SAML: Static Analysis in Standard ML

Haakon Larsen

Introduction

SAML is a framework to be used for static analysis, and is written in Standard M
(SML), a statically typed functional language. In its complete fornMB#s intended to
provide a framework that will facilitate the formulation of analyses on a @nogrAST
and a set of key such examples.

Goals

The overarching goal is to take advantage of SML'’s expressive power to chegitéya
modular base system that allows for certain checks (especially onelsdblat for
possible “unsafe” paths in a program’s AST) to be formulated across a aegjoéges
(e.g. C, Ada, Java). The stated goal will be accomplished by furnishing panders
translators from the respective languages into a specified meta-g@nguavhich the
checks can be performed. Checks written in the meta-language are thergddiar va
each language in the supported set, given that the translations are Gdweenttial
intent is for many of these tests to be expressed using a folding system, wihbeh w
described below.

The goal for the present semester was to design and implement a proof-qft cdrtice
folding system for the C language and investigate whether it can be upedify aseful
checks on a program’s AST. Specifically, | wrote a prototype that us€slérguage
folding system to check whether there are possible paths from a pointer sitiecltr
it's reference that do not include a check to see whether the pointer is null (eastae
possible null-pointer reference).

Folding System

Folding is an elegant and powerful functional programming concept used todardeaeas
structures. As an example, parametrically typed lists are included in thiNgiV
distribution and the List library comes with a function that folds over SML's. liss one
can traverse a list in either left-to-right or right-to-left orderrehae two such functions,
but they both have the following type signature:

val foldl : ((a*'b)->'b)->'b->'alist->'b

What this signature means is that foldl (left-to-right folding) takebrigetarguments,
which will be described below. The last argument (‘a list) says that folldbmerate on a
‘a list, where the ‘a is some arbitrary type (i.e. a type variable).second to last
argument (of type ‘b) is the initial accumulator, which is returned if theslistripty. The

1 SML of New Jersey — the variant of SML used fo\HA

first argument is a function (‘a * ‘b -> ‘b) that is called for every ‘aredat of the ‘a list.

The function is also passed in the current accumulator (of type ‘b), and the result of the
function becomes the accumulator for the next iteration. Once all elementsisf the |
have been visited, the final accumulator is returned as the’result

Folding is extremely powerful because it allows the user to specify adar{btereafter
called the folding function) that only specifies the new accumulator givesuthent
element and current accumulator, along with a base-case accumulatoy.eNegylother
function specified in the SML List library could be implemented in a purelytifomed
manner using foldl.

Against this backdrop, therefore, the first two-thirds of this semester watsvaiing a
folding system for C. Ultimately, as noted, the goal is for SAML to provide a-met
language for certain checks to be performed on ASTs over a set of languages ¢and hen
a folding system written for this meta-language). The present version, hovsever
proof-of-concept intended to illustrate that this is, at least, seemingipliealhe

folding is presently done in pre-order and is essentiallyirror of List.foldl as

implemented over ASTSs.

Callgraph

A callgraph is a graph where the nodes are functions and directed edges go from the
caller to the called. The callgraph module is a simple prototype module that caneproduc
the callgraph of an AST. The purpose is merely to show that the folding system was
place and to hint at its expressiveness (the module can produce graphs of the nature
bellow in a meager 80 lines). For completeness sake, a sample genergtagical

included below.
COIRCD=D ?

% The description above is a slight simplificatiduen that foldl is a higher-order function usingnying,
but this is not relevant to explaining folding ifse

3 ‘Essentially’ because the folding system is writtesing higher-order structures (i.e. functors)ichh
allows for greater modularity

* The graphs presented in this report are genetsied ATT’s dot language
(http://www.research.att.com/~erg/graphviz/info/ldniml) and dot graph generator
(http://www.research.att.com/swi/tools/graphyiz/

Null-paths

The null-paths module is a prototype that creates a graph representing kisyheviee

life of a pointer, from the perspective of trying to identify paths wherearées of this
variable might be made without having first verified that the pointer is not null (i.e.
possible null-pointer references).

The algorithm is determined entirely by the folding function and the initiairactator
passed into the C folding system described abdiee key component of the algorithm

is the graph that represents the important events in a pointer’s lifespan.iiNtes

graph are therefore creation, use, check (for whether it is null), calesddgormal
parameter specification — all of which are associated with (at leastgrtifier
(representing the C pointer). The second major component of the algorithm is the
mapping from a pointer to its most recent (important) event — this is what produces the
edges between the numerous events.

In that it is a prototype, there are numerous complications that are not considered by the
module. It can, for example, only handle the simplest check for a pointer not being null,
and it does not account for pass-by-reference. Yet | do believe that the prohmiyse s

that interesting checks can be performed using the folding system.

As an example, the null-paths prototype was run on the C code below on the left to
generate the graph on the right.

void *malloc(int);

int doescheck(int *);
int nocheck(int *);

int main () {

int *x=

malloc(sizeof(int));
doescheck(x);

return nocheck(x); ' '

}
PARAM b p6 PAR@
int nocheck(int *b){

return *b;
} ¥

int doescheck(int *a){ @ CHECK _a_p7

if (a)
return *a;
else

return -1;
}

CALL nocheck x p5 CALL doescheck x p5

® This determinism follows directly by the specifica of a folding system (e.g. true for SML's folalso)
as long as the folding function is implemented gghre functional programming paradigm (i.e. no
references)

Conclusion

It is my belief that the null-paths prototype shows that the folding systemdraspr

The prototype highlights the expressiveness of the folding system in thafiitté in

little over 150 lines (excluding external data structures such as red bleslatre

graphs). While counting the lines of SML code can be severely misleading (on account
SML’s expressiveness itself), | do believe this is noteworthy. The nulspatidule is, as
noted, in its infancy and further investigation is required before certain knowledge of it
usefulness can be determined. | intend to investigate the null-paths module fuher bef
delving into the feasibility of the discussed meta-language.

