
Crowdsampling the Plenoptic Function
Supplementary Material

Zhengqi Li, Wenqi Xian, Abe Davis, and Noah Snavely

Cornell Tech, Cornell University

This supplementary document includes the following:

1. Details of priors on the plenoptic function.
2. Scene statistics.
3. Losses used for optimization and learning.
4. Network architectures and implementation details.
5. Visual illustration of components in our framework.
6. Summary of user study.
7. Additional results and comparisons.

1 Priors on the Plenoptic Function

Our scene representation and approach to training are motivated by simple priors
on structure in the plenoptic function. Given that our crowdsampling of a scene
is unpredictable and unregistered in time, we focus primarily on periodic changes
in reflectance and illumination—most notably, this includes how the appearance
of a scene changes from day to night. For most scenes, this change is dominated
by the motion of the sun. However, we also see scenes where, for example, visible
lights turn off and on throughout the day (e.g., a cityscape or an attraction that
lights up at night). Below we describe two priors that motivate the design of our
representation and training.

1.1 Constant Visibility and Light Field Gradients

Even in non-Lambertian scenes with changing reflectance and illumination, we
may expect the structure of visibility to remain relatively constant over time. If
we consider slices of the plenoptic function at different times, we can think of this
expectation in terms of gradients in the respective light fields. To see this, consider
that every scene point corresponds to some 4D hyperplane in the light field. If the
light transport function around our point is smooth, then we can expect that this
hyperplane will be locally constant. Gradients then primarily occur at boundaries
between hyperplanes, which include occlusion boundaries and edges in reflectance
(e.g., surface texture) or illumination (e.g., shadows). The structure of visibility
in a scene determines the adjacency of these hyperplanes, thereby limiting the
set of gradients that can be introduced by changing reflectance or illumination.
Our approach leverages this prior that different slices of the plenoptic function
share visibility structure by fixing alpha values of our DeepMPI. Recall that each
voxel of an MPI can be interpreted as a floating semi-transparent surface point.

2 Li et al.

This corresponds to a constant hyperplane in our reconstructed light field just as
an analogous real surface point would. Fixing the alphas determines the visibility
of such points, and therefore the adjacency of their corresponding hyperplanes in
the reconstructed light field.

1.2 Common Light Sources, Material Properties, and Normals

We can think of the light transport function around every point in our scene
as mapping incoming light to outgoing light. The appearance of a point in a
particular image is then a sample from this transport function. Without explicitly
modeling the transport function, we can reason about correlations among the
samples provided by different scene points and across different viewing conditions.
For example: it is reasonable to expect that many visible points in a given
scene will share the same material properties, and that the relationship between
surface normals at different points will remain constant (this is true so long as
surface geometry does not change). Furthermore, we can expect correlation due
to different points being lit by the same source—often, the sun. We learn how to
leverage these many sources of correlation by training our DeepMPI with feature
vectors attached to each voxel. Intuitively, this creates a latent space where
surface points with highly correlated appearance end up with similar feature
vectors, preserving important correlations in our generated MPIs.

2 Scene Statistics

Table 1 shows statistics for each scene, including number of valid images, field of
view (FoV) of the reference DeepMPI, and depth of the near and far MPI planes.
We adopt the same method as that of Zhou et al. [11] to estimate the scale of
each scene in order to set near and far plane depth. All data, including original
images, registered poses, and SfM reconstructions will be released to the research
community.

3 Losses

3.1 Losses optimizing DeepMPI color and α planes

Recall that in Section 3.3 of the main manuscript, we compare the rendered base
color image B̂k and real photo Ik at the target viewpoint using a reconstruction
loss Lrecon. Lrecon consists of a pixel-wise l1 loss and a multi-scale gradient
consistency loss [5]:

Lrecon = ||B̂k(0)− Ik(0)||1,1 + wgrad

Ns∑
i=1

||∇B̂k(s)−∇Ik(s)||1,1, (1)

where S is the number of scales we create for calculating the gradient consis-
tency loss, and I(s) is the image at scale s (where s = 0 is equivalent to the

Crowdsampling the Plenoptic Function 3

Table 1: Scene statistics. We include (1) total number of images, 2) field of
view (FoV) of the reference DeepMPI, and (3) depth of near and far MPI planes.
The first five scenes are used for evaluation in the main manuscript.

Scenes # images FoV (°) (near/far) plane depth

Trevi Fountain 3453 70 1/4
Sacre Coeur 2112 65 1/20
The Pantheon 1917 65 1/25
Top of the Rock 2232 75 1/75
Piazza Navona 606 70 1/25

Mount Rushmore 3075 30 1/4
Lincoln Memorial 2582 45 1/4
Eiffel Tower 1999 65 1/20

original resolution). In our experiments, we set S = 3 and use nearest neighbor
downsampling to create image pyramids for both rendered and ground truth
images.

3.2 Training Losses

Recall that in Section 3.4 of the main manuscript, to train the rendering network
G, the appearance encoder E, and the latent feature in the DeepMPI, we compute
losses between output views and ground-truth exemplar views. Specifically, our
training loss is composed of three terms:

L = LVGG + wGANLGAN + wstyleLstyle, (2)

LVGG is a normalized VGG perceptual loss similar to that used in [11, 1]:

LVGG =
∑
l

wl||φl(Îk)− φl(Ik)||1, (3)

where φl(x) indicates an output from VGG layer l ∈ { conv1 2, conv2 2, conv3 2,
conv4 2, conv5 2 } with input x, and weight wl is proportional to the reciprocal
of the number of neurons in the corresponding VGG layer.

Furthermore, we add an adversarial loss LGAN to improve the realism of the
rendered images. In particular, LGAN is computed from multi-scale discrimina-
tors [10] with an objective similar to LSGAN [6]:

LGAN = LGAN(D) + LGAN(G), (4)

LGAN(D) = EIk∼p(I)

[(
D(Ik)− 1

)2]
+ Ez∼pz(Ik)

[
D
(
G(Mk(B,α, F), z)

)2]
,

(5)

LGAN(G) = Ez∼pz(Ik)

[(
D
(
G(Mk(B,α, F), z)

)
− 1
)2]

, (6)

4 Li et al.

where LGAN(D) is the loss for the discriminator, and LGAN(G) is the loss for
our neural render.

To further enforce that the appearance of rendered images match the appear-
ance of the exemplar images, we add a style loss Lstyle, which compares the l1,1
norm of the difference between Gram matrices constructed from VGG features
at different layers:

Lstyle =
∑
l

||g(φl(Î
k))− g(φl(I

k))||1,1 (7)

where g(x) is the Gram matrix from a VGG feature x.

4 Network Architecture

Let D and C denote number of depth planes and channels in our DeepMPI, and
let Hk and W k denote the height and width of the view at target viewpoint ck.

Appearance encoder. Our appearance encoder consists of two encoders, de-
noted E1 and E2. E1 takes as input a reference feature buffer Br with fixed
resolution of 512 × 512, and produces a latent feature vector z1 ∈ R512. We
adopt the encoder implemented by Park et al. [8] for E1. E2 takes as input an
exemplar image Is with varying aspect ratios, and produces a latent feature
vector z2 ∈ R256. We adopt the encoder from Huang et al. [3] as E2. The two
latent vectors are then passed through a fully connected layer in order to produce
a final latent appearance vector z ∈ R16 we describe in the main manuscript.

Neural renderer. We adopt the U-Net modified from Zhu et al. [12] as our
neural rendering network. In summary, during training and evaluation, we feed
the DeepMPI at the target viewpoint with size D × C × Hk × W k to the
rendering network, and the network predicts RGB MPI planes with size D ×
3×Hk ×W k. However, the rendering network operates at each depth slice of
the DeepMPI at target viewpoint independently (with size C ×Hk ×W k), and
predicts the corresponding RGB color image (with size 3×Hk ×W k). Therefore,
our rendering network independently processes every depth slice of DeepMPI,
without considering interactions between them.

Our rendering network consists of five convolutional layers in both the encoder
and decoder. Each layer of the encoder consists of a 3× 3 stride-2 convolutional
layer followed by Instance Normalization [9] and leaky ReLu. Each layer of the
decoder consists of bilinear sampling followed by a 3 × 3 convolutional layer.
Adaptive Instance Normalization layers (AdaIN) [2] are embedded between
bilinear sampling and feature concatenation of skip connections.

Discriminator. We adopt the network architecture from Huang et al. [3] as the
discriminator used for our GAN loss. In particular, the discriminator takes as
input images at three scales, and predicts scores from each patch of the input
image.

Crowdsampling the Plenoptic Function 5

5 Training and Implementation

We implement our framework using PyTorch. In all our experiments, we em-
pirically set hyper-parameters wgrad = 0.25, wGAN = 0.2, wstyle = 5. We set the
resolution of reference DeepMPI to 784× 784.

In the first stage, we optimize base color and α planes in the reference
DeepMPI for 100 epochs in total (70 epochs in phase one, and 30 epoch in phase
two) using a single Tesla T40 GPU. We adopt the Adam [4] optimizer with initial
learning rate 1× 10−3 for the optimization.

In the second stage, we use 4 Tesla T40 GPUs to jointly train the rendering
network G, appearance encoder E, and latent features F r in the DeepMPI for
50 epochs. During training, we adopt the Adam optimizer [4] and set a learning
rate of 3 × 10−4 for E, G and F r, and a learning rate of 1 × 10−5 for the
discriminator. In addition, since Internet photos have varying aspect ratios and
orientations, we resize their weight and height to a factor of 32 depending on
images’ original aspect ratios. Due to GPU memory limits, during training, we
randomly crop a patch of 256× 256 from the resized images and we only render a
view corresponding to the patch. However, our method cann render a full image
with resolution up to 640× 480 at inference time on a single GPU.

6 Visual Illustrations

Examples of mean RGB PSV and base color. Figure 1 shows examples of
the reference mean RGB color PSV at different depth layers from different scenes.
These are used for initializing base color planes, as described in Section 3.3 of the
main manuscript. In addition, Figure 3 shows estimated reference base colors,
which are over-composited from base color planes in the reference DeepMPI.

Examples of rectified RGB images. Figure 2 shows visual examples of
rectified RGB images in the feature buffer Br aligned with the reference viewpoint,
described in Section 3.4 of the main manuscript.

7 User Study

Table 2 shows scores from 1104 votes (46 participants × 24 comparisons) for each
of following questions, respectively (where users are shown results from multiple
algorithms to choose from):

Q1: “Which one looks most photo-realistic? e.g. which video best reproduces
the details of geometry and illumination you would expect of a real world scene?”

Q2: “Which one appears to be most consistent across viewpoints, with the
least jitter or flicker across frames?”

Q3: “Which one is most faithful to the appearance of the source image?
For instance, which image best resembles the illumination and shading on the
building in the source image?”

6 Li et al.

Fig. 1: Visual illustration of reference mean RGB PSV. Different images
in each row indicate different depth planes of the plane sweep volume (PSV).
The mean RGB images at different depth planes have different in-focus regions.

Table 2: User study

(a) Share of votes on Q1.

MUNIT [3] NRW [7] Ours

Trevi Fountain 2% 12% 86%
Piazza Navona 6% 25% 69%
Top of the Rock 0% 8% 92%
Sacre Coeur 1% 14% 85%
The Pantheon 4% 18% 78%

Total 3% 15% 82%

(b) Share of votes on Q2.

MUNIT [3] NRW [7] Ours

Trevi Fountain 1% 7% 93%
Piazza Navona 1% 28% 71%
Top of the Rock 0% 9% 91%
Sacre Coeur 1% 10% 89%
The Pantheon 0% 7% 93%

Total 1% 11% 88%

(c) Share of votes on Q3.

MUNIT [3] NRW [7] Ours

Trevi Fountain 4% 13% 83%
Piazza Navona 9% 30% 61%
Top of the Rock 0% 9% 91%
Sacre Coeur 3% 16% 81%
The Pantheon 4% 27% 69%

Total 4% 19% 77%

The user study contains three sets of video comparisons and two sets of
image comparisons randomly selected from each scene. Our method received the
majority of votes on all questions across all five scenes.

Crowdsampling the Plenoptic Function 7

Fig. 2: Visual examples of rectified RGB images. The reference rectified
images are geometrically stable and globally aligned up to disocculusion.

Fig. 3: Visual examples of reference base color images. These are over-
composited from base color planes of the reference DeepMPI.

8 Additional Results

We include additional results on our project webpage, crowdsampling.io. In
particular, we compare our approach with two baselines NRW [7] and MUNIT [3]
in terms of novel view synthesis, appearance transfer and appearance interpola-
tion. Further, we demonstrate the results of 3D hyperlapse effects (space-time
interpolation) as well as novel view synthesis under diverse illumination from
each of the eight landmarks.

References

1. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement
networks. In: Proceedings of the IEEE international conference on computer vision.

8 Li et al.

pp. 1511–1520 (2017)
2. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance

normalization. In: ICCV (2017)
3. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-

to-image translation. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 172–189 (2018)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

5. Li, Z., Dekel, T., Cole, F., Tucker, R., Snavely, N., Liu, C., Freeman, W.T.: Learning
the depths of moving people by watching frozen people. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 4521–4530
(2019)

6. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares gen-
erative adversarial networks. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 2794–2802 (2017)

7. Meshry, M., Goldman, D.B., Khamis, S., Hoppe, H., Pandey, R., Snavely, N.,
Martin-Brualla, R.: Neural rerendering in the wild. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) pp. 6871–6880 (2019)

8. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-
adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 2337–2346 (2019)

9. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

10. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution
image synthesis and semantic manipulation with conditional gans. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 8798–8807
(2018)

11. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)

12. Zhu, J.Y., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O., Shechtman, E.:
Toward multimodal image-to-image translation. In: Advances in Neural Information
Processing Systems (2017)

