2, a dataflow analysis will analyze all forward program paths from
that point, tracking the typestate of p (i.e., allocated or deallocated
state) up to each of the return points at lines 4, 8, and 14, when p
goes out of scope. The analysis will identify that the path to line 4
is infeasible when the allocation was successful; that the returning
at line 14 is safe because the cell has just been deallocated at line
12; and that an error occurs at line 8 because the cell is not freed
on that return path. Note that the dataflow analysis doesn’t need to
be path-sensitive (i.e., be able to identify correlated branches, as
in [5]) to handle this example.

3.1.2 Leak Detection via Guarded Value Flows
Our goal is to identify the memory leak in the above example just
by reasoning about value flows in the program. We describe value-
flows using a graph whose nodes represent definitions of program
variables, and edges describe flows via program assignments. In
addition, there is a node for each free(x) statement; its predeces-
sors are the definitions of x. The value-flow graph for the above
example is shown below:

free(q)

q=malloc() p=malloc()

free(p)

The graph indicates that each of the values p and q flows into
its corresponding free. The other uses of p and q, such as p[i]
and q[j], are not included since they do not store copies of these
pointers, so they are not relevant.

However, the information in the above value-flow graph is not
enough for identifying the error: it shows that p and q may be freed
freed; but it doesn’t show that they always freed, on all program
paths. In fact, we can write a correct program that would have the
same value-flow graph:

p = malloc();
if (p == NULL) return -1;
else { ...; free(p); }

q = malloc();
if (q == NULL) return -1;
else { ...; free(q); }

The question is how to distinguish between the two cases. Our
solution to this problem is to annotate the value-flow edges with
guards that describe the branch conditions under which the value-
flow takes place. For the program from Figure 1, the guarded flow
graph is:

p=malloc()

free(p)

p != NULL ∧
q != NULL

q=malloc()

free(q)

q != NULL

The condition q != NULL for q is redundant, and so is the
condition p != NULL for p, because the analysis is only con-
cerned with the cases where allocations are successful. Excluding
these conditions, the analysis determines that the allocation q =
malloc() always flows into free(q), hence it is safe; but the
allocation p = malloc() flows into free(p) only when q !=
NULL. The analysis therefore concludes that the program leaks in
the opposite case, when q == NULL, and reports the error:

Error: test.c, line 2: allocation leaks memory
Leak path: q == NULL test.c, line 7

The message concisely summarizes the problem and its cause.

3.2 Example 2: Aliases and Multiple Deallocations
Identifying that source mallocs flow into frees on all program paths
using value-flow graphs becomes more difficult when the program
creates aliases of the allocated cell. The code fragment below
illustrates the issue:

int *p = malloc();
if (c) { ...; free(p);}
else { q = p; ...; free(q);}

The above program safely deallocates the allocated heap cell on
each of the two program paths. However, deallocation takes place at
multiple points, through different value aliases. The guarded value
flow graph for this example is as follows (where the edge labeled
“true” indicates that the value assigned at the definition q = p
always flows into free(q)):

q = p

free(q)

p=malloc()

free(p)

c true

!c

Using the guards on the edges, the analysis performs the fol-
lowing reasoning to show the absence of errors. The analysis in-
spects each free reachable from the allocation and determines that:
free(p) takes place when condition c holds; and free(q) takes
place when !c∧true = !c holds. Using this information, the com-
piler can check for heap errors as follows:

• Absence of leaks: Since c ∨ !c = true it means that the two
cases cover all possibilities, so the allocated cell is freed on all
paths;

• Absence of double frees: Since c ∧ !c = false it means that
the conditions under which the two frees take place are disjoint,
hence the allocated cell is never freed twice.

4. System Overview
Figure 2 gives an overview of our program analysis system. The
system is built using Crystal [16], a program analysis infrastructure
for C developed in our group. The shaded components have been
developed part of this work, while the others are provided by
Crystal or have been taken from external sources. The analyzer
consists of the following components:

• Front-end. The front-end parses the program and builds a
control-flow graph representation of the program.

• Reaching definition analysis. A standard dataflow analysis com-
putes the set of uses for each definition in the program.

• Value-flow graph construction. The results of the reaching def-
initions analysis are used to build the value flow graph. The
guards on the value-flow edges are not computed yet; the guard
computation is postponed for a subsequent phase.

• Region points-to analysis. The analyzer uses the pointer analy-
sis provided by Crystal to disambiguate indirect memory refer-
ences via pointers. This is a flow-insensitive unification-based
points-to analysis [18]. The analysis is context-insensitive, but
field-sensitive. The equivalence classes computed by the anal-
ysis provide a partitioning of the memory into disjoint regions.
Indirect memory accesses are represented in the value-flow
graph using their memory region.

• Unguarded reachability analysis. Once the value-flow graph is
computed, the analyzer checks each allocation site in turn. The
analysis searches the value-flow graph for all of the frees that
the allocation may reach. The reachability algorithm is context-
sensitive and matches value flows at calls and returns. If no free
statements are encountered, the analyzer classifies the current
allocation site as one that is never freed. Otherwise, it extracts
the sub-graph relevant to the allocation site and proceeds to the
guard computation in the next phase.

• Guarded reachability analysis. In this phase, the analyzer re-
quests guard information on each of the value-flow edges in
the subgraph relevant to the currently analyzed allocation site.

Region
(Points-to)
Analysis

Messages
Error

Solver
SAT

query

query

query

Front-end
Build CFG

Analysis
Def-Use

Value-Flow
Graph

Construction

Graph
Reachability

Guarded
Graph

Reachability

Guard
Analysis

Unguarded

Figure 2. Analysis system overview

These queries are answered by the guard analyzer module.
Once value-flow guards are computed, the algorithm derives
larger formulas describing the entire path from the malloc to
each free. The analyzer then generates two queries, one for
memory leaks and another for double frees, as in the example
discussed Section 3.2. The resulting formulas are checked for
satisfiability using a SAT-solver. If a satisfying assignment of
boolean values to guards is reported by the solver, then a viola-
tion is detected and reported.

• Guard analysis. This component answers queries about guards
on value-flow edges. The analysis identifies the program points
that correspond to the source s and target t of the edge, and
then performs a local analysis of the control-flow between these
points. The computed formula describes the program conditions
under which the control flows from s to t.

• SAT Solver. Satisfiability queries are answered using SAT4J,
freely available SAT-solver [3].

The following section discusses the program representation pro-
vided by the front-end. Next, it presents the details of our analyses.

4.1 Program Representation
The front-end parses the source program and builds a control-flow
graph (CFG). The input program is simplified to a canonical form
where each node in the control-flow graph is one of the following:

• Assignment node: e = e′, where e and e′ are program expres-
sions.

• Call node: e = f(e1, ..., ek), where e, e1,.., ek are expres-
sions in canonical form. The left-hand side expression might be
missing, so this also models calls to functions that return void,
or calls that don’t assign the returned value.

• Return node: return e, where e is a program expression.
• Switch node: switch e (c1 : n1, ..., ck : nk), where e is the

test condition, ci are the case constants for each branch, and
ni are the corresponding successor nodes. Control flows to ni

when e = ci. A constant default represents the default case.
If statements are modeled as switch e (0 : nf , default : nt).

Allocation sites are calls of the form x = malloc(); and deal-
locations are calls of the form free(x). For simplicity, assume that
in both cases x is a local variable.

We denote by V the set of local variables, and P the set of
function parameters. Variables whose addresses are taken with the
address-of operator & are considered as non-local expressions. We
use N to represent the set of all CFG nodes. For each node n ∈ N
(switch or otherwise), kn is the number of successors of n, and
In = {1, .., kn} is the range of possible successors. We denote by
ni the i-th successor of n, where i ∈ In. Assignments and call
nodes each have a single successor.

Expressions e don’t have side-effects and include variables (lo-
cals, parameters, or globals), as well as arbitrary expression trees
involving pointer dereferences, field accesses, array accesses, and
unary or binary operations.

5. Analysis Algorithm
This section covers the details of the memory leak analysis, dis-
cussing the algorithm for each of the shaded components in Fig-
ure 2.

5.1 Reaching Definitions
This is the standard reaching definitions analysis implemented as a
bitvector dataflow analysis. The analysis tracks only local variables
and parameters whose addresses have not been taken. For each
node n, the analysis computes a set of variable definitions that reach
node n.

5.2 Building the Value-Flow Graph
The value-flow graph (VFG) captures the flow of values through
program assignments. The nodes of the value-flow graph include:

• Variable definitions: There is a VFG node for each definition
of a variable x ∈ V at a CFG node n. By abuse of notation,
we also refer to the resulting VFG node as n. Definitions at
allocation sites are marked as source nodes.

• Frees: There is a VFG node for each free statement. These are
marked as sink nodes.

• Regions: There is a VFG node for each memory region that
doesn’t correspond to a local variable or a parameter. As
mentioned earlier, the region partitioning is provided by the
unification-based pointer analysis.

• Call site: There is a VFG node for each local variable x ∈ V
passed as an argument at a call site. The VFG node of an actual
argument x at a call node n is denoted by [x@n].

• Parameters: There is a VFG node for each formal parameter
p ∈ P , denoted by [p].

• Return: There is a VFG node for each return statement n in a
function.

The edges of the value-flow graph are constructed by travers-
ing each CFG node n in the program and performing one of the
following actions:

• If n is an assignment x = y where x, y ∈ V , add an edge
n′ → n from each definition ny of y that reaches n.

Statement (n) Added edges

y = x nx → n

free(x) nx → n

return(x) nx → n

y = f(..., x, ...) nx → [x@n]
[x@n] → [p]

nf
ret → n

Where x, y ∈ V , nx is a definition of x that reaches n, p is the formal
parameter of argument x, and nf

ret is a return node of function f .

Figure 3. Value Flow Graph construction rules for propagation of
values through program variables.

• If n is of the form x = e where x ∈ V but e /∈ V , then query
the points-to analysis for the region r of e, add a load edge
nr → n from the node nr of region r.

• If n is of the form e = x where x ∈ V and e /∈ V , add a store
edge n → nr from n to the region r of e.

• If n is a free(x) statement, add an edge nx → n from
definition nx of x that reaches n.

• If n is a return(e) statement, add edges from the reaching
definitions of e (if e ∈ V) or from the region of e (if e 6∈ V) to
the return node n.

• If n is a call e = f(x1, ..., xn), the analysis adds three kinds of
edges. First, it adds an edge nxi → [xi@n] from each reaching
definition nxi of xi to [xi@n]. Second, it adds a call edge
[xi@n] → [pi] from the node of each actual argument xi to
the node of its corresponding formal parameter pi of the callee.
Third, the analysis adds return edges to model the assignment
of the return value to the left hand side of assignments at call
sites. For each return node nret in the callee, the analysis adds a
return edge from nret → n, if e ∈ V . Otherwise, it queries
the points-to analysis for the region r of e and adds a store
edge nret → nr . For indirect function calls through function
pointers, the analysis repeats the above procedure for each
potential callee.
Call edges and return edges are labeled with call-site informa-
tion in a standard fashion: for a call site n, call edges are la-
beled with open parentheses (n and return edges are labeled
with close parentheses)n. Feasible inter-procedural value flows
correspond to paths containing properly nested parentheses and
context sensitive analyses can be formulated as context-free lan-
guage (CFL) reachability problems [15].

Figure 3 summarizes the process of building the value-flow
graph for the propagation of values through variables and pa-
rameters. The edges constructed so far are not annotated with
guards. Branch conditions will be computed subsequently, only
when needed.

5.3 Unguarded Reachability Detection
Once the value-flow graph is built, the algorithm analyzes each
source allocation site src. The goal of this stage is to determine
whether the allocation reaches any free, and if so, what is the
relevant portion of the VFG that connect the malloc to the reaching
frees. The algorithm is as follows:

1. Identify the set of nodes Fsrc reachable from the source src
using a forward traversal over the nodes N of the VFG:

Fsrc = CFLForwardReach(src, N)

The algorithm uses CFL-reachability to match call and return
edges and eliminate unfeasible inter-procedural flows of val-
ues. Hence the analysis is context-sensitive. The algorithm uses
function summaries to cache and reuse matched calls and re-
turns. This is a standard approach and we omit the details.

2. Identify a set of reachable sinks K:

K = {k ∈ Fsrc | k is a free node}

3. Apply one of the following three cases:

• If there are no reachable sinks, then classify src as an allo-
cation that is never freed. The analysis of this allocation site
stops here.

• If some region node nr is reachable from src (nr ∈ Fsrc)
then classify the allocation as one that flows into global
scope or aggregate data structures such as arrays. The al-
gorithm will classify this case as too complex, and will not
further analyze this allocation site.

• Otherwise, identify a relevant slice R of the VFG, consist-
ing of all nodes on paths from src to a reachable sink. This is
the set of relevant nodes for the allocation src with respect to
its allocation state. The slice is computed using a backward
traversal from the sinks K back to the source, but going only
through the nodes in Fsrc that have been discovered in the
forward traversal:

R = BackwardReach(K, Fsrc)

The backward traversal doesn’t match calls and returns,
since invalid inter-procedural flows have already been fil-
tered out in the forward traversal. In this case, the analysis
proceeds to the next phase to perform guarded reachability
over the slice R of the currently analyzed allocation site src.

5.4 Guarded Reachability Detection
The goal of this phase is to perform a deeper analysis over the
value-flow graph when the previous step has determined that the
current allocation site might be freed on some execution paths.
Given an allocation site src, a relevant VFG slice R for this alloca-
tion, and a non-empty set of reachable sinks K ⊂ R, the analysis
determines whether the allocated cell is freed exactly once on each
program execution path. As sketched in the examples from Sec-
tion 3, the analysis uses guards on the value-flow edges to reason
about the possibility of heap errors.

The guards that the analysis computes are boolean formulas that
include standard logical operators (and, or, not), boolean constants,
and boolean variables to represent switch conditions:

Guards g ::= true | false (constants)
| g1 ∧ g2 | g1 ∨ g2 (and, or)
| g (negation)
| (e = ci)n (switch test)

The switch test (e = ci)n describes an instance of the test that
occurs at switch node n and tests expression e on the branch on
which the test e = ci succeeds. For each switch statement n, a
consistency formula Cn models the fact that one and only one of
its branches can be taken:

Cn =
h _

i

(e = ci)n

i
∧

h ^
i6=j

(e = ci)n ∧ (e = cj)n

i
The guarded reachability algorithm proceeds as follows. First, it

computes guards for each edge in the relevant slice R by exploring
CFG paths. Next, it aggregates VFG guards into larger formulas.
Finally, it performs satisfiability tests to detect errors. We describe
each of these steps below.

cguard(n → m) = cg(x, n, m, ∅)
where n is of the form x = e

cg(x, n, m, E) =

=

8>>>><>>>>:
true if pdom(x, n, m, ∅)
cg(x, n1, m, E) if n is not a switch

and ¬defines(n1, x)_
i∈In,x,E

cond(n, ni, E) ∧
cg(x, ni, m, E ∪ {〈n, ni〉}) otherwise

where In,x,E = {i ∈ In | ¬defines(ni, x) ∧ 〈n, ni〉 /∈ E}

cond(n, ni, E) =

=

8<: (e = ci)n if n is switch e (..., ci : ni, ...)
and @nj . 〈n, nj〉 ∈ E

true otherwise

pdom(x, n, m, S) =

=

8>><>>:
true if m = n or n ∈ S
false otherwise if n is a return node^
i∈In

¬defines(ni, x) ∧
pdom(x, ni, m, S ∪ {n}) otherwise

Figure 4. Demand-Driven CFG Guard Computation. The predi-
cate defines(n, x) indicates that node n writes variable x.

CFG guard computation. For each value-flow edge n → m,
where n and m are two program points in the same function, the
analysis computes a formula describing when the value defined at
n flows into its use at node m. This guard is computed by exploring
the structure of the control-flow graph (CFG) between points n and
m. Intuitively, the computed guard summarizes the portion of the
CFG between n and m.

The guard computation algorithm is performed by the function
cguard(n → m) in Figure 4. This function can be efficiently imple-
mented using dynamic programming (i.e., caching). The algorithm
uses a helper function cg(x, n, m, E) that maintains the variable x
whose value flow is being tracked and the set of traversed edges E.
The guard between n and m is the disjunction of the guards over
all possible paths, where the guard of each path is the conjunction
of conditions on all control-flow edges on that path:_

i∈In,x,E

cond(n, ni, E) ∧ cg(x, ni, m, E ∪ {〈n, ni〉})

The algorithm considers only those paths that allow the value of
variable x defined at node n to flow into the use at node m. Hence,
paths that redefine x do not contribute to the value flow from n to
m (i.e., these paths have a false guard). The algorithm in Figure 4
filters out control-flow paths that redefine variable x using the
predicate defines(n, x).

In the presence of loops, guards can grow unbounded. To avoid
unbounded conjunctions that describe all possible iterations of a
loop, the analysis bounds the number of loop iterations to at most
one iteration. This is done by maintaining a set E of visited switch
edges. The definition of In,x,E filters out control-flow edges that
have been already traversed, ensuring that loops are traversed at
most once.

Furthermore, the analysis adds the loop exit condition only
when the loop is not executed. The reason for this is that the
analysis does not distinguish between different instances of the
loop test: entering the loop is described by (e = ci)n, and exiting
the loop after the first iteration would correspond to (e = ci)n.
Without distinguishing between the two different instances of this

vguard(n, m) = vg(n, m, ∅)

vg(n, m, E) =

=

8<:
true if n = m_
n→n′ /∈E

vg′(n → n′, m, E) otherwise

vg′(n → n′, m, E) =

=

8<: vg(n′, m, E ∪ {n → n′}) if n is call or return node
cguard(n → n′) ∧ otherwise

vg(n′, m, E ∪ {n → n′})

Figure 5. VFG Guard Computation.

test, their conjunction would make this path infeasible. To avoid
this, the analysis does not add the exit condition (e = ci)n after one
loop iteration. This is formalized in the algorithm by the condition
@nj . 〈n, nj〉 ∈ E in the definition of cond.

In addition, the analysis uses post-dominance information to
simplify the computation of guards. More precisely, the algorithm
computes a post-dominance relation pdom and returns a true guard
for the edge n → m whenever m post-dominates node n. The post-
dominance relation pdom is computed on-demand, as shown in
Figure 4. The post-dominance computation also excludes program
paths that redefine variable x, which contains the value assigned at
node n.

VFG guard computation. Next, the analysis computes aggregate
guards for the entire value flows from the source src to each of
the sinks. For this, the algorithm traverses the value-flow graph,
accumulating guards along each path and combining guards from
different paths.

The algorithm is similar to the computation of guards in the
CFG, except that it is performed on the VFG and it doesn’t use post-
dominators. The value-flows in VFG do not exhaustively cover all
program paths, hence using dominators would be unsafe. Recursion
is bounded in a similar way as loops: recursive call sites can be
invoked at most once. Figure 5 presents the algorithm. The result of
this part of the analysis is an aggregate guard Gk for each reachable
sink k, describing the path from the source to this particular sink.

Satisfiability testing and error detection. Once aggregate guards
are computed for each sink, the analysis performs two tests to
identify potential errors. First, it checks for potential leaks from
the currently analyzed allocation. For this, it constructs the formula
below and tests its satisfiability:

FL =
_

k∈K

Gk ∧ C

The formula C combines the consistency formula Cn of all switch
statements that appear in the guards. It is used to eliminate cases
that contradict the semantics of switch statements (for instance,
cases where both branches of a conditional are taken).

If the formula FL is satisfiable, there may be a memory leak. The
satisfying assignment A gives truth values for the branches in the
formula: a true value for a branch indicates that the branch is taken,
and a false value indicates that the branch is not taken. Hence, the
satisfying assignment A describes the error path.

Similarly, the analysis checks for double frees by testing the
satisfiability of the following formula for each pair of sinks i, j ∈
K, i 6= j:

FDF = (Gi ∧Gj) ∧ C

If the formula FDF is satisfiable, then a double free error has been
detected and the satisfying assignment indicates the error path.

GUARDEDREACHABILITY(source src, slice R, sinks K)
1 for (each value-flow edge n → m in R)
2 compute the edge guard cguard(n → m)
3
4 for (each sink k ∈ K)
5 compute aggregate guard Gk = vguard(src, k)
6
7 Let S be the switch nodes appearing in all of Gk

8 Build a switch consistency formula C =
V

n∈S Cn

9
10 if (the formula FL =

W
k∈K Gk ∧ C is satisfiable)

11 then let A be a satisfying assignment
12 report memory leak for s on path A
13
14 for (all sinks i, j ∈ K s.t. i 6= j)
15 if (the formula FDF = Gi ∧Gj ∧ C is satisfiable)
16 then let A be a satisfying assignment
17 report double free for s on path A

Figure 6. Error Detection via Guarded Graph Reachability.

The overall guard reachability and error detection algorithm is
summarized in Figure 6.

5.5 Extensions
We present several extensions aimed at improving the basic anal-
ysis presented so far by improving its precision, efficiency, or its
error reports.

5.6 Allocator Functions
Applications often use allocator functions that return fresh heap
cells allocated in their bodies. Examples include allocation wrapper
functions that extend the standard malloc() by testing the returned
value against null and aborting the program if allocation has failed;
or initializer functions that allocate fresh data structures and return
them to their callers. If an allocator function is called multiple
times, then the cell created in the allocator body will flow into each
of the allocator’s call sites. As a result, slices can get larger and
error reports can become complex.

To keep the slices and error reports small and easy to under-
stand, we enhance the algorithm to automatically detect alloca-
tor functions and to use knowledge about allocators to construct
smaller slices. More precisely, for each detected allocator function
the analyzer builds: 1) one slice per call site to the allocator, treating
the call site as a source node; and 2) one additional slice showing
the flow of values inside the allocator itself, treating the allocator
return point as a sink node in that slice.

An allocator function is a function that may return a fresh heap
cell created in its body. We do not require that allocators always
return fresh cells: they might return non-fresh values on some
executions, and fresh cells on others. However, the slices starting at
their call sites only refer to those executions where they returned a
fresh value. Allocator functions can be nested, that is, cells created
inside them might be generated by inner allocators.

Detecting allocator functions is performed during the forward
traversal of the VFG in the slicing phase, in Section 5.3. If the
traversal for a source allocation src in a function f reveals a value
flow path from src to the return variable nf

ret of function f , and that
path consists only of local variables and parameters, then function
f is marked as an allocator. All of the call sites of f are marked as
allocation sites and the algorithm will subsequently analyze them,
building a slice for each of them.

5.6.1 Constant Tests
As discussed in Section 3, tests comparing the allocated value
against NULL can be replaced with an appropriate constant truth
value. For instance, if the currently analyzed allocation is x =
malloc(), then test conditions of the form (x == NULL) can be
replaced by false because the analysis considers only the cases
where the allocation is successful.

This simplification technique can be generalized to tests of the
form (y == e) where variable y definitely points to the allocated
cell, but expression e is different than the cell. To determine that
y points to the allocated cell, the analysis checks that the value of
x flows into all the definitions of y reaching the test. To determine
that expression e does not refer to the cell, the analysis checks that
either e is not a variable (for instance NULL) or it is a variable but
the value of x never flows into that variable. If these conditions are
met, y and e are different, so the test (y == e) is false.

5.6.2 Pointer Arithmetic
Programs sometimes manipulate pointers inside (or even outside)
allocated memory blocks instead of pointers to the beginning of
memory blocks. Even though a freed pointer may correctly point
to the beginning of its block, values may flow to the free through
pointers in the middle of the block, as in the example below:

x = malloc(); y = x + 4; free(y - 4);

To support value flows through pointer arithmetic, the VFG con-
struction algorithm abstracts away offsets within allocated blocks.
More precisely, each occurrence of a pointer arithmetic expression
x + e or x − e in an assignment, a return expression, an actual
function argument, or an argument to free is treated just as an oc-
currence of variable x. Hence, the VFG captures the flow of point-
ers into allocation blocks, without recording their offsets into their
blocks. To keep the error detector simple and practical, we don’t
check that arithmetic operations from the allocation to the free can-
cel each other. Freeing a pointer into a block simply counts as free-
ing the block.

5.6.3 Formula Simplification
The guard computation from Figure 4 can lead to an exponential
blowup in the size of the computed formulas when the analysis
traverses code fragments that involve many branches. To maintain
smaller formulas, the analysis performs on-the-fly simplifications
using standard logical identities:

f ∧ true = f f ∧ false = false
f ∨ true = true f ∨ false = f

(f ∧ g) ∨ (f ∧ g) = f

The last identity eliminates irrelevant tests when both branches (g
and g) of an if statement are taken.

Even after such simplifications, formulas can still become large
for programs with complex, unstructured control-flow. To keep
the tool practical, the analysis bounds the sizes of the computed
formulas by bounding the height of expression trees to a fixed value
(30 in our experiments). When a formula exceeds the bound, the
analysis stops analyzing the current allocation site and classifies
the current allocation as one having unknown guards.

5.7 Discussion: Test Conditions and Unsoundness
In our framework, test conditions (e = ci)n are distinguished
based on the program point n where they occur. In fact, in our
implementation a test in a boolean formula is an outgoing CFG
edge emanating from switch statement n. Therefore: 1) tests at
program points are considered different and uncorrelated even if
they test the same condition; and 2) different dynamic instances
of the same test are the same because they occur at the same

program point. The former can lead to imprecision, whereas the
latter is a source of unsoundness, i.e., may cause the tool to miss
some errors. Additional analyses could be added to handle such
issues. For instance, a sound treatment would require an additional
analysis to check that all dynamic instances of a given test have
the same truth value during the lifetime of the currently analyzed
allocated cell. However, in practice we have not encountered cases
that would justify such an analysis.

Other sources of unsoundness are due to the guard computation
in the presence of loops:

• Bounding loops to execute at most once implies a stronger
guard from malloc to free, i.e., one that cover fewer paths to
free points than the program does. Interestingly, this means that
bounding loop iterations is actually sound for detecting memory
leaks. However, it is unsound for detecting double frees.

• Dropping the test condition on exit after the first iteration makes
the guard on this program path weaker. Hence, this causes
unsoundness for the memory leak problem, but it is sound for
the double free problem.

In spite of the unsoundness due loop approximations and dy-
namic test instances, in practice this never cause our analysis to
miss bugs. We have manually checked all cases where the analy-
sis reported that allocated cells were safely freed and all of these
reports were correct.

6. Results
We have implemented an heap error detection tool FastCheck 1

that implements the analysis algorithm described in this paper,
including the extensions discussed in Section 5.5. The analysis was
implemented in Crystal [16], a program analysis for C written in
Java. Crystal provides a unification-based field-sensitive pointer
analysis and uses the points-to information to disambiguate indirect
function calls. The control-flow graph representation provided by
Crystal is fairly similar to the one presented in Section 4.1. In
addition, FastCheck uses SAT4J [3], a freely available boolean
satisfiability solver written in Java.

All of our experiments were executed on a 3.2GHz Pentium
D machine with 3GB of memory running Linux. We collected
statistics for programs from the SPEC2000 benchmarks [20] and
for two open-source applications, the shell program bash-3.1 and
the ssh daemon sshd-4.3p2-4.

6.1 Analysis times
The left portion of Table 1 presents the analysis times for each ap-
plication. This includes the time for building the value-flow graph
and performing the reachability analysis that includes guard com-
putation and satisfiability solving. For most benchmarks, the entire
analysis takes less than a second. The most expensive application
is bash, where the analysis takes 5 seconds. The analysis time is
about one order of magnitude smaller than the time spent parsing
the source files. For instance, parsing gcc takes about 20 seconds,
and parsing bash takes about 40 seconds.

6.2 Memory Leak Study
A key feature of FastCheck is its ability to classify allocation
sites into several categories and selectively report these categories
the the user. The high-priority category contains likely errors; the
medium-priority class contains errors that are possibly benign;
whereas the low-priority category contains more complex scenar-
ios (e.g., allocations placed into arrays) where the analysis cannot

1 Available at: http://www.cs.cornell.edu/projects/crystal/fastcheck

precisely reason about the safe deallocation of heap cells. In addi-
tion, the tool also identifies a set of safe allocations where it has
determined that cells are correctly freed.

The categories that FastCheck identifies are the following:

1. Never freed: a cell allocated at that site is never deallocated. We
divide this kind of message in two subcategories:

(a) local: The allocated cell is manipulated only using local
variables and parameters. In many cases, cells of this kind
do not escape the function’s scope, but in some cases they
are passed to and returned from functions. The tool distin-
guishes between two sub-categories:

i. local allocations in main. These allocations are likely
to be live throughout the program, so the tool classifies
them as possibly benign leaks.

ii. local allocations in functions other than main. These are
likely errors and are reported with high priority.

(b) not local: The allocated cell is stored in some structure,
array, pointer, or a global. Since such cell may be live
through the rest of the program, the tool classifies them as
possibly benign leaks.

2. Freed, precisely known: the path from the allocation to each
deallocation is described by our tool using guards. In particu-
lar, the allocated cell cannot have pointer aliases and its value
flows only through copy assignments, method calls and return
statements. We further divide this class into two sub-categories:

(a) always: the allocated cell is always deallocated. The analy-
sis can derive that the condition to deallocate the cell is ei-
ther true or a simple test, checking if the allocation returned
a non-null value. These allocations are safe.

(b) conditional: the allocated cell might leak, and the error is
reported with high priority. The analysis derives a guard
under which the cell is not deallocated, querying the SAT
solver gives a possible scenario where the leak might occur.

3. Freed, but unknown: the allocated cell may be freed, but the
analysis can’t derive a precise condition under which it is deal-
located. This can happen when the allocated cell is only copied
through local variables, but the size of a guard formula exceeds
the fixed bound; or, when the cell is simply not local, i.e., its
address is stored in a structure, array or global variable.

The right portion of Table 1 summarizes the results for each
application. The “leak messages” section shows the total number
of source allocations, and the number of warnings (total, true, and
false warnings) issued by the tool in the standard mode of opera-
tion, where only the high-priority errors are reported. The number
of source allocations include all malloc sites and all calls to alloca-
tor functions, as discussed in Section 5.6 (the breakdown between
malloc sites and calls to allocators is shown next in Section 6.6).
The following portion labeled “messages by category” provides a
detailed breakdown of the allocations by category. In the default
setting, only the columns shown in bold are reported. Our tools
provides additional flags for reporting allocations the other cate-
gories.

Error Reporting Methodology. For each allocation site, FastCheck
provides the following information to users:

• An error message at the console indicating the location of the
allocation site in the source file, and the error path as a sequence
of branches that lead to the error.

• An html file that highlights the source lines of code in the
relevant slice, as well as the branches that lead to the error;

Analysis Times (sec) Leak Messages Messages by Category
Never Freed

Size Building Reachability Total Leak Leak False Freed Known Unknown
Programs (Kloc) VFG Unguarded Guarded Sources Warn. Bugs pos. not local always cond local not

local main other local
ammp 13.3 0.14 0.01 0.15 37 20 20 0 10 0 0 5 20 0 2
art 1.3 0.02 0.01 0.01 11 1 1 0 9 0 1 1 0 0 0
bzip 4.6 0.05 0.01 — 10 0 0 0 5 1 0 0 0 0 4
crafty 18.9 0.19 0.01 — 12 0 0 0 0 1 0 0 0 0 11
equake 1.5 0.08 0.01 — 29 0 0 0 29 0 0 0 0 0 0
gap 59.5 1.75 0.11 0.01 2 0 0 0 1 0 0 1 0 0 0
gcc 205.8 2.22 0.02 0.09 126 37 35 2 43 0 25 17 12 9 20
gzip 7.8 0.07 0.01 — 5 0 0 0 2 1 0 0 0 0 2
mcf 1.9 0.04 0.01 — 3 0 0 0 0 0 0 0 0 0 3
mesa 49.7 0.39 0.02 0.11 133 2 0 2 6 0 0 29 2 1 95
parser 10.9 0.16 0.01 — 1 0 0 0 0 0 0 0 0 0 1
perlbmk 58.2 0.79 3.77 0.09 321 4 1 3 29 0 1 27 3 0 261
twolf 19.7 0.29 0.07 0.02 185 2 2 0 77 1 2 18 0 0 87
vortex 52.7 0.75 0.06 — 9 0 0 0 0 0 0 0 0 0 9
vpr 17.0 0.14 0.11 0.08 157 1 0 1 31 0 0 57 1 0 68
bash 100.0 1.53 0.50 2.46 276 3 2 1 25 0 0 88 3 5 155
sshd 48.7 1.11 0.06 0.13 454 3 2 1 67 6 1 243 2 0 135
Averages — 55% 27% 18% — — — 14% 19% 1% 2% 27% 2% 1% 48%

Table 1. Analysis times, leak warnings statistics, and leak messages classification. Only cases in bold are reported as high priority errors.

• A graphical representation of the value-flows using the dot [9]
format, showing the relevant slice for this allocation.

We found the html and dot error reports extremely useful in
quickly understanding the errors. The slices for all of the warnings
were very small: the average size of the relevant slice was two
nodes, and the biggest slice in the reported warnings had 11 nodes.
As a result, error reports were small and easy to understand. There
are two main reasons for relevant slices to be small. First, they
only include value flows that lead to frees; all other flows are not
included in the slice and are not reported. For instance, passing
a pointer to an allocated cell to a function that just accesses the
contents of that cell would not be highlighted in the report. In the
extreme case, slices for allocations that are never freed consist of
one single node, the allocation site. Second, detecting allocator
functions and using one slice per allocator call site breaks down
larger slices into several smaller and simpler slices.

Reported Warnings. For these benchmarks, our tool has reported
73 memory leak warnings, of which 63 were actual errors, yielding
a false positive rate of 14%. Overall, these warnings account for a
small fraction (4%) of the total number of allocations. The distribu-
tion of warnings and errors across the benchmarks is skewed, with
ammp and gcc accounting for the majority of errors.

Several of the errors referred to allocations that were never
freed. Many bugs in gcc come from mishandling concatenation
of strings; we will discuss in more detail an instance of this bug
later in Section 6.3. The tool also pointed out a few cases in gcc
where memory leaks occur when adding entries to a symbol table.
The program creates a symbol string and passes it to a function
that performs the insertion. However, the insertion function creates
a copy of the string and doesn’t deallocate the original string.
The string is not deallocated in the caller either and is leaked
shortly after the insertion. Applications such as twolf and art create
dynamic arrays that are used locally, but are never deallocated.

Conditional leaks are cases where applications don’t deallocate
memory when returning from functions on error conditions. In
ammp the error path is correspond to failed allocations of other
cells, similar to the first example from Section 3. Other conditional

leaks were found in perlbmk and bash. We will discuss the example
bug in bash later in Section 6.3.

The false positives were due to several reasons: explicit refer-
ence counting and deallocation when reference counts become zero
(two warnings in mesa); ignoring extra parameters for functions
variable number of arguments (two warnings in gcc); not recogniz-
ing exit functions such as execve (one warning in perl); bounding
the number of loop iterations(in sshd and vpr); and not recognizing
unfeasible program paths two warning in perl and one in bash. The
example below shows the false positive from bash:

if (lose == 0) {
name_vector = malloc ();
lose |= name_vector == NULL;

}
if (lose) return;

The tool reports a possible leak at the return point. Identifying that
the path from the malloc to the return is infeasible would require
reasoning about the bitwise operation after the allocation.

Other categories. The tool has identified that 27% of the allo-
cations are safely freed. Since the tool is unsound, allocations re-
ported to be safe might leak memory. However, this never happened
for our benchmarks: we have manually inspected all of the alloca-
tions in this category and determined they were all freed correctly.
About 20% of the allocations in the program were never freed.
Many of these were cells placed into global variables and were live
throughout the application. For this reason, we classified all of the
errors in this category as possibly benign.

Allocations in the unknown category represent about half of the
allocations in our benchmarks. These allocations include cells that
escape to the heap, to global variables, or to aggregate structures
such as arrays. Handling such cases would require more sophisti-
cated analyses, such as shape analysis for reasoning about recursive
data structures, or array analysis for reasoning about array of point-
ers to allocated cells. In the future, we envision a refinement-based
tool that first uses the lightweight value-flow analysis in this pa-
per to check the simpler cases, and subsequently uses more heavy-
weight analyses for the allocations in the unknown category.

/* file "c-aux-info.c" */
53: char* concat (char* s1, char* s2) {
54: if (!s1) s1 = "";
55: if (!s2) s2 = "";
56: int size1 = strlen (s1);
57: int size2 = strlen (s2);
58: char* ret_val = malloc (size1 + size2 + 1);
59: strcpy (ret_val, s1);
60: strcpy (&ret_val[size1], s2);
61: return ret_val;
62: }
... ...
281: char* gen_formal_list_for_func_def(tree fdecl) {
282: char* f_list = "";
... ...
290: while (fdecl) {
291: if (...)
292: f_list = concat(f_list, ",");
293: f_list = concat(f_list, formal);
... ...
302: }
303: return f_list;
304: }

Figure 7. Example bug from gcc: the cell pointed by f list is
leaked on subsequent calls to concat.

6.3 Memory Leak Examples
We discuss two example memory leaks from gcc and bash in more
detail. The code for these examples is slightly reformatted for
clarity purposes.

6.3.1 Allocation Never Freed
About 20 of the messages in gcc referred to string buffers that were
never freed. Our tool reported messages of the form:

Error: "c-aux-info.c", line 292:
allocation never freed:
f_list = concat(f_list, ", ");

Figure 7 presents the actual code for concat extracted from gcc.
The code allocates a new string containing the concatenation of the
input strings. Hence, concat is an allocator function. The lower
portion of Figure 7 shows a function gen formal list for func
that generates a string containing the list of formal arguments of
a function declaration. The code uses concat concatenate strings
and stores the intermediate results in f list. The fresh cell allo-
cated by the call to concat at line 292 is leaked when the subsequent
assignment at line 293 overwrites f list.

6.3.2 Conditional Leak Bug
Figure 8 presents a code fragment from bash where a conditional
leak occurs. There are two possible deallocation sites for the cell
allocated at line 354: at line 360, when rl translate keyseq()
returns a non-zero value; and at the end of the program, at line 427.
However, the program leaks this cell when returning at line 371.

The guarded flow graph generated by the analysis is also pre-
sented on Figure 8. The special variable c359 is used to denote the
result of calling rl translate keyseq at line 359. The condition
on the right edge of the graph describes situations on which the
program doesn’t exit at line 371. Finally, the error message shown
below the graph presents one instantiation of program conditions
that reaches line 371, causing a leak. For this to happen, the pro-
gram must enter the loop in line 366, and one of the conditions in
line 370 must be true.

Tool Size Speed Bug FP
KLOC KLOC/s Count (%)

Saturn [21] 6822 0.05 455 10%
Clouseau [11, 12] 1086 0.5 409 64%
Contradiction [14] 321 0.3 26 56%
Shape analysis [10] 68 0.6 38 60%
This analysis 671 37.9 63 14%

Figure 9. Comparison with other memory leak detectors.

Program Sites Total
checked checks

ammp 2 6
mesa 5 14
bash 14 165
sshd 28 48

Table 2. Total double-free checks performed. No checks were
performed in the other programs.

6.4 Comparison to Other Tools
Figure 9 presents a comparison of our memory leak analysis to
other published tools. The Speed column indicates the number
of analyzed lines of code per second; and the FP column shows
the false positive ratio. We want to emphasize that speed numbers
should be regarded only as rough estimates, since these tools have
been implemented in different languages (C and Java), executed on
different machines, and applied to different benchmarks. The table
shows that our analysis provides a good trade-off between speed,
and effectiveness of finding errors with a low rate of false warnings.

6.5 Double-Frees Study
We have also tested allocations in our benchmarks for double-
frees. Tests were performed only for allocations that flow into more
than one free; in this case, each pair of frees was tested using our
boolean satisfiability procedure. Allocations with at most one free
were not tested. This may be unsound in the presence of loops, as a
single cell could be deallocated multiple times at the same site, on
different iterations of a loop. Table 2 shows the number of checked
allocations and the total number of tests. Most sites in sshd have
exactly 2 frees, hence only one test per allocation is needed. In
contrast, one site in bash is freed at 9 different locations, yielding
36 double-free tests. The tool correctly reported that none of the
tested sites was double-freed.

6.6 Function Behavior Study
We also evaluated the distribution of functions that are allocation
and deallocation wrappers. Free wrappers are functions that deal-
locate a value supplied in an argument. Table 3 presents the results.
Overall, very few functions are marked as wrappers. This indicates
that local cells are typically allocated and freed in the same func-
tion, unless the allocated cell is stored in a non local expression.
On average, only 1.8% of the functions are considered allocators,
and less than 0.1% are considered deallocation wrappers. Table 3
also shows the number of source nodes that are calls to allocation
wrappers, noticeable benchmarks such as perlbmk allocate most of
their cells using allocation wrappers.

Finally, some of the applications use custom memory alloca-
tion. A good is parser: it allocates a large block at the beginning
and manages the block internally. Our tool is not aimed at recog-
nizing the internal custom allocator functions, and simply treats this
program has having one single allocation site.

/* file "bind.c" */
338: int rl_generic_bind(...) {
... ...
354: keys = (char *) xmalloc (...);
... ...
359: if (rl_translate_keyseq (...)) {
360: free (keys);
361: return -1;
362: }
... ...
366: for (i = 0; i < keys_len; i++) {
367: unsigned char uc = keys[i];
368: int ic;
369: ic = uc;
370: if (ic < 0 || ic >= KM_SIZE)
371: return -1;
... ...
426: }
427: free(keys);
428: return 0;
429: }

bind.c line 354

bind.c line 359

bind.c line 427

keys=malloc()

free(keys)

c359

free(keys)

[!c359 ∧ !(i < keys len)]

∨
[!c359 ∧ (i < keys len) ∧

!(ic < 0) ∧ !(ic >= KM SIZE)]

Error: "bind.c", line 354: allocation leaks memory
keys = xmalloc(...);

Leak path: ! c359 bind.c, line 359
i < keys_len bind.c, line 366
ic < 0 bind.c, line 370

Figure 8. Warning from bash: cell allocated at line 354 is leaked at line 371. Analysis generates message which includes the affected source
code and relevant slice of the guarded VFG.

Program Total Alloc Free Allocation Calls to
Func. Wrappers Sites Allocators

ammp 197 0 0 37 0
art 44 0 0 11 0
bzip2 92 0 0 10 0
crafty 127 0 0 12 0
equake 45 0 0 29 0
gap 872 0 0 2 0
gcc 2271 13 1 53 73
gzip 128 0 0 5 0
mcf 44 0 0 3 0
mesa 1124 22 2 67 66
parser 342 0 0 1 0
perlbmk 1094 20 1 4 317
twolf 209 6 2 2 183
vortex 941 0 0 9 0
vpr 290 17 6 2 155
bash 2200 41 0 141 135
sshd 940 60 4 118 336

Table 3. Wrapper functions and distribution of source nodes.

7. Related Work
In recent years there has been a large body of research devoted to
checking safety properties. We classify the related work into flow-
sensitive and flow-insensitive approaches, and restrict the discus-
sion to the techniques that are most relevant to our work.

Flow-sensitive Safety Checking. A standard approach to safety
checking is to describe the desired safety property as a finite state
machine, and then perform a flow-sensitive analysis of the program
to track the current state at each program point, and detect viola-
tions as transitions to the error state. There are many existing sys-
tems that implement this approach, either using dataflow analysis,
as Metal [7] or ESP [5]; or using model checking, as SLAM [2]
or [22]. These approaches are generic, meaning that they allow
users to specify arbitrary state machines. The analyzer then uses a
generic dataflow engine to check for property violations. The flow-

sensitive state tracking process can be enhanced in many ways,
for instance using context-sensitive inter-procedural analysis, using
path-sensitive analysis [5], or predicate refinement [2]. These tools
can be used to check for memory leaks by instantiating the state
machine with a machine consisting of two states, and transitions
from the first to the second on allocation, and from the second to
the first on deallocation. In contrast to the dataflow approaches, our
analysis reasons about heap violations using a sparse value-flow
graph representation, not by walking the control-flow graph. The
use of dataflow analysis in our system is restricted only to identify-
ing definition-use chains and to the demand-driven computation of
guards (essentially a mini-dataflow analysis between two program
points).

In addition to the above techniques, several tools have been
specifically developed for finding heap errors such as memory
leaks, or accesses through dangling pointers. Clouseau [11, 12] is
a leak detection tool that uses a notion of pointer ownership to de-
scribe those variables responsible for freeing heap cells, and for-
mulate the analysis as an ownership constraint system. Saturn [21]
reduces the problem of memory leak detection to a Boolean satis-
fiability problem, and then use a SAT-solver to identify potential
errors. Both Saturn and Clouseau are essentially constraint formu-
lations of a dataflow analysis problem: they encode the dataflow
transfer functions as constraints in their system. A complication in
these systems is that it becomes more difficult to map constraint
system violations back to the program code, and report errors that
can be easily understood by the programmers.

None of the above techniques is capable of reasoning about
leaks and other heap errors in recursive data structures, such as
lists or trees. Shape analysis refers to the class of dataflow anal-
yses that use more advanced heap abstractions and are capable of
reasoning about individual heap cells in recursive structures. Dor
and Sagiv [6] use TVLA, a shape analysis tool based on 3-valued
logic, to prove the absence of memory leaks and other memory er-
rors in several list manipulation routines. However, TVLA has not
been used for error detection in larger programs. Hackett and Rug-
ina [10] use a shape analysis that tracks single heap cells to identify
memory leaks. More recently, Orlovich and Rugina [14] have pro-
posed a novel approach to memory leak detection where the analy-

sis assumes the presence of errors and then performs a backward
dataflow analysis to disprove their feasibility. The analysis pre-
sented in this paper is not designed to reason about manipulation
of recursive structures; it trades this imprecision for the efficient
detection and reporting of heap errors in non-recursive structures.

Flow-insensitive Safety Checking Flow-insensitive analyses dis-
card the control-flow in the program and treat the program as a
set of assignments that can be performed in any order. Such analy-
ses are simpler and more efficient, but less precise than their flow-
sensitive counterparts. Common examples of flow-insensitive anal-
yses are type-based analyses and flow-insensitive pointer analyses.
A standard procedure is to compute definition-use chains, as the
analysis in this paper, or an SSA representation[4] of the program
before treating program assignments in a flow-insensitive manner,
thus recovering a certain amount of flow-sensitivity. For the pur-
pose of this discussion, we still classify them as flow-insensitive.

The CQual system [8] is a system that infers type qualifiers in
C programs using a set-constraint formulation. The system can be
used to perform tainting analysis, i.e., to determine that a value
from a tainted source (such as reading data from the network)
never flows into a sink that must not be tainted (such as a critical
kernel structure). Livshits and Lam [13] propose a similar tainting
analysis, but using an augmented SSA form called IPSSA. Both
analyses are context-sensitive; in addition, the latter analysis uses
a guarded SSA form [19] that annotates value-flow edges at ϕ-
nodes with branch conditions. The tainting analysis problem is a
source-not-sink problem, aiming at checking that source values
never flow into a sink. This is a fundamentally different than the
source-sink problem discussed in this paper, and none of the above
approaches can be used for the memory leak problem. This is
because their value-flow representation is not powerful enough to
determine that a source value flows into the sink on all paths.
Although in the system of Livshits and Lam, value-flow edges of ϕ-
nodes are tagged with branch conditions, the flows via assignments
are not, therefore their analysis cannot solve source-sink problems.
For instance, the examples from Section 3 do not contain ϕ-nodes
from the source allocations to sink frees, hence none of these value-
flows would be guarded.

Snelting et al. [17] present a tainting analysis based on value-
flows using a program dependence graph (PDG) structure. They
also annotate value flows in the dependence graph using path con-
ditions. However, they use path conditions to improve the precision
for a source-no-sink problem. In contrast, we use path conditions
to solve source-sink problems such as memory leak detection.

8. Conclusions
We have presented a new analysis for detecting memory leaks. The
analysis uses a sparse representation of the program in the form of
a value-flow graph. The analysis reasons about program behavior
on all paths by computing guards for the relevant value-flow edges.
The approach makes the analysis efficient, and allows it to generate
concise, easy-to-understand error messages.

References
[1] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K.

Rajamani. Automatic predicate abstraction of C programs. In
Proceedings of the ACM Conference on Program Language Design
and Implementation, Snowbird, Utah, June 2001.

[2] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging
system software via static analysis. In Proceedings of the ACM
Symposium on the Principles of Programming Languages, Portland,
OR, January 2002.

[3] Daniel Le Berre and Anne Parrain. SAT4J: A satisfiability library for
java. URL: http://www.sat4j.org/.

[4] Ron Cytron, Jeanne Ferrante, Barry Rosen, Mark Wegman, and
F. Kenneth Zadeck. An efficient method of computing static single
assignment form. In Proceedings of the ACM Symposium on the
Principles of Programming Languages, Austin, TX, June 1989.

[5] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive
program verification in polynomial time. In Proceedings of the
ACM Conference on Program Language Design and Implementation,
Berlin, Germany, June 2002.

[6] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Checking cleanness
in linked lists. In Proceedings of the International Static Analysis
Symposium, Santa Barbara, CA, July 2000.

[7] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.
Checking system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the Symposium on Operating
System Design and Implementation, San Diego, CA, October 2000.

[8] Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex Aiken.
Flow-insensitive type qualifiers. ACM Transactions on Programming
Languages and Systems, 28(6):1035–1087, November 2006.

[9] Emden R. Gansner and Stephen C. North. An open graph
visualization system and its applications to software engineering.
Software — Practice and Experience, 30(11):1203–1233, 2000.

[10] Brian Hackett and Radu Rugina. Shape analysis with tracked
locations. In Proceedings of the ACM Symposium on the Principles
of Programming Languages, Long Beach, CA, January 2005.

[11] David L. Heine and Monica S. Lam. A practical flow-sensitive
and context-sensitive C and C++ memory leak detector. In
Proceedings of the ACM Conference on Program Language Design
and Implementation, San Diego, CA, June 2003.

[12] David L. Heine and Monica S. Lam. Static detection of leaks
in polymorphic containers. In Proceeding of the International
Conference on Software Engineering, Shanghai, China, May 2006.

[13] V. Benjamin Livshits and Monica S. Lam. Tracking pointers with
path and context sensitivity for bug detection in C programs. In ACM
SIGSOFT Symposium on the Foundations of Software Engineering,
Helsinki, Finland, September 2003.

[14] Maksim Orlovich and Radu Rugina. Memory leak analysis by
contradition. In Proceedings of the International Static Analysis
Symposium, Seoul, Korea, August 2006.

[15] Thomas Reps, Susan Horowitz, and Mooly Sagiv. Precise interproce-
dural dataflow analysis via graph reachability. In Proceedings of the
ACM Symposium on the Principles of Programming Languages, San
Francisco, CA, January 1995.

[16] Radu Rugina, Maksim Orlovich, and Xin Zheng. Crystal: A program
analysis system for C. URL: http://www.cs.cornell.edu/projects/crystal.

[17] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path
conditions in dependence graphs for software safety analysis. ACM
Transactions on Software Engineering and Methodology, 15(4):410–
457, October 2006.

[18] Bjarne Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the ACM Symposium on the Principles of
Programming Languages, St. Petersburg Beach, FL, January 1996.

[19] Peng Tu and David Padua. Efficient building and placing of gating
functions. In Proceedings of the ACM Conference on Program
Language Design and Implementation, La Jolla, CA, June 1995.

[20] Joseph Uniejewski. SPEC Benchmark Suite: Designed for today’s
advanced systems. SPEC Newsletter Volume 1, Issue 1, SPEC, Fall
1989.

[21] Yichen Xie and Alex Aiken. Context- and path-sensitive memory
leak detection. In ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Lisbon, Portugal, September 2005.

[22] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musu-
vathi. Using model checking to find serious file system errors. In
Proceedings of the Symposium on Operating System Design and
Implementation, San Francisco, CA, December 2004.

