Variations on ND

Andrew E. Shaffer

February 7, 2002

0.1 Introduction

In this paper, I describe NDS, a performance-enhancing modification to the ND
meta-reasoning procedure for solving propositional logic satisfiability problems. Both
ND and NDS are parameterized by a reasoning procedure P, a procedure D that
reduces a problem instance €2 to a related “subproblem,” and an integer n. Neither
ND nor NDS contain their own propositional reasoning logic, but instead use the
supplied P to generate models of D(Q2) and use them to guide the search for a model
of €.

One immediate difference that emerged during tests of ND against SATO was
that ND’s performance graph doesn’t have the shape typical of problems such as
CPC or 3SAT, with a running time maximum inside the phase transition region
and easier instances in the over- and under-constrained regions. This is because ND
must first find every model of D(2) (the “subsolutions”), and as problems move
into the underconstrained region, the number of subsolutions increases exponen-
tially. Since this exponential behavior causes ND to take longer than SATO in the
underconstrained region, as well as use large amounts of memory when there are
many subsolutions, a natural next step in developing the ND method is to attempt
to free it from this restriction.

Rather than solve for all subsolutions and then process them in groups as with
ND, NDS processes subsolutions in groups as they are generated. After P has
generated n solutions to D(€2), NDS processes them immediately and returns a
solution to € if one is found. If not, NDS continues generating solutions to D(£2)
in this manner until all subsolutions are exhausted, and if by that point a solution
to 2 has not been found, it returns unsatisfiable. Only in the unsatisfiable cases
(or cases where the only subsolution that extends to a solution of € is in the last
block of subsolutions) does NDS need to generate every subsolution. Even if it does
need to generate all subsolutions, there is the added benefit that once a block of
subsolutions is used, it doesn’t need to remain in memory.

I also experimented with using WalkSat, a local search procedure, for P in ND
and NDS. Since WalkSat is a local search algorithm, it is not guaranteed to find every
possible subsolution. As such, there are issues with correctly identifying satisfiable
instances. Also, because there is no definite point at which to return unsatisfiable
(such as when all the subsolutions are exhausted), it must be specified as additional
parameter to P.

The procedures were tested on Open Crossword Puzzle Construction (Open
CPC) problem instances using the decomposition method described in the previ-
ous paper.

0.2 The ND and NDS Algorithms

The ND procedure is as follows!:

'From the original ND paper, with minor changes.

Input: a problem instance €2, a propositional reasoning procedure P, a
decomposition method D, and a number n € (1,100].
Output: a model of 2 or “no”

1. Compute D().

2. Generate ss(D(€2)), the set of solutions to D(f2). Let m denote the
size of ss(D(2)) at this point.
)

(
3. while ss(D(2)) is nonempty:

(a) Remove models sg,...,sx from ss(D(2)), where k =
min(|ss(D(R2))|, mn/100).

(b) Let Q= = QU mutex(so, ..., sk).
(c) If Q~ is solvable using P, stop and return the model.

4. Stop and return “no.”

Procedure ND(Q,P,D,n)

The NDS procedure is similar to the ND procedure, but most notably it elimi-
nates the second step.

Input: a problem instance €2, a propositional reasoning procedure P, a
decomposition method D, and a number n € (1, 100].
Output: a model of 2 or “no”

1. Compute D(£2).
2. while P can generate more models of ss(D(2)):

(a) Generate the next n models of ss(D(f2)), or if there are fewer
than n models remaining, generate all remaining models. Call
them sy, ..., sg.

(b) Let Q= = QU mutex(so, ..., Sk)-
(c) If Q is solvable using P, stop and return the model.

3. Stop and return “no.”

Procedure NDS(Q2,P,D,n)

The muter function used in ND and NDS returns a set of clauses requiring that
all the atoms in at least one of the solutions s, ..., s, be true. (The clauses of

Q) will likely assert that only one subsolution holds.) In this way, the procedures
attempt to “extend” a subsolution into a supersolution by finding assignments for the
unassigned atoms, those that are in the superproblem but not in the subproblem. In
addition, mutex asserts that one of so(7), s1(%), ..., k(i) is true for each i € [1, |s|],
where s(i) is the ith true atom in s. This second set of clauses may not always
be possible or appropriate for all problem domains, such as when each subsolution
can have a different number of true atoms. For Open CPC, it asserts that in the
original puzzle, each square that exists in the subpuzzle must contain a letter from a
subsolution. IE: if all the subsolutions have either an ’a’ or ’b’ in the upper-left hand
square, then ("a’,1,1) vV ('0’,1,1) would be asserted. Also, note that n is interpreted
differently by ND and NDS. In ND, n indicates what percentage of the models
of D(£2) to use per iteration. NDS, as it doesn’t know how many models there
eventually will be, interprets n to be the number of subsolutions to generate and use
per iteration. Also, note that it is necessary for the atoms in the subproblem to have
the same “name” as the corresponding atoms in the superproblem. In implementing
the procedure, for convenience, one can rename the atoms in the subsolutions to
appropriate atoms in the superproblem.

0.3 Finding an optimum function for NDS

Before comparing ND or NDS to other procedures, it is necessary to find a value
for the parameter n. For Open CPC, n is determined as a function of word set
size. The function was found by testing a range of n for many problem instances
over the range of word set sizes, and fitting a curve to the highest performing n for
a given word set size. Figures 1 and 2 show the results of these experiments with
the minima and the fit curve. Although a function for ND was already available,
it wasn’t determined with great precision. Also, it has yet to be shown that the
function isn’t hardware independent to some degree, and previous experiments were
performed on a different hardware configuration.

0.4 Experiments and Observations

2 Using the fitted functions to determine n, the procedures were tested on Open
CPC instances with |3| = 10 (the size of the word set alphabet) and word set sizes
varying from 100 to 160, in order to capture the phase transition. SATO 3.2 was
used with DATA=3 in all cases, both for generating the subsolutions and solving
Q. The results of these experiments are in figures 3 and 4.

As was intended, NDS avoids the exponential time curve shape of ND. It performs
similarly to ND in the overconstrained region, but at around 50% satisfiability, NDS’
running time curve bends back down like SATQO’s. NDS’ “Generation Time” curve
decreases as word set size increases, likely because it is easier to find models of

2The results for NDS are incorrect, I neglected to take into account the encoding time for NDS
but left it intact for ND and SATO. This shouldn’t be a significant factor in the results, and should
leave the fitted equations intact. Preliminary experiments show that the effect should be bounded
by about half a second. This needs to be fixed.

Mins at 0.00522677 x>+-1.54928 x + 119.789

DecompsSolve (ND) Time
= [
(&)} o (6]

o
O o

Word Set Size 160 ¢ %/Iteration

Figure 1: DecompSolve (ND) Solving Time

D(Q) in the underconstrained region and because it is more likely that any given
subsolution will extend to a supersolution. ND’s overall time and “Generation Time”
curves increase exponentially as was mentioned earlier. The satisfiabilities of ND
and NDS; as depicted in in figure 4, are equal to each other and almost exactly equal
to SATO’s.

There is also an interesting point to make about the “Subsolution Processing
Time” curves from figure 3, (the total time that is spent on solving Q™ each it-
eration), and the subsolution information in figure 5. Even though NDS needs to
processes fewer subsolutions on average, it spends more time doing so. (That NDS
processes fewer subsolutions is due to how many subsolutions ND and NDS process
at a time, rather than any ability NDS might have at picking “better” subsolutions.)
One explanation is that prior to processing by ND, ss(D(f2)) is sorted lexicographi-
cally. As a result, the first few atoms of any sy, ..., s; set are likely to be the same,
and will be inserted as unit clauses by mutex, resulting in less branching and better
performance. NDS, as it doesn’t have access to every subsolution, cannot accomplish
this level of “cohesion,” or similarity between mutexed solutions. Even so, by the
nature of backtrack search, there will still be similarities in adjacent subsolutions,
but because of the way that mutexr is implemented, similarity in the middle of a
group of clauses may be less useful than similarity at the beginning. Finally, an
informal experiment performed during debugging showed that subsolutions could
be processed more quickly when taken from a sorted list than from an unsorted list.
Therefore, ND has an advantage over NDS in this area, but the trade off is that it
must spend much more time generating the subsolutions to begin with.

Mins at 0.0380442 x*+-5.55681 x + 219.716

NDS Time
[[
al o [6)]

o

100

400

Word Set Size 160 ¢ # of Solutions/Iteration

Figure 2: NDS Solving Time

0.5 WalkSat

I also measured a version of NDS that uses WalkSat to generate subsolutions. In
addition to the parameters required by ND and NDS, it also requires a second
parameter (really a parameter to P) that indicates how many subsolutions to try
before deciding that the problem is unsatisfiable. Preliminary experiments® showed
that NDS/WalkSat underperformed SATO or NDS/SATO, and that much of this
time was spent processing the subsolutions. This is potentially due to the “cohesion”
issue mentioned previously, as a local search is less likely than a backtracking search
to have a lot of similiarity between consecutively found solutions.

Because ND makes cohesion less relevant, I then tried using WalkSat as P in ND.
To determine how many subsolutions to generate in step 2 of ND, I used the average
number of subsolutions that ND processed (as gathered in previous experiments), as
shown in figure 5. I then determined n, in this case the percentage of ss(£2) to use
per iteration, by curve-fitting optimum n values. The performance results showed
improvement, but many instances were not being correctly identified as satisfiable.
I then tried increasing the number of solutions WalkSat would find, ranging from
100% to 200% of the original number. The results are in figures 6 and 7.

Although correctness was improved by increasing the number of subsolutions
used, it came at the expense of time. Note that if using 100% of ND’s subsolutions

3The preliminary NDS/WalkSat experiments were run before I had the idea to use the statistics
for ND/SATO as a guideline of when to stop, and as such they aren’t particularly reliable. I would
like to repeat the tests when time permits, but for this paper I felt that ND would be more
interesting. ND is also simpler, and as such is a better starting place. I have little experience with
using local search methods and so this section should be interpreted as only a first step.

12

SATO Time

NDS Time

NDS Subsolution Generation Time
NDS Subsolution Processing Time
—o— ND Time

—=— ND Subsolution Generation Time
—+— ND Subsolution Processing Time

10H

+ 0o O

[oe]
T

Time in Seconds

O 1 1 1
100 110 120 130 140 150 160
Word Set Size

Figure 3: Time Graph

results in an A satisfiability discrepancy, 200% should result in O(A?) discrepancy.
(A < 1.) Call the true percent satisfiable for a fixed a word set size S. Then
ND/WalkSat will find S — A satisfiable when using 100% of ND’s subsolutions. If
one doubles the number of subsolutions used to 200%, it is equivalent to repeating
the procedure again with 100% of ND’s subsolutions on all the instances that are
labeled unsatisfiable. On this second attempt, S — A of the instances incorrectly
labeled unsatisfiable in the first trial will be labeled satisfiable. So if A instances
are incorrectly labeled unsatisfiable the first time, and S — A of those are labeled
satisfiable the second time, then satisfiability for 200% should equal S—A+A(S—-A),
and the error would then be O(A?). A quick look at the satisfiability graphs shows
that this seems to be the case. Also, although it seems that A is fixed for a given word
set size and number of subsolutions, it may be possible to decrease it by removing
duplicate subsolutions from those generated by WalkSat and replacing them with
new ones. Although this is technically increasing the number of subsolutions that are
generated, the previous way of increasing the number of subsolutions introduces more
duplicates, whereas this method is guaranteed to add additional unique subsolutions.
Thus, each subsolution will likely be more useful.

0.6 Future Work

e The idea of “cohesion” is still somewhat vague, and in order to determine
whether or not it affects solving time, it would be useful to have a formal
definition and a manner in which to measure it.

Percent Satisfiable
o o o ©
Ul o ~ ©
T T T T
N
A
Il Il Il Il

o
N
T
N

|

—— SATO Satisfiability H
—--- ND Satisfiability

—--- NDS Satisfiability
0.2 ! !

100 110 120 130 140 150 160
Word Set Size

o
w

Figure 4: SAT Graph

e An observation of figure 3 shows that ND and NDS each allot their comput-
ing time differently. ND spends more time generating subsolutions and as a
result needs to spend less time processing them. NDS spends less time gen-
erating subsolutions, but the resulting groups of subsolutions take more time
to process. I would like to try incorporating the advantages of each extreme.
The procedure would generate blocks of subsolutions, larger than blocks gen-
erated by NDS, but smaller than the set of all possible subsolutions. Those
subsolutions could then be sorted as in ND, and then smaller blocks could
be processed out of that larger block, taken off of the front. The processed
subsolutions could then be replaced in the large block by a new set of sub-
solutions and the large block resorted or the large block could be completely
exhausted and then replaced with another. This both provides a larger degree
of cohesion than NDS and also eliminates step 2 of ND. Also, instead of simply
sorting the subsolutions, for better cohesion the algorithm could try to find
a “most cohesive subset”, although finding a cohesive subset would likely be
computationally difficult.

e SATO can be configured to use different methods when solving. These exper-
iments were carried out using DATA=3, because DATA=2 has in the past not
generated every subsolution. However, in quick experiments, DATA=2 seems
to be significantly faster at solving 2~ instances. It would be interesting to
see how using DATA=2 would change the performance differences between
the various procedures, as less time would likely be spent on processing the
subsolutions, perhaps giving an advantage to both SATO and NDS.

1400

—8— SSols processed by DecompSolve (ND)

o SSols processed by NDS
1200+t —o— Subsolutions/Iteration, DecompSolve (ND)
o Subsolutions/Iteration, NDS

1000

800

600
i

of Subsolutions

400

200

O 1 1 1 1 J
100 110 120 130 140 150 160
Word Set Size

Figure 5: Subsolution Graphs

e Brief, initial tests on WalkSat and NDS/SATO showed them performing much
worse than SATO or ND when the second set of mutexr assertions were not
included. This indicates that the second set of mutex assertions are important
to keeping running times low. Unfortunately, they aren’t always possible for
all problem domains. As such, experiments on problem domains in which
it isn’t possible to generate these clauses would be interesting. In addition,
experiments without the first set of mutex assertions, using only the second
set, may give some insight. The benefit to NDS/WalkSat was greater than
the benefit to NDS/SATO, and so I suspect that the level of cohesion in the
subsolutions may be important in determining how helpful the second set of
assertions is. Also, the second set of assertions is dependent on the set of
subsolutions rather than the problem domain, and as such there may be a way
to augment mutex to automatically determine whether or not to add them for
a given set of subsolutions.

e One of the major difficulties in ND and NDS is determining a function for the
parameter n. It would be useful if the procedures could somehow learn an
optimal function for n without user interaction.

0.6.1 Future Investigations Using WalkSat

e It was mentioned previously that WalkSat may end up returning and hence
processing the same subsolution more than once. It is also hypothetically pos-
sible that WalkSat returns subsolutions with nonuniform distribution, which
causes problems if extendable subsolutions aren’t returned with high proba-

Time as Solutions Gathered Changes

9,
—— SATO
8 — 100%
— 120%
— 140%
T — 160%
180%
© > 200%
£ .
=t g .
(@]
k=
c
555,
o A
lf V%
3
2 Il Il Il Il Il J
100 110 120 130 140 150 160

Word Set Size

Figure 6: Solving Time for ND/WalkSat

bility relative to other subsolutions. This may be especially problematic when
the problems are in the critically-constrained region and there are few subso-
lutions that extend to a supersolution, so that is it important a wide variety
of subsolutions are found.

In order to determine a point at which to return unsatisfiable, a procedure
could use both WalkSat and SATO for P and use the subsolutions generated
by both of them. Once SATO runs out of subsolutions, it is safe to return
unsatisfiable, but during the run WalkSat may be able to generate subsolutions
more quickly.

The subsolution concept could also be integrated with local search algorithms.
Instead of inserting clauses that assert the subsolutions, one could use subso-
lutions as the initial assignments for WalkSat, and randomly assign the rest of
the atoms. They would have to be used one at a time, but since they aren’t
being strictly asserted, WalkSat may be able to “fix” any errors in the sub-
solution’s atoms as well as in the unassigned atoms. It may be sufficient to
find a “good” subsolution. If this was combined with using SATO for P, the
procedure would have a good guess of when to stop, even if it still wasn’t sure
whether an unsatisfiable result was correct or not.

Satisfiability as Solutions Gathered Changes

Percent Satisfiable
o
(o]

100 110 120 130 140 150 160
Word Set Size

Figure 7: % Satisfiable for ND/WalkSat

0.7 Other Work

During the course of the project, I wrote some code that didn’t end up getting used
in the final experiments:

e Although it was not for this project specifically, at the beginning of the
semester I ran experiments using ND to solve Crossword Puzzle Construc-
tion instances without the Duplicate Word Constraint, as an addendum to the
original paper.

e [wrote new code for encoding Open CPC because WalkSat was not performing
well. However, the problem was simply fixed and the new encoding software
became unnecessary. I also implemented a binary encoding for graph coloring,
which was not used because I decided to concentrate on CPC.

e Much of the code that I had previously (NDCSato, CSato, mutex, and the
subsolution optimizer) had small bugs that came up during the course of using
them for this project, and some of the code had to be rewritten from scratch in
order to be applied to CPC (my original subsolution optimizer, described in the
next section, was graph coloring specific.) I also did some code restructuring in
order to more cleanly accommodate WalkSat and data processing with Matlab.

10

0.8 Mutex Optimizer, Mutex implementation

The mutex function used in NDS puts the subsolutions into a trie in order to generate
the clauses that assert those subsolutions. However, the default ordering of the atoms
in the subsolutions won’t likely generate the smallest possible trie and hence might
end up generating more clauses than necessary. By putting the most common atoms
at the beginning, the trie can become more compact?. The algorithm essentially
picks the most frequent atom, puts it at the beginning of all subsolutions that
contain it (and its negation at the beginning of all subsolutions that don’t), splits
the subsolution set depending on whether or a subsolution contains the most frequent
atom, and branches. Although the algorithm takes a lot of time, it is also possible
to trade optimizing accuracy for time by cutting off the optimization at a certain
depth. Even so, a small experiment that varied the optimization depth showed
that the time penalty incurred from sorting the atoms was not worth any benefit
in solving time. It may be possible to improve the performance of the optimizer
by reducing the constant factors, since the current implementation focuses more on
correctness than speed. Also, the second set of mutexr assertions may reduce the
benefit that such optimization may provide, since they allow P (for backtracking
search, at least) to “start in the middle” by assigning values to any atom, whereas
only including the first set of assertions may make it difficult to start from anywhere
but the atoms at the top of the trie.

“The code to do this sorting is in the Algorithms/GeneralSortTree. cc file.

11

