Mikolaj Franaszczuk

CS 473, Fall 2003

An Artificial Intelligence Chess Program

Introduction

The goal of my project was to design and implement a computer AI chess playing program. This is a well-known problem that has fascinated both chess players and computer scientists for decades. Since the advent of computers, people always viewed chess playing as a task that is well suited for a machine. Even Turing developed his own ideas on how a chess program should function; he developed the first concepts of a static board evaluation function. Since his time, a lot of progress has been made. A great deal of time and resources have been dedicated to making better and better chess programs. The latest programs can easily compete with the world’s top players. The most recent such match was just last month, when the X3DChess tied Kasparov in a 6 game match.

Although it seems like chess playing is a very domain specific problem, the methods used in solving it can be applied to a wide variety of tasks. The main algorithms used can be applied to a lot of other local search problems. And it’s not just the field of artificial intelligence that benefits. For instance, in the 90s IBM developed an entirely new parallel computer (Deep Blue) for playing chess. This involved advances not only in software development, but also in hardware and chip design.

My goal was to create a program that implements some of the basic known chess algorithms, allowing a user to play against the machine with a simple interface.

Problem Definition

The goal was to simulate a real chess game as closely as possible. The input to the core of the program is the 8 by 8 chessboard, and the output is a single move that was deemed best by the algorithms. A visual GUI makes the input/output interaction very easy.

Other than the following three minor issues, the program's rules are identical to the official rules.

1. The computer does not remember old board positions, so it will NOT declare a draw when the same position
repeats three times (as would normally occur in the official rules of chess).

2. When a pawn advances to the opposite
rank, it is automatically converted to a queen (in official rules, you could select any piece for it to be converted to).

3. The program DOES allow castling when some space along the king's path during the castle would place the king in check (although you
may not castle when directly under check).

Here are some details on how to properly interact with the program during game play.
To start a game, simply click the "Start Game" button after setting the desired parameters. To move, click on the square with the piece you desire to move. The square's border will be highlighted. Then, click on the square you wish to move to.

Castling - to castle, move the king 2 spaces to the left or right.

En passant capture - if an en passant capture is possible, click on your pawn, and then on the

 empty square where it will end up (NOT on the square with the enemy's

 pawn you are capturing).

You can take back a move by clicking the "Take Back" button. Note that both the computer's move, and your last move will be taken back (so in essence, you can only take back after the computer already made its move, and then both of you will get a chance to move again).

Algorithms

Board Representation

The chessboard is represented in the simplest possible manner - as an 8 by 8 matrix, each containing a Piece (with a "blank" piece representing empty board spaces). Furthermore, flag variables keep track of whether queen/king side castling is allowed for each player, and whether an en-passant capture move is allowed at a given point in time. In order to save space and time during the min-max search, its optimal not to have separate board instance at each branch. After all, they differ only by the position of one piece. Hence each move contains information not only about which piece was moved from where to where, but also whether it affected castling, en passant, and whether it captured an enemy piece in the process. Thus reversing a move on a board is very simple. The algorithm thus only needs one board object, on which it makes and reverses all the moves it considers during its search. Advanced chess playing programs have far more clever board representations, which operate on bits. Separate instances are kept to keep track of individual pieces, and often bit-wise operations can reveal a lot of information about board positions very quickly (particularly with respect to pawns). Years of research have been spent trying to optimize these representations for speed.

Min-max Searching

The core of the chess playing algorithm is a local min-max search of the game space. The algorithm attempts to MINimize the opponent's score, and MAXimize its own. At each depth (or "ply" as it's as its referred to in computer chess terminology), all possible moves are examined, and the static board evaluation function is used to determine the score at the leafs of the search tree. These scores propagate up the tree and are used to select the optimal move at each depth. The bigger the ply, the better the chosen move will be (as the algorithm is able to look ahead more moves). The branching factor is typically between 25 and 40 moves per ply (the average is around 35).

Alpha-beta Pruning

This common pruning function is used to considerably decrease the min-max search space. It essentially keeps track of the worst and best moves for each player so far, and using those can completely avoid searching branches which are guaranteed to yield worse results. Using this pruning will return the same exact moves as using min-max (i.e. there is no loss of accuracy). Ideally, it can double the depth of the search tree without increasing search time. To get close to this optimum, the available moves at each branch should be appropriately sorted. The sorting is done by the looking at the scores of each possible move, looking only 1 ply ahead. The intuitive sort would be to arrange them from best to worst, but that's not always best. Most moves in chess end up being ones with small gains and losses (ones that improve position, not necessarily capturing pieces), so it makes sense to order the "stand pat" moves first. So the sorting is based on the absolute value of the move scores (with the smaller ones coming first). The average branching factor for min-max in chess is about 35, but with the alpha-beta pruning and sorting, the program achieves a branching factor of around 25.

Quiescence Searching

 Since the depth of the min-max search is limited, problems can occur at the frontier. A move that may seem great may actually be a disaster because of something that could happen on the very next move. Looking at all these possibilities would mean increasing
the ply by 1, which is not the solution, as we would need to extend it to arbitrarily large depths. The goal is thus to search the tree until "quiescent" positions are found - i.e ones that don't affect the current positions too much (most maneuvers in chess result in only slight advantages or disadvantages to each player, not big ones at once). Hence, looking at higher depths is important only for significant moves - such as captures. Consider for example a move in which you capture the opponent's knight with your queen. If that is the limit of your min-max search, it seems to be a great move - you receive points for capturing the opponent's knight. But suppose that in the very next move your opponent can capture your queen. Then the move is clearly seen as bad, as trading a queen for a knight is to your disadvantage. Quiescence searching will be able to detect that by looking at the next move. Again, it doesn't need to do this for every move - just for ones that affect the score a lot (like captures).

Static Board Evaluation Function

When the min-max algorithm gets down to the leaves of its search, it's unlikely that it reached a goal state (i.e. a check-mate). Therefore, it needs some way to determine whether the given board position is "good" or "bad" for it, and to what degree. A numerical answer is needed so that it can be compared to other board positions in a quantifiable way. Advanced chess playing programs can look at hundreds features of the board to evaluate it. The simplest, and perhaps most intuitive, look at only piece possession. Clearly, having a piece is better than not having one (in most cases at least). Furthermore, the pieces have different values. A pawn is worth the least; the bishop and knight are next, then the rook, and finally: the queen. The king is obviously priceless, as losing it means losing the game.

The additional features that my chess program examines are:

- pawn advancement
How far up the board has each pawn advanced. Reaching the opposite end is important because it promotes the pawn to a different piece.

- piece mobility (separate for each type of piece)
How many different spaces can the given piece move to?

- piece threats (separate for each type of piece)
How many of the opponent's pieces are threatened by attack? This includes checks (which is a threat on the king)

- piece protects (separate for each type of piece)
How many of your own piece are protecting the given piece to prevent it from being captured without repercussion?

The total number of unique numbers that sum up to give the total board score is thus 25. The allowable weights for each feature are forced to be integers. This allows for faster computations (as opposed to using real numbers). This isn't a real loss of generality though, as the scale of numbers used can be large (very large integers to represent piece possession, and small ones to represent the other features).

Implementation

The program is implemented entirely in Java. The following diagram shows the relationships between different modules of the program. Below the diagram is a listing of the modules, as they correspond to Java classes, with short descriptions and links to the source files.

Game – implements an abstract representation of all aspects of the game being played

ChessInterface – an interface definition that any class wishing to interact with the Game

 engine must implement. The GameInterface is the main GUI for my

 project, so it of course implements it.

GameInterface – implements the main user GUI to the program

ChessApplet - the online applet version of the GameInterface

Chess – implements the rules of chess

ChessBoard – implements an abstract representation of the chess board

ChessBoardGUI – implements a graphical representation and user GUI of the chess

 board

AIPlayer – implements all parameters of the computer players

ScoringGenome – implements the static board evaluation function

AIEngine - implements the artificial intelligence computer move-making algorithms

Piece – implements an abstract representation of a chess piece

Move – implements an abstract representation of a chess move

CompThread – tool for running the AIEngine in a separate process so as not to interfere

 with GUI (not included in organizational chart as technically not an

 element of the main program)

AIChess - the application launcher; creates a new instance of the GameInterface to start

 the program

Evaluation and Analysis

It is difficult to quantify all of the aspects of the program, as deciding whether a move is “good” or “bad” requires expert chess players, and even they could disagree for a particular board situation. The chess program, however, can be evaluated simply by having people play against it to get a feel for how well it performs. Certain statistics can certainly be expressed numerically, and those will be discussed at the end of this section.
Overall the program attains an amateur level of play. In test matches against other people, it can consistently beat beginner and occasional players, provides a challenge to the average player, and is consistently beat by experienced human opponents. The testing was done with a ply of 3 and a quiescence ply of 5, which provides for a reasonable amount of computer thinking time (on the order of seconds). The program is also outperformed by existing software, such as GNU Chess. The program will easily take advantages of blatant mistakes by a human; it will sometimes make keen moves which an average player will be fooled by; but it will also sometime make awkward moves -particularly in convoluted board positions mid game - this due to the limited depth the quiescence is allowed to go to.

There are a number of reasons to account for the program's shortcomings. The program is implemented in Java, which is an interpreted language and hence has relatively slow execution times. There is no end-game database, so it does very poorly in the final phases. This is also because the ply depth is fixed, so even though it could search to deeper plies within the same amount of time (since there are fewer pieces), it’s not allowed to do so. The flaws of the current end-game strategies are most evident when the computer plays itself - since the algorithms are deterministic, it will often find itself in a looping situation, where each side keeps making the same moves back and forth without any progress. Also, the parameters in the static board evaluation function lose a lot of meaning when there are few pieces left on the board, further degrading the computer's performance.

The major bottleneck for the program is evaluating board positions and determining legal moves. The key boils down to how the board is represented. Currently the program implements the simplest possible board representation (see the algorithms section for more details). It is particularly time consuming to compute the mobility, threats, and protects factors for each piece on the board - and this must be done not only at the leaves of the search tree, but also at each branch (for the purposes of efficient sorting for alpha-beta pruning). Because of all these computations, the depth search is practically limited to 3 or 4 ply (with quiescence extensions to 2 or 3 more plies) for reasonable computational times (under a minute per move).

The following tables list some sample running times and number of board evaluations per move made by the program. They were averaged from 30 move computer vs. computer games. The program was run on an AMD Athlon 1.4+ Ghz machine with 256MB of memory. The first two tables list performance without alpha-beta pruning, and the latter to with it. Clearly, the pruning decreases both running time and the number of board positions needing to be evaluated. This is particularly evident for higher plies. The tables also demonstrate that having quiescence coupled with alpha-beta pruning actually not only improves the moves themselves (which can’t be quantified, but can be experienced by playing the machine and noting it’s a tougher competitor), but can also decrease the number of boards that need to be evaluated (since extending the search can yield convincingly good moves faster, thus helping alpha-beta cut off more branches).

Standard Min-Max Search

	Time per move (milliseconds)
	Quiescence
 1
	Quiescence
 2
	Quiescence
 3
	Quiescence
 4

	Ply 1
	20
	23
	26
	42

	Ply 2
	N.A.
	150
	130
	155

	Ply 3
	N.A.
	N.A.
	5456
	6247

	Boards scored (per move)
	Quiescence
 1
	Quiescence
 2
	Quiescence
 3
	Quiescence
 4

	Ply 1
	46
	51
	51
	71

	Ply 2
	N.A.
	952
	784
	843

	Ply 3
	N.A.
	N.A.
	34242
	38599

Min-Max Search with Alpha-Beta Pruning

	Time per move (milliseconds)
	Quiescence
 1
	Quiescence
 2
	Quiescence
 3
	Quiescence
 4

	Ply 1
	20
	22
	23
	34

	Ply 2
	N.A.
	105
	114
	144

	Ply 3
	N.A.
	N.A.
	3510
	2438

	Boards scored (per move)
	Quiescence
 1
	Quiescence
 2
	Quiescence
 3
	Quiescence
 4

	Ply 1
	46
	50
	51
	68

	Ply 2
	N.A.
	613
	500
	660

	Ply 3
	N.A.
	N.A.
	18545
	11567

Future Work

Many improvements could be made to the implementation in its current form. They can come either from using more algorithms, or improving the existing ones. One improvement is unrelated to either of the above – the program could be implemented in C++, which would immediately make it work faster than its current Java version (since Java is an interpreted language, and C++ is not).

One of the major bottlenecks in the current version is determining legal moves at each branch, and scoring the board. This must be done for each board position encountered, which of course grows exponentially with the ply search depth. The rules of chess are relatively complex, particularly with special moves such as castles and en passant captures, and the concept of checking a king. Scoring a board is even more difficult, as not only valid moves for each piece must be determined, but also what pieces are protected and threatened in each position. It is possible to speed up all these calculations by creating a different representation of the chess board. Years of research have yielded viable so-called “bit boards,” which keep track of different aspects and properties of the board in data structures that allow for very fast computations. Re-implementing the program with such bit boards would certainly improve it.

Knowledge databases of opening moves and end-game positions could be added. Chess players over the years have discovered that certain move combinations at the beginning of games will develop into good positions mid-game. Since these are well-known, hard-coding appropriate responses would greatly improve the program’s performance in the initial phase of the game – which would then extend into an improved mid-game. Analogously, at the end of the game, when there are only a few pieces left on the board, it is possible to explicitly reach the goal state via local searches, thus determining optimal moves for many possible positions. Putting these responses into a database would allow the program to perform flawlessly in the end-game; currently this stage of the game is a big weakness of the program.

Many improvements could be made to the already implemented algorithms and concepts. The alpha-beta pruning could be sped up with the null move heuristic, which could determine initial guesses for the alpha and beta values. Quiescence searching could be sped up and improved by intelligently limiting the types of moves considered in the extension searches. There are also other types of pruning techniques, such as futility pruning, but those would be effective in practice only at very high plies. Finally, different and optimized static board evaluation functions could improve overall performance. There are many factors that are currently not looked at (such as relative piece positions, king safety, backed up pawns, and more). Also, even with the current evaluation function, the weights of the different parameters could be optimized to produce better results

M. Eng. Project Extensions

Many of the ideas discussed in the above section were implemented as my extension of this project. These include: the null move heuristic, improvements to quiescence searching, an extendable opening move database, and a pair of genetic algorithms for optimizing the static board evaluation function. I also created an online applet version of the program. For details of those, and more in depth discussion of the topics covered in this report, go to the project website at:

http://people.cornell.edu/pages/msf22/chessmain.html
References

Official rules of Chess
http://www.uschess.org/beginners/letsplay.html

Chess openings database (the one used in the program)
http://www.homestead.com/Observer/Openings.html

Algebraic Chess Notation (used for the opening database)
http://www.chessandbeyond.com/the_club/notation.htm

GNU chess [a much better chess playing program than mine :)]
http://chess.delorie.com/

Tree searches in chess
http://www.xs4all.nl/~verhelst/chess/search.html

Alpha-beta pruning
http://pages.cpsc.ucalgary.ca/~sueng/533/AlphaBetaPruning.html

Futility pruning
http://supertech.lcs.mit.edu/~heinz/dt/node26.html

Chess piece graphics (the ones used in the program)
http://www.chessvariants.com/graphics.dir/alfaerie/index.html

Computer Chess Programming
http://www.xs4all.nl/~verhelst/chess/programming.html
http://chess.verhelst.org/
http://www.gamedev.net/reference/programming/features/chess1/

Kasparov vs. X3D Chess (the most recent man vs. machine chess match)
http://www.x3dchess.com/

 Computer game-playing : theory and practice / edited by M.A. Bramer. Published: Chichester, West Sussex : E. Horwood ; New York : Halsted Press, 1983.

Newborn, Monroe. Deep Blue : an artificial intelligence milestone / Momty Newborn ; foreword by Charles E. Lieserson. Published: New York : Springer, c2003.

Botvinnik, M. M. (Mikhail Moiseevich), Computers in chess : solving inexact search problems / M.M. Botvinnik ; with contributions by A.I. Reznitsky ... [et al.] ; translated by Arthur A. Brown. Published: New York : Springer-Verlag, c1984.

Atkinson, George W. Chess and machine intuition / George W. Atkinson. Published: Norwood, N.J. : Ablex Pub., 1993.

Also special thanks to those that volunteered to play against the program.

ECOReader

ECODatabase

ChessBoardGUI

ScoringGenome

AIPlayer

Chess

Move

Piece

ChessBoard

AIEngine

GameInterface

Game

