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Abstract
In this work we propose a top-down decision tree learning algorithm with a class of linear classifiers
called stochastic linear classifiers as the internal nodes’ hypothesis class. To this end, we derive
efficient algorithms for minimizing the Gini index for this class for each internal node, although
the problem is non-convex. Moreover, the proposed algorithm has a theoretical guarantee under the
weak stochastic hypothesis assumption.

1. Introduction

Decision trees have been an influential paradigm from the early days of machine learning. On the
one hand, they offer a “humanly understandable” model, and on the other, provide an effective
non-convex model. Most decision tree algorithms use a top-down approach to building the decision
tree, where each internal node is assigned a hypothesis from some hypothesis class HI . The most
notable class is that of decision stumps, namely, a threshold over a single attribute, e.g., xi ≥ θ.
The decision tree algorithm determines which hypothesis to assign to each internal tree node, to the
most part they perform it by minimizing locally a convex function called splitting criteria. Decision
tree algorithms differ in the splitting criteria they use, for example, the Gini index is used in CART
(Breiman et al., 1984) and the binary entropy is used in ID3 (Quinlan, 1986) and C4.5 (Quinlan,
1993). Minimizing the splitting criteria in a single internal node is a non convex problem. Therefore
a significant benefit of decision stumps is that the size of the hypothesis class, given a sample of size
m, is only dm, where d is the number if attributes (for each attribute there are at most m distinct
values in m sized sample). Thus, in order to minimize the splitting criteria one could iterate over all
decision stumps in linear time.

From a computational perspective, proper learning of decision tree is hard (Alekhnovich et al.,
2008). Kearns and Mansour (1999) introduced a framework to analyze popular decision tree
algorithms based on the Weak Hypothesis Assumption (see, Schapire (1990)). The Weak Hypothesis
Assumption states, that for any distribution, one can find a hypothesis in the class that achieves
better than random guessing. The main result of their work shows that decision trees can be used
to boost weak learners to strong ones. Qualitatively, assuming the weak learners always have
bias at least γ, decision trees achieve an error of ε with size of (1/ε)O((γε)−2), for the Gini index,
(1/ε)O(γ−2 log (ε−1)), for the binary entropy and (1/ε)O(γ−2) (which is polynomial in 1/ε) for a newly
introduced splitting criteria. The framework of Kearns and Mansour (1999) may also encompass
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stochastic classifiers, which are used as the hypothesis class for internal decision tree nodes in our
work.

Decision tree learning algorithms that assign to each internal node a linear classifier are named
oblique decision trees, and were originally proposed in CART-LC and developed by Murthy et al.
(1994) and Heath et al. (1993). A clear drawback in oblique trees is that the size of the hypothesis
class is no longer linear but exponential in the dimension. Therefore the splitting criteria minimization
is potentially a hard computational task since enumeration over all possible classifiers is no longer
possible in polynomial time, and the various algorithms resort to methods which converge to a local
minima. From a complexity point of view, oblique decision trees with three internal nodes encode
three-node neural networks, which is computationally hard to learn (Blum and Rivest, 1993).
Our Contributions: Our main goal is to have an efficient algorithm for selecting a hypothesis in
each internal tree node, namely, being able to efficiently minimize the splitting criteria. We show
how to perform this task efficiently for the class of stochastic linear classifiers, which is a stochastic
version of linear classifiers. We show how to efficiently minimize the Gini index for stochastic linear
classifiers, and use our efficient Gini index minimization as part of an overall decision tree learning
algorithm.

Our classifier has a few advantages over other decision tree models:

1. Unlike decision trees with decision stumps, stochastic linear classifiers can generate complex
decision boundaries.

2. Unlike linear classifiers, it produces a hierarchal structure that allows to fit also data which is
not linearly separable.

3. Unlike oblique tree, for a single internal node we can efficiently minimize the splitting criteria
of stochastic linear classifiers.

On the downside, since the model becomes more complicated it also becomes less interpretable than
either linear classifiers or decision trees which are based on decision stumps.

As part of our analysis we show that the optimal solution can be written as a linear combination
of two vectors which can be directly computed from the data. However, simple search for the
coefficients of the two vectors might fail, and we need to construct a rather involved discretization, in
order to identify the near optimal stochastic linear classifier. We also show that the class of stochastic
linear classifiers can essentially simulate deterministic linear classifier, as explained in section 5.

Our work is organized as follows: we start by describing the Decision Tree Model and the top
down approach to learning Decision Trees in sections 3 and 4 respectively. In section 5 we present
the Stochastic Linear Classifier. The main derivation of our algorithms is done in Section 6. Section
7 provides empirical evidence for the performance of decision trees with stochastic linear classifiers.
Our concluding remarks appear in section 8.

2. Related Work

Two of the most popular decision trees algorithms are C4.5 by Quinlan (1993) and CART by Breiman
et al. (1984), which do not use linear classifier but rather decision stumps as the internal node classifier
class (due to the efficiency in enumeration of the entire class). A general framework for learning a
decision trees based on decision stump with a general splitting criteria was introduced in Nock and
Nielsen (2009), and a gradient based method was proposed to solve this general formulation.
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The idea of using linear classifiers for the hypotheses class of the internal nodes, date back
to CART-LC proposed in Murthy et al. (1994) and Heath et al. (1993). The original proposal of
CART-LC suggested to do a simple gradient decent, which deterministically reaches a local minima.
One of the successful implementation of oblique decision trees is OC1 by Murthy et al. (1994), which
uses a combination of gradient decent and randomization to search for a linear classifier in each
internal node. Alternative approaches use simulated annealing by Heath et al. (1993) or evolutionary
algorithms by Cantú-Paz and Kamath (2003), to generate a linear classifier in each internal node.

There are other approaches to learning based on decision trees. The work of Bennett and
Blue (1998) build a three internal-nodes decision tree using a non-convex optimization which also
maximizes the margins of the linear classifiers in the three nodes. The work of Wickramarachchi et al.
(2016) uses the eigenvector basis to transform the data, and uses decision stumps in the transformed
basis (which are linear classifiers in the original basis). The work of Henry et al. (2007) develops
a boosting algorithm G2 which is used recursively to first combine decision stumps into a more
complex classifier and next to combine these classifiers again to even more complex classifiers.

3. Model

Let X ⊂ Rd be the domain and Y = {0, 1} be the labels. There is an unknown distribution D
over X × Y and samples are drawn i.i.d. from D. Given a hypothesis class H the error of h ∈ H
is ε(h) = Pr[h(x) 6= y] where the distribution is both over the selection of (x, y) ∼ D and any
randomization of h.

Given two hypothesis classes HI and HL mapping X to {0, 1} we define a class of decision tree
T (HI , HL) as follows. A decision tree classifier T ∈ T (HI , HL) is tree structure such that each
internal node v contains a splitting function hv ∈ HI and each leaf u contains a labeling function
hu ∈ HL. In order to classify an input x ∈ X using the decision tree T , we start at the root r and
evaluate hr(x). Given that hr(x) = b ∈ {0, 1} we continue recursively with the subtree rooted at the
child vb. When we reach a leaf l we output hl(x) as the prediction T (x). In case that HI includes
randomized hypotheses we take the expectation over their outcomes. We denote by ε(T ) the error
of the tree, and the set of leaves in the tree as Leaves(T ). We denote the event that input x ∈ X
reaches node v ∈ T with Reach(x, v, T ), and when clear from the context we will use Reach(x, v).

Splitting criterion Intuitively, the splitting criterion G, is a function that measures how “pure” a
node is. This function is used to rank various possible splits of a leaf v using a hypothesis from HI .
Formally, G is a permissible splitting criterion: if G : [0, 1] → [0, 1] and has the following three
properties:

1. G is symmetric about 0.5. Thus, ∀x ∈ [0, 1] : G(x) = G(1− x).

2. G is normalized: G(0.5) = 1 and G(0) = G(1) = 0.

3. G is strictly concave.

Three well known such functions are:

1. Gini index: G(q) = 4q(1− q),

2. The binary Entropy: G(q) = −q log (q)− (1− q) log (1− q) and

3. sqrt criterion: G(q) = 2
√
q(1− q).
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One can verify that any permissible splitting criteriaG has the property thatG(x) ≥ 2 min{x, 1−
x} and so upper bounds twice the classification error.

4. Decision Tree Learning Algorithms

The most common decision tree learning algorithms have a top-down approach, which continuously
split leaves in a greedy manner using a hypothesis from HI . The decision of which leaf to split
and which hypothesis from HI to use for the split is governed by the splitting criteria G. To clarify
the role of the splitting criteria G we start with some definitions, and for simplicity we start with a
notation that uses a distribution over examples.

Fix a given decision tree T , let v ∈ T , denote weight(v) = Pr(x,y)∼D (Reach(x, v)), and
purity(v) = Pr(x,y)∼D (y = 1|Reach(x, l)), which is the probability of a positive label condi-
tioned on reaching node v. The score of G with respect to T is defined as follows,

G(T ) =
∑

l∈Leaves(T )

weight(l) ·G(purity(l)). (1)

Essentially, this is the expected value of G(purity(l)) when a leaf l is sampled using D over T .
The motivation to minimize G(T ) is that G is an upper bound on the error, and therefore G(T ) is an
upper bound on the error using T .

Denote Split(T, l, h) to be the split of leaf l in T using hypothesis h ∈ HI which outputs a
modified tree T ′. In T ′ the leaf l is replaced by an inner node v which has a hypothesis h and two
children v0 and v1, where v0 and v1 are leaves. When using the resulting tree, and input x that
reaches v then h(x) = b implies that x continues to node vb. Notice that the split is local, as it
influences only the inputs that reached leaf l in T .

The selection of which leaf and hypothesis to use is based on greedily minimizingG(T ). Consider
the change in G(T ) following Split(T, l, h)

∆l,h =G(T )−G(Split(T, l, h)) (2)

=weight(l) ·G(purity(l))−
∑

b∈{0,1}

weight(vb) ·G(purity(vb))

where v0 and v1 are the leaves that result from splitting the leaf l. The algorithm would need to
find for each leaf l a hypothesis hl ∈ HI which maximizes ∆l,h. This can be done by considering
explicitly all the hypotheses in HI , in the case where HI is small, or by using some optimization
oracle. For now, we will abstract away this issue and assume that there is an oracle that given l
returns hl ∈ HI which maximizes ∆l,h, hence minimize G(T ).

We now describe the Top-Down approach - an iterative process of building a decision tree.
Initially, the tree T is comprised of just the root node r. Split r using the hypothesis hr which
maximizes ∆r,h (thus minimizing G(T )). In iteration t, when we have a current tree Tt, for each
leaf l of Tt compute hl = arg maxh∈HI

∆l,h. Next, select the leaf with the largest decrease
lt = arg maxl ∆l,hl , and set Tt+1 = Split(T, lt, hlt).

Upon termination, the algorithm assigns a hypothesis from HL to each leaf. Many decision
tree learning algorithm simply use constant hypothesis which is a label, i.e., {0, 1}. Our framework
allows for a more elaborate hypothesis at each leaf, we only assume that the error of the hypothesis
at leaf l is at most min{x, 1− x} where x = purity(l).
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Using a sample: Clearly the algorithms do not have access to the true distribution D but only to
a sample S. Let S be a sample of examples sampled from D (S is a multiset) and let DS be the
empirical distribution induced by S. We redefine the previous quantities using DS . Specifically,

weight(v) = Pr
(x,y)∼DS

(Reach(x, v)) =
|{(x, y) ∈ S : Reach(x, v) = TRUE}|

|S|

purity(v) = Pr
(x,y)∼DS

(y = 1|Reach(x, l)) =
|{(x, y) ∈ S : Reach(x, v) = TRUE, y = 1}|
|{(x, y) ∈ S : Reach(x, v) = TRUE}|

The expressions for G(T ) and ∆l,h in equations (1) and (2) are maintained. This allows the use of
the Top-Down approach as specified without any further modifications.

Stochastic Hypothesis: We extend the setting to allow for a stochastic hypothesis. A major
difference is that in the deterministic case the tree partitions the inputs (according to the leaves) while
in the stochastic case we have only a modified distribution over the input induced by the leaves. This
implies that given a tree T , each input x is associated with a distribution over the leaves of T . The
probability of reaching a node v, whose a path in the tree is 〈(h1, b1)...(hk, bk)〉 where hi ∈ HI and
bi ∈ {0, 1}, is

Pr
(x,y)∼D

(Reach(x, v)) = Pr (∀i ∈ [1, k] : hi(x) = bi) =

k∏
i=1

Pr (hi(x) = bi|hj(x) = bj , j < i)

For this reason the modified decision tree learning algorithm keeps for each input x a distribution
over the current leaves of T (in contrast, in the deterministic case, each input x has a unique leaf). A
detailed description of the top-down decision tree learning algorithm DTL for a stochastic hypotheses
class is provided in Appendix A.

We note that the work of Kearns and Mansour (1999) for bounding the error of Top-Down DT
induction trivially extends to our settings of using stochastic classifiers in the internal nodes. In
other words, the stochastic classifier presented in the next section can be boosted by a Top-Down
DT process to create a stochastic decision tree with an arbitrarily low error. Details regarding the
extension for the stochastic settings are provided in Appendix B.

5. Stochastic Linear Classifier

In this section we describe the stochastic linear classifier that is used for the hypothesis class HI ,
which are the hypotheses used in internal nodes of the tree. We also define basic measures and derive
properties over them which will be useful later for our mathematical derivations and algorithms.

Let S = {〈xi, yi〉} be a sample of size N drawn from D. Let Dv be the induced distribution
over S in node v, i.e., Dv(xi) ≥ 0 and

∑N
i=1Dv(xi) = 1 . We assume that the inputs xi are

normalized, i.e., ‖xi‖2 = 1. We denote the weight of the positive examples according to Dv by ρ,
i.e., ρ =

∑N
i=1 yiDv(xi).

The Stochastic Linear Classifier is a weight vector w, which has a norm at most 1, i.e., ‖w‖2 ≤ 1.
The classification probability is Pr[y = 1|x,w] = w·x+1

2 , and since both ‖w‖ ≤ 1 and ‖x‖ = 1
then |w · x| ≤ 1 thus 0 ≤ Pr[y = 1|x,w] ≤ 1.

Two important measures that w induces are presented next. The first is Pw, the weight of samples
classified as positive by w, and the second isQw the weight of positive labels in the samples classified
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by w as positive. Formally,

Pw =
N∑
i=1

Dv(xi)
w · xi + 1

2
and Qw =

N∑
i=1

Dv(xi)
w · xi + 1

2
yi. (3)

Clearly 0 ≤ Pw ≤ 1 since 0 ≤ w·xi+1
2 ≤ 1 and 0 ≤ Qw. We can upper bound Qw by Pw, since

yi ≤ 1, and by ρ, since w·xi+1
2 ≤ 1. Finally, we can also lower bound Qw by Pw − (1 − ρ) since

Pw −Qw =
∑N

i=1Dv(xi)
w·xi+1

2 (1− yi) ≤
∑N

i=1Dv(xi)(1− yi) = 1− ρ. Therefore,

max{0, Pw − 1 + ρ} ≤ Qw ≤ min{Pw, ρ} . (4)

Pw andQw could also be written using a vector notation, which sometimes would be more convenient.
For this purpose denote the distribution Dv ∈ RN as a vector over the sample inputs, X ∈ RN×d
the examples matrix and y ∈ {0, 1}N the labels of the examples. Using this notation (� is element-
by-element multiplication):

Pw =
1

2
D>v Xw +

1

2
and Qw =

1

2
(Dv � y)>Xw +

ρ

2
(5)

The values of Pw and Qw play an important role in evaluating candidate classifiers w by plugging
them into the splitting criteria, as explained in more details in the next section.

Note that if w is a deterministic linear classifier with margin γ, then it implies that when we use
w as a stochastic linear classifier we “err” with probability (1− γ)/2. We can amplify the success
probability by having a tree of depth O(γ−2 log ε−1) and reducing the error probability to ε. In
appendix H we prove the following theorem.

Theorem 5.1 Let w be a γ margin feasible linear separator, then there exists a stochastic tree T
with feasible linear separators in the internal nodes such that the error of the tree is bounded by ε
and the depth of T is O

(
ln (ε−1)γ−2

)
.

6. Approximately Minimizing the Gini Index Efficiently

In this section, we would like to use the generic Top-Down decision tree learning approach in order
to greedily minimize the value of the splitting criteria, and thus minimizing indirectly the prediction
error. To achieve that we discuss how we select a stochastic linear classifier which maximizes the
information gain ∆l,w for a given leaf l.

Given a leaf l, the distribution Dl over the samples that reach l, and ρ the probability of the
positive examples in Dl, we need to find a w that maximizes the drop in the splitting criteria, namely

arg max
w

∆l,w = arg max
w

weight(l)

(
G(ρ)−

(
Pw ·G

(
Qw
Pw

)
+ (1− Pw)G

(
ρ−Qw
1− Pw

)))
= arg min

w

(
Pw ·G

(
Qw
Pw

)
+ (1− Pw)G

(
ρ−Qw
1− Pw

))
This work focuses on the Gini Index splitting criteria, abbreviated to GI . Recall that GI(x) =

4x(1− x), where x is the probability of positive example. The Weighted Gini Index (WGI) is the GI
value after a split using w:

WGI(Pw, Qw) = PwGI

(
Qw
Pw

)
+ (1− Pw)GI

(
ρ−Qw
1− Pw

)
= 4

(
ρ− Q2

w

Pw
− (ρ−Qw)2

1− Pw

)
(6)
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Note that when Pw = 0 or Pw = 1, all the examples reach the same leaf, and therefore there is no
change in the GI, i.e., WGI(0, Qw) = WGI(1, Qw) = GI(ρ).

The function WGI(p, q) is concave (rather than convex). Moreover, both p and q are functions
of the weight vector w, and we show that WGI is not convex in w (see Appendix G). This implies
that one cannot simply plug-in the GI and minimize over the weights w.

Our first step is to characterize the the structure of the optimal weight vector w:

Theorem 6.1 For any distributionDl let a = D>v X , b = (Dv � y)>X andw∗l = arg min{w:‖w|≤1}
WGI(Pw, Qw). There exist constants α and β such that for w = αa + βb, we have ‖w‖ ≤ ‖w∗l ‖
and both Pw∗l = Pw and Qw∗l = Qw.

Proof Let Pw∗l = p and Qw∗l = q. Let w′ be the solution for arg min ‖w‖22 such that Pw = p and
Qw = q. Clearly, ‖w′‖ ≤ ‖w∗l ‖, Pw′ = p,Qw′ = q and therefore w′ is also an optimal feasible
solution. Lemma E.1 in Appendix E.1 shows that the solution for this optimization problem is:

w′ =
(2q − ρ)(a · b)− (2p− 1)‖b‖2

‖a‖2‖b‖2 − (a · b)2
a +

(2p− 1)(a · b)− (2q − ρ)‖a‖2

‖a‖2‖b‖2 − (a · b)2
b

Note that a = D>v X is the weighted feature average of the data and b = (Dv � y)>X is the
weighted feature average of the positive examples. The above characterization suggests that we can
search of an approximate optimal solution by using only linear combinations of a and b. Our main
goal is to find a weight vector w such that WGIw −WGIw∗l ≤ ε. At a high level we perform the
search over the possible values of Pw and Qw. Our various algorithms perform the search in different
ways, and get different (incomparable) running times. First we define the approximation criteria:

Definition 6.1 Let S be a sample, Dl be a distribution over S, and ε be an approximation parameter.
An algorithm guarantees an ε-approximation for WGI using a stochastic linear classifier w, such
that ‖w‖2 ≤ 1, if WGIw −WGIw∗ ≤ ε, where w∗ = arg min{w:‖w‖≤1}WGIw.

The next theorem summarizes the running time of the algorithms described in the following
sections

Theorem 6.2 Let S be a sample, Dv be a distribution over S, and ε be an approximation parameter.
Let a = D>v X and b = (Dv � y)>X . Then: For the case where a and b are linearly independent,
algorithms FixedPQ and FixedPSearchQ guarantee an ε-approximation for WGI using a
stochastic linear classifier. Algorithm FixedPQ runs in time O(Nd) + O

(
ε−2 log

(
ε−1
))

, and
algorithm FixedPSearchQ runs in time O(Nd) + O

(
d
ε

)
. And for the case where a and b are

linearly dependent, i.e., b = λa, algorithm DependentWGI runs in time O(Nd), and achieves the
optimal result for WGI using a stochastic linear classifier.

Algorithms for the linearly independent case - overview: Assume that a and b are linearly
independent. Both algorithms for this case preforms grid search in WGI’s domain. The domain
includes pairs (p, q), where p = Pw and q = Qw. As we showed before, the domain includes only a
subset of {(p, q)|0 ≤ p ≤ 1,max (0, ρ+ p− 1) ≤ q ≤ min (ρ, p)}). Since the class of stochastic
linear classifier also limits the domain (Appendix E.4) we consider the intersection of these two
domains. The resulting domain is partitioned by candidate points (partitioned differently for each
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algorithm) and the grid search evaluates the candidate with lowest WGI which also matches a feasible
w (i.e., ‖w‖2 ≤ 1). The result is of the form w = αa + βb, like the characterization of the optimal
weight vector, given in Theorem 6.1.

The two algorithms differ in the way they partition the domain into cells and the way they extract
candidate points from these cells. However, both use the following theorem (proved in Appendix C)

Theorem 6.3 Given data distributionDl which has a positive label probability of ρ and a parameter
ε ∈ (0, 1) it is possible to partition the domain of WGI: {(p, q)|0 ≤ p ≤ 1,max (0, ρ+ p− 1) ≤
q ≤ min (ρ, p)} into O

(
ε−2
)

cells, such that the if (p1, q1) and (p2, q2) belong to the same cell then
|WGI(p1, q1)−WGI(p2, q2)| ≤ ε.

Using the cell partition, enables searching for solutions in the domain of the WGI function
directly, and thus derive an approximation of the optimal solution w∗. The different cell partitions
are illustrated in Figures 7 and 6 in Appendix F.

The main challenge is the case of extreme values of p and their influence on the value of
WGI(p, q). If we ignore the dependence between the p and q then the derivatives of WGI(p, q) are
unbounded when p ≈ 0 or p ≈ 1. We overcome this issue by relating the value p = Pw and q = Qw
through their common parameter w, and the structure of the cells. This is what enables us to derive
the approximation bound.

Algorithm FixedPQ: First, the domain of WGI is partitioned into trapezoid cells, such that the
WGI derivatives are monotone in each cell. To achieve that, the entire domain is first partitioned into
four sub-domains (details in Appendix C) each with a different trapezoid cell shape as illustrated in
Figure 7 in Appendix F. Next, FixedPQ iterates over pairs of (p, q) which are the the trapezoid cells’
vertices (see candidate generation below). For every candidate (p, q), the WGI(p, q) is evaluated,
and the candidate (p, q) pairs are sorted from the lowest WGI(p, q) to the highest. This sorted list
is then scanned until a feasible stochastic linear classifier ‖w‖ ≤ 1 is found such that p = Pw and
q = Qw.

Notice that computing the value of WGI and testing the feasibility of a pair (p, q) does not require
computing the classifier w and can be done in O(1) time (since w = αa + βb, given α, β, ‖a‖,
‖b‖ and (a · b) the norm of w can be computed directly from those values in O(1) time without
computing the weight vector w explicitly). In FixedPQ a weight vector w is computed only once
(for the first feasible candidate point (p, q) encountered in the scan) and requires O(d) time. The
final complexity is O(Nd) + O

(
ε−2 log

(
ε−1
))

, where O(Nd) is for computing a and b and the
O
(
ε−2 log

(
ε−1
))

is for sorting O(ε−2) candidate points. Appendix F.1 provides pseudo-code, a
correctness proof and complexity analysis for FixedPQ.

Candidate generation: A list of (p, q) pairs is created by first selecting O
(
ε−1
)

evenly spaced
points that cover the feasible interval for Pw (and also include p = ρ, 1− ρ). The feasible interval is
a subsection of [0, 1] that is determined by the data (see Appendix E.4). This ensures that the cells
generated are contained within a single sub-domain (more details in Appendix C). Next, for each
discretized value of p we define O

(
ε−1
)

evenly spaced values of q in the following two intervals:
from max (0, ρ+ p− 1) to ρp, and from ρp to min (p, ρ). Finally, the pairs are filtered to include
only feasible values (as described in Appendix E.4). This process produces O

(
ε−2
)

pairs.

Algorithm FixedPSearchQ: Algorithm FixedPSearchQ iterates over values of p which are
the endpoints of mutually exclusive slices of trapezoid cells. Each slice, is the set of trapezoid cells
which share the same p range as Figure 7 in Appendix F shows. In this case, the endpoints are the
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candidates, and for each endpoint at most two weight vector are computed. Non-feasible points
are filtered, and the classifier w for the point that has the lowest WGI is returned. Notice that since
we do not have the q values in the candidate stage we cannot compute the WGI before computing
a weight vector w (or sort by WGI) as we did in FixedPQ. Instead we must compute a weight
vector w for each candidate and return the best weight vector w. The complexity of this algorithm is
O(Nd) +O

(
d
ε

)
. Appendix F.2 provides pseudo-code, a correctness proof and complexity analysis

for FixedPSearchQ.
Candidate generation: The candidates are p values that are generated by selecting O

(
ε−1
)

evenly spaced points that cover the feasible interval for Pw as in FixedPQ. The main difference
is that we do not discretize the q values, but maintain a complete slice of all feasible q values for a
given range of p values (more details in Appendix C).
Algorithm for the linearly independent case:

Algorithm DependentWGI: Algorithm DependentWGI describes the algorithm for the case
where the constraints over Pw and Qw are dependent, i.e., b = λa. Appendix D, shows that the
optimal weight vector is w = ± a

‖a‖ , both attaining equal values of WGI. In order to compute this
weight vector, we compute a and normalize it in O(Nd) time. We also compute the WGI value in
O(1) time. The total time complexity is O(Nd). Appendix F.3 provides pseudo-code, a correctness
proof and complexity analysis for DependentWGI.

Summary: We distinguish between the case that a and b are linearly independent or linearly
dependent. Algorithm DependentWGI finds the optimal solution for the case where a and b are
linearly dependent, while FixedPQ and FixedPSearchQ are for the linearly independent case,
each using a different search method. Algorithm FixedPQ iterates over different possible values
of (p, q) pairs and its complexity is: O(Nd) + O(ε−2 log (ε−1)). Algorithm FixedPSearchQ
iterates only over a p candidates, and for each computes the optimal q value. The complexity of
FixedPSearchQ is: O(Nd) + O

(
d
ε

)
. The better running time depends on whether d is larger

than O(ε−1 log (ε−1)) or not.
Finally, if we assume algorithms DependentWGI, FixedPQ and FixedPSearchQ find a

weak learner in HI as described by the Weak Stochastic Hypothesis Assumption B.1 then we are able
to boost the results using the DTL algorithm using Theorem B.1. Formally the following theorem
holds:

Theorem 6.4 Let HI be the feasible stochastic linear classifiers over input space X . Let γ ∈
(0, 0.5], and let f be any target function such that HI γ-satisfies the Weak Stochastic Hypothesis
Assumption with respect to f . Let D be any target distribution, and let T be the tree generated by
DTL(D, f,G, t) by using algorithms DependentWGI, FixedPQ and FixedPSearchQ as the
local oracles for t iterations. Then for any target error ε, the error ε(T ) is less than ε provided that

t ≥
(

1
ε

)c/(γ2ε2 log (1/ε)) and G(q) = 4q(1− q).

7. Empirical Evaluation

In this section we demonstrate various evaluations for our proposed classifier. At first, we compare
our algorithm to Linear SVM and a decision tree based on decision stumps, namely, CART. The
data is highly-dimensional and non-linearly separable, where the boundaries are not axis aligned.
All samples are random unit vectors of dimension d. The labels correspond to the XOR of the

9
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Dataset CART Linear SVM Stochastic Tree
Promoters 0.8 0.87 0.91
Heart Disease Data Set 0.7 0.73 0.77
Statlog (Heart) Data Set 0.83 0.78 0.85

Figure 1: Performance of three UCI datasets

samples with two hyperplanes: w1 = [1d/2,1d/2] and w2 = [−1d/2,1d/2] thus the label is y =
sign(x · w1)⊕ sign(x · w2). Both decision trees were allowed to reach depth of 10 and the sample
size is 10, 000. We used various dimension sizes from d = 6 to d = 30, and the results are plotted in
Figure 3 . The results were in line with out intuition. Linear SVM achieves the worst performance
since the target is not linear. On the other hand, since CART only considers a single attribute in
each split, it requires a significant depth to approximate this high-dimensional XOR. Our method
achieves good accuracy since it is not limited to a single hyperplane, as is Linear SVM, nor is it
limited to axis aligned decisions, as is CART. We do note, that since our method is stochastic, we
need to continuously repeat a hyperplane in order to make a split more significant. This explains why,
due to the limited depth of the decision tree, our performance deteriorates as the dimension increases.
As a final note, our method can achieve the above performance with only 50 internal nodes, rather
than a depth of 10 (or 1024 internal nodes) which CART is allowed to use.

Finally, we demonstrate 3 data-sets that were taken from UCI dataset repository (Lichman, 2013)
on which our proposed classifier out preforms Linear SVM and CART. The first dataset Promoters
contains 106 examples with 57 categorical features and two classes. Since our algorithm runs on
numeric data we encode each feature to it’s one-hot representation for a total of 228 numerical
features. The second dataset is the Heart Disease Data Set which contains 303 samples with 13
numeric features. In the original data there are 74 features, but it is common to use the above subset
of features. The original data contains one negative class to indicate no disease in the patient, and
4 positive classes each corresponding to a certain disease. We reduced the problem to a positive
vs. negative classification, by combining all the diseases to one class. The third dataset Statlog
(Heart) Data Set, has the same format as the previous only the target variable is already in binary
format. There are 13 features and 270 samples in this dataset. The following table in Figure 1 shows
the accuracy of all three classifiers used in our experiments, and demonstrates the advantage of our
proposed method.

We note that we gave the same depth restriction to CART and our Stochastic Decision Tree,
however, our method seems sometimes to require a smaller depth to converge. For the Promoters
data-set, while CART was still improving at depth 10, the stochastic tree needed only a depth of 3 to
converge. This along with the comparatively strong result of the Linear SVM may hint that the true
decision boundary can be approximated well with a hyperplane which is not axis aligned. For the
other two data-sets, Heart Disease Data Set and Statlog (Heart) Data Set both methods converged at
the same depth of 3 and 5 correspondingly.

Finally, we refer the reader to Appendix I for empirical results which demonstrate the ability of
our proposed classifier to learn a variety of concept classes.

10
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8. Conclusion

In this work we introduced a stochastic decision tree learning algorithm based on stochastic linear
classifiers. The main advantage of our approach is that we can efficiently minimize the Gini index in
each internal node of the tree.

Theoretically, the algorithms presented in this work could be applied to different splitting criteria
G, by finding a cell partition of Pw and Qw which holds: (1) monotonicity of G inside the cell,
and (2) bounded G difference for points inside the cell. Such application, or finding a common
framework that is able to partition all splitting criteria, could be an interesting future work.

A different possible follow-up direction would be to explore the benefits of the stochastic linear
classifier in other boosting frameworks. Finally, we could consider changing the linear modeling
for Pr (y|x) to a more complex representation, such as a log linear model. This gives rise to an
immediate computational challenge of efficiently minimizing the splitting criteria.
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Appendix A. Decision tree learning algorithm: pseudo code

The pseudo code of Algorithm A encapsulates most existing decision tree learning (DTL) algorithms,
including ones such as CART by Breiman et al. (1984) and C4.5 by Quinlan (1993). Our exposition
of the decision tree algorithms tries to abstract the specific splitting function G and the way to
minimize it. We also generalize the standard framework to handle stochastic classifiers. We start
with describing the oracles we assume.

The first oracle minimizes the splitting criteria for a hypothesis in an internal node. The function
FitHI(S,D,G) receives as input a sample S, a distribution D over the sample S and a splitting
criteria G. It returns (h∗, g∗) where h∗ ∈ HI is the hypothesis that minimizes the splitting criteria G
over the distribution D on S and g∗ is its reduction in the value of the splitting criteria G.

The second oracle FitHL(S,D) receives as input a sample S and a distribution D over the
sample S and returns a hypothesis h ∈ HL which minimizes the error (and not the splitting criteria
G).

Third, the function SplitLeaf(T, l, h) receives a decision tree T , a leaf l ∈ Leaves(T ) and an
hypothesis h ∈ HI and returns a new tree where we split leaf l using hypothesis h.

The decision tree learning algorithm runs for t iterations. In each iteration, for each leaf
l ∈ Leaves(T ) the function FitHI evaluates the optimal predictor h∗l for the leaf l along with
g∗l , the local reduction in G induced by h∗l . The local reduction is weighted by wl to obtain the
global reduction in G, i.e., wlg∗l , and we select the leaf that minimizes G globally. We update the
tree by splitting this leaf, and for the new leaves update the probabilities of inputs to reach each of
them. Once t iterations are done and the leaves have been determined, FitHL selects for each leaf a
predictor from HL by minimizing the error (and not the splitting criteria G).

One can observe that our framework encapsulates common decision tree methodologies al-
gorithms, such as C4.5 and CART, as follows: (1) HI is the family of all decision stumps and
HL = {0, 1}. (2) The function FitHI is implemented by evaluating all the decision stumps and
selecting the best according to G. (3) The function FitHL sets y = 0 or y = 1 according to the
majority class in the leaf, minimizing the error given a constant label predictor.

We presented a general basic scheme of the DTL algorithm. We did not describe other hyperpa-
rameters (such as minimal split size) or methods to refine the model (such as pruning) which could
be applied to the generic algorithm in order to improve results. Our goal is to focus of the core
properties of the DTL which we believe are well represented in our framework.

Appendix B. Extending the boosting framework to the stochastic settings

In this section we extend the results of Kearns and Mansour (1999) to include the boosting ability of
top down algorithms using stochastic classifiers in the internal nodes. Namely, under the assumption

Assumption B.1 (Weak Stochastic Hypothesis Assumption) Let f be any boolean function over
the input space X . Let H be a class of stochastic boolean functions over X . Let γ ∈ (0, 0.5]. We say
H γ-satisfies the Weak Stochastic Hypothesis Assumption with respect to f if for every distribution
D̄ over X , there exists an hypothesis h ∈ H such that Prx∼D̄ (f(x) 6= h(x)) ≤ 0.5− γ where the
probability is both over the distribution D̄, and the randomness of h.

We prove the following theorem,
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Algorithm DTL(S - sample, G splitting criteria, t number of iterations)
1 Initialize T to be a single-leaf tree with node r, for x ∈ S: pr(x) = 1

|S| , wr = 1, and

qr = |{x∈S:f(x)=1}|
|S| .

2 while |Leaves(T )| < t do
3 ∆best ← 0; bestl ← ⊥; besth ← ⊥
4 for each l ∈ Leaves(T ): do
5 h∗l , g

∗
l ← FitHI(S,

1
wl
pl(x), G)

6 ∆l ← wlG(ql)− wl · g∗l
7 if ∆l ≥ ∆best then
8 ∆best ← ∆l; bestl ← l; besth ← h∗l

end
end

9 for x ∈ S do
10 pl1(x)← pl(x) · Pr (besth(x))
11 pl0(x)← pl(x) · (1− Pr (besth(x)))

end
12 wl1 ←

∑
x∈S pl1(x); wl0 ←

∑
x∈S pl0(x)

13 ql1 ←
∑

x∈S:f(x)=1 pl1(x); ql0 ←
∑

x∈S:f(x)=1 pl0(x)

14 T ← SplitLeaf(T, bestl, besth)

end
15 for each l ∈ leaves(T ): do

hl ← FitHL(S, 1
wl
pl(x))

end
16 return T

Algorithm 1: Decision tree learning algorithm

14
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Theorem B.1 Let H be any class of stochastic boolean functions over input space X . Let γ ∈
(0, 0.5], and let f be any target function such that H γ-satisfies the Weak Stochastic Hypothesis
Assumption with respect to f . Let D be any target distribution, and let T be the tree generated by
DTL(D, f,G, t) with t iterations. Then for any target error ε, the error ε(T ) is less than ε provided

that G is the Gini index and t ≥
(

1
ε

)c/(γ2ε2 log (1/ε))

The above theorem establishes a tradeoff between the desired error ε, the bias parameter γ of the
Weak Stochastic Hypothesis Assumption, the splitting criteria G and the decision tree size t.

The proof for B.1 is based on the deterministic case proof by Kearns and Mansour (1999), and
we explicitly supply the proof where our work diverges, namely Lemma 2 of Kearns and Mansour
(1999) which we substitute by Lemma B.1.

We start with a few notations: Let f be the target function, let T be a decision tree, let l ∈
Leaves(T ) be a leaf in T , and let h ∈ HI . Denote the leaves introduced by Split(T, l, h) by l1
and l0. Recall that purity(l) is the fraction of positive examples that reach leaf l from all of the
examples that reach it. We use the following shorthand notations for reoccurring expressions:

q =purity(l), p = purity(l0), r = purity(l1)

τ = Pr
(x,y)∼D

(Reach(x, l1)|Reach(x, l)) = Pr
(x,y)∼D

(h(x) = 1|Reach(x, l)) =
weight(l1)

weight(l)

Since q = (1− τ)p+ τr and τ ∈ [0, 1] than without loss of generality we have: p ≤ q ≤ r. Let:

δ = r − p .

Let Dl be the distribution over input at leaf l. We also define D′l the balanced distribution over inputs
in leaf l in which the probability positive (or negative) weights is 1/2. Formally,

Dl(x) =
Reach(x, l)

weight(l)
D(x)

D′l(x) =

{
Dl(x)

2q if f(x) = 1
Dl(x)
2(1−q) if f(x) = 0

Recall that the information gain is ∆ = G(q)− (1− τ)G(p)− τG(r). Note that if either δ is
small or τ is near 0 or 1 then the information gain is small. Lemma B.1 shows that if h ∈ HI is used
to split at l, and h satisfies the Weak Stochastic Hypothesis Assumption for D′l, then both δ cannot
be too small, and τ cannot be too close to either 0 or 1.

Lemma B.1 Let p, τ and δ be as defined above for the split h ∈ HI at leaf l. Let Dl and D′l also
be defined as above for l. If the function h satisfies Prx∼D′l (h(x) 6= f(x)) ≤ 0.5− γ, Then:

τ(1− τ)δ ≥ 2γq(1− q) .

Proof We calculate the following expressions in terms of τ, r and q:

Pr
x∼Dl

(f(x) = 1, h(x) = 1) = τr
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Therefore,

Pr
x∼Dl

(f(x) = 0, h(x) = 1) = τ(1− r) and Pr
x∼Dl

(f(x) = 1, h(x) = 0) = (1− τ)p = q − τr

Next we consider the error terms under the distribution D′l. When changing from the distribution Dl

to D′l we need to scale the expression according to the labels:

Pr
x∼D′l

(f(x) = 0, h(x) = 1) =
τ(1− r)
2(1− q)

and Pr
x∼D′l

(f(x) = 1, h(x) = 0) =
q − rτ

2q

Finally the error terms are combined to achieve the total error:

Pr
x∼D′l

(f(x) 6= h(x)) = Pr
x∼D′l

(f(x) = 0, h(x) = 1) + Pr
x∼D′l

(f(x) = 1, h(x) = 0)

=
τ(1− r)
2(1− q)

+
q − rτ

2q
=

1

2
+
τ

2

(
1− r
1− q

− r

q

)
=

1

2
+
τ

2
· q − r
q(1− q)

By our assumption on h we have,

Pr
x∼D′l

(f(x) 6= h(x)) =
1

2
+
τ

2
· q − r
q(1− q)

≤ 1

2
− γ

which implies that
τ

2
· r − q
q(1− q)

≥ γ

Substituting r = q + (1− τ)δ we get the required inequality.

We note that, we have in fact provided a proof for 2 other splitting criteria (as was shown in
Kearns and Mansour (1999)). Therefore Theorem B.1 also holds for the following conditions on t
and G:

t ≥
(

1

ε

)c/(γ2ε2 log (1/ε))

if G(q) = 4q(1− q)

t ≥
(

1

ε

)c log (1/ε)/γ2

if G(q) = H(q)

t ≥
(

1

ε

)c/γ2
if G(q) = 2

√
q(1− q)

Appendix C. Bounding the WGI by regions

In this appendix, we show how to partition the domain of WGI into cells such that the difference
between values of the WGI of points in the same cell is bounded by ε. Namely, we prove the
following theorem.

Theorem 6.3 Given data distributionDl which has a positive label probability of ρ and a parameter
ε ∈ (0, 1) it is possible to partition the domain of WGI: {(p, q)|0 ≤ p ≤ 1,max (0, ρ+ p− 1) ≤
q ≤ min (ρ, p)} into O

(
ε−2
)

cells, such that the if (p1, q1) and (p2, q2) belong to the same cell then
|WGI(p1, q1)−WGI(p2, q2)| ≤ ε.

16



LEARNING DECISION TREES WITH STOCHASTIC LINEAR CLASSIFIERS

C.1. Partitioning the WGI to monotone regions

Consider the domain of WGI which is

R = {(p, q)|p ∈ (0, 1), q ∈ [max (0, p+ ρ− 1),min (ρ, p)]} .

Note that the values of p = 0 and p = 1 are not included. We discuss and add them in Section C.7.
We partition R to two sub-domains according to the line q = ρp, namely,

Ra = {(p, q)|p ∈ (0, 1), q ∈ [ρp,min (ρ, p)]}

and
Rb = {(p, q)|p ∈ (0, 1), q ∈ [max(0, p+ ρ− 1), ρp]} ,

as illustrated in Figure 4.
We show that the function WGI is monotone in each of those domains.

Lemma C.1 Given a data distribution Dl which has a positive class weight of ρ, the WGI function:

WGI(p, q) = 4

(
ρ− q2

p
− (ρ− q)2

1− p

)
is monotone in both p and q in bothRa andRb. Specifically, inRa it is increasing in p and decreasing
in q and in Rb it is decreasing in p and increasing in q.

Proof Since we are interested only in monotonicity, we can simply consider the function g(p, q) =

− q2

p −
(ρ−q)2

1−p . In order to show that g(p, q) is monotone, we first consider where its derivatives
vanishes. The derivative with respect to q is

∂g(p, q)

∂q
=− 2q

p
+

2(ρ− q)
(1− p)

=
2(ρp− q)
p(1− p)

This implies that the derivative vanishes at q = ρp which is the boundary of the sub-domains Ra
and Rb, and hence g(p, q) is monotone in q in each of the domains. Also, in Ra, since q > pρ, the
derivative is negative and in Rb, since q ≤ pρ, it is positive.

Next we consider the derivative with respect to p,

∂g(p, q)

∂p
=
q2

p2
− (ρ− q)2

(1− p)2
=

(q − ρp)(q(1− 2p) + ρp)

p2(1− p)2

This implies that the derivative vanishes at q = ρp and q = ρp
2p−1 . The line q = ρp is a boundary of

our regions and so we consider only the other curve.
For p ∈ (0, 0.5) we have 1− 2p > 0. This implies that q(1− 2p) + ρp > 0. Since q > ρp in Ra

it implies that g(p, q) is increasing there, and similarly, since q ≤ pρ, it is decreasing in Rb.
For p ∈ (0.5, 1) we have−1 < 1−2p < 0. ForRb, since q ≤ ρpwe have that q(1−2p)+ρp > 0

and hence g(p, q) is decreasing in p. ForRa, we have q ≤ p+ρ−1. This implies that q(1−2p)+ρp ≤
(1− p)(2p− 1 + ρ) which is non-negative since p ∈ (0.5, 1). Therefore q(p, q) is increasing in Ra.

Finally, for p = 0.5 we have that ∂g(p,q)∂p = (q−ρ/2)(ρ/2)
1/16 which is positive in Ra and negative in

Rb as required.

Figure 4 shows the sub-domains Ra and Rb.
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0.51− ρ ρ
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Figure 4: The domain R and the sub-domains Ra and Rb (for ρ ≥ 0.5)
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1− ρ ρ

ρ
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Rb,l

Figure 5: WGI: partitioned into regions for ρ ≥ 0.5

C.2. Overview of the partition into cells

We partitioned the domainR of WGI into two sub-domainsRa andRb. According to Theorem C.1 in
each of the sub-domains the WGI is monotone in p and q. We will further partition each sub-domain
in to two parts, and then split them in to cells. We first consider the difference in the value of WGI
between two points:

|WGI(p1, q1)−WGI(p2, q2)| = 4

∣∣∣∣q2
2

p2
+

(ρ− q2)2

1− p2
− q2

1

p1
− (ρ− q1)2

1− p1

∣∣∣∣
≤ 4

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣+ 4

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣ = 4∆1 + 4∆2 (7)

where ∆1 =
∣∣∣ q22p2 − q21

p1

∣∣∣ and ∆2 =
∣∣∣ (ρ−q2)2

1−p2 −
(ρ−q1)2

1−p1

∣∣∣.
We are going to consider the case where ρ ≥ 0.5. The symmetric case of ρ < 0.5 can be reduced

to this case by switching the labels and deriving the same bound. For the definition of the cells we
use the parameters ε ∈ (0, 1) which controls the cell’s size.

We next present an analysis for each of four sub-domains, show that in each both ∆1 = O(ε)
and ∆2 = O(ε). In addition each sub-domain will be partitioned in to O(ε−2) cells.

C.3. First region: Rb,l
Let Rb,l = {(p, q)|0 < p ≤ 1− ρ, 0 ≤ q ≤ ρp}. Clearly Rb,l ⊆ Rb, and by Lemma C.1 we know
that WGI is decreasing in p and increasing in q in Rb,l.
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We are now ready to define the cells. The cells will have two parameters pc ∈ (0, 1− ρ− ε] and
α ∈ [ε, 1]. Let

cellRb,l
(pc, α) = {(p, q)|pc ≤ p ≤ pc + ε, (α− ε)ρp ≤ q ≤ αρp} .

The cells would have pc = iε, for 0 ≤ i ≤ 1−ρ
ε − 1 and α = jε, for 1 ≤ j ≤ 1/ε. This implies that

there are O(ε−2) cells in Rb,l. Since in Rb,l we have ∂WGI
∂q ≥ 0, there are p1, p2 ∈ (0, 1− ρ], such

that the maximum WGI value in cellRb,l
(pc, α) is obtained at a point (p1, q1) = (p1, αρp1) and the

minimum value at (p2, q2) = (p2, (α− ε)ρp2).
We bound ∆1 as follows:

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣ =

∣∣∣∣(α− ε)2ρ2p2
2

p2
− α2ρ2p2

1

p1

∣∣∣∣ ≤ ρ2(α2 |p2 − p1|+ εp2) ≤ 2ε (8)

and ∆2 as follows,

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣ =

∣∣∣∣(ρ− (α− ε)ρp2)2

1− p2
− (ρ− αρp1)2

1− p1

∣∣∣∣ = ρ2

∣∣∣∣(1− (α− ε)p2)2

1− p2
− (1− αp1)2

1− p1

∣∣∣∣
≤ ρ2


≤1︷︸︸︷
α2

≤ε︷ ︸︸ ︷
|p1 − p2|+ε

≤2︷ ︸︸ ︷
|ε− 2α|

≤1︷ ︸︸ ︷
|1− p2|+2ε

≤2︷ ︸︸ ︷
|2α− 1− ε|+ε

≤2︷ ︸︸ ︷
|2(1− α) + ε|

1− p2
+

∣∣∣∣(1− α)2

1− p2
− (1− α)2

1− p1

∣∣∣∣


≤ ρ2

7ε+
2ε

1− p2
+

≤1︷ ︸︸ ︷
(1− α)2

≤ε︷ ︸︸ ︷
|p2 − p1|

(1− p1)(1− p2)

 ≤ 7ρ2ε+
ρ2ε

ρ2
+ 2ρ

ρε

ρ
≤ 10ε (9)

where we used the fact that ρ ≤ 1 and p ≤ 1− ρ.
Combining the bounds in (7), (8) and (9) the error for in each cell in Rb,l is bounded by

4(2ε+ 10ε) = 48ε.

C.4. Second region: Rb,r
Let Rb,r = {(p, q)|1− ρ ≤ p < 1, p+ ρ− 1 ≤ q ≤ ρp}. Clearly Rb,r ⊆ Rb, and by Lemma C.1
we know that WGI is decreasing in p and increasing in q in Rb,r.

We are now ready to define the cells. The cells will have two parameters pc ∈ [1− ρ, 1− ε) and
α ∈ [ε, 1]. Let

cellRb,r
(pc, α) ={(p, q) : pc ≤ p ≤ pc + ε,

(α− ε)ρp+ (1− α+ ε)(p+ ρ− 1) ≤ q ≤ αρp+ (1− α)(p+ ρ− 1)} .

The cells would have pc = iε, for (1−ρ)/ε ≤ i ≤ 1/ε−1 and α = jε, for 1 ≤ j ≤ 1/ε. This implies
that there are O(ε−2) cells in Rb,r. Since in Rb,r we have ∂WGI

∂q ≥ 0, there are p1, p2 ∈ [1− ρ, 1),
such that the maximum WGI value in cellRb,r

(pc, α) is obtained at a point (p1, q1) = (p1, αρp1 +
(1−α)(p1 +ρ−1)) and the minimum value at (p2, q2) = (p2, (α− ε)ρp2 +(1−α+ ε)(p2 +ρ−1))

19



LEARNING DECISION TREES WITH STOCHASTIC LINEAR CLASSIFIERS

We bound ∆1 as follows:

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣ =

∣∣∣∣((α− ε)ρp2 + (1− α+ ε)(p2 + ρ− 1))2

p2
− (αρp1 + (1− α)(p1 + ρ− 1))2

p1

∣∣∣∣
≤α2ρ2 |p2 − p1|+ ε |ε− 2α| ρ2p2 + 2α(1− α)ρ |p2 − p1|+ 2ε |2α− ε− 1| ρ |p2 + ρ− 1|+

(1− α)2

∣∣∣∣(p2 + ρ− 1)2

p2
− (p1 + ρ− 1)2

p1

∣∣∣∣+
ε |2− 2α+ ε| (p2 + ρ− 1)2

p2

≤5.5ε+

∣∣∣∣(p2 + ρ− 1)2

p2
− (p1 + ρ− 1)2

p1

∣∣∣∣+
2ε(p2 + ρ− 1)2

p2
≤ 12.5ε (10)

For ∆2 we have

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣
=

∣∣∣∣(ρ− (α− ε)ρp2 − (1− α+ ε)(p2 + ρ− 1))2

1− p2
− (ρ− αρp1 − (1− α)(p1 + ρ− 1))2

1− p1

∣∣∣∣ ≤ 8.5ε

(11)

Combining the bounds in (7), (10) and (11) the error for in each cell in Rb,l is bounded by
4(12.5ε+ 8.5ε) = 84ε.

C.5. Third region Ra,l
Let Ra,l = {(p, q)|0 < p ≤ ρ, ρp ≤ q ≤ p}. Clearly Ra,l ⊆ Ra, and by Lemma C.1 we know that
WGI is increasing in p and decreasing in q in Ra,l.

We are now ready to define the cells. The cells will have two parameters pc ∈ (0, ρ − ε] and
α ∈ [ε, 1]. Let

cellRa,l
(pc, α) = {(p, q)|pc ≤ p ≤ pc + ε, (α− ε)p+ (1− α+ ε)ρp ≤ q ≤ αp+ (1− α)ρp} .

The cells would have pc = iε, for 0 ≤ i ≤ ρ/ε− 1 and α = jε, for 1 ≤ j ≤ 1/ε. This implies that
there are O(ε−2) cells in Ra,l. Since in Ra,l we have ∂WGI

∂q ≤ 0, there are p1, p2 ∈ (0, ρ], such that
the maximum WGI value in cellRa,l

(pc, α) is obtained at a point (p1, q1) = (p1, (α− ε)p1 + (1−
α+ ε)ρp1) and the minimum value at (p2, q2) = (p2, αp2 + (1− α)ρp2)

We bound ∆1 as follows,

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣ =

∣∣∣∣(αp2 + (1− α)ρp2)2

p2
− ((α− ε)p1 + (1− α+ ε)ρp1)2

p1

∣∣∣∣
≤ |p2 − p1| |ρ+ (1− ρ)α|2 + 2εp1 |ρ+ (1− ρ)α| |ρ− 1|+ ε2p1(ρ− 1)2 ≤ 4ε (12)

and bound ∆2 as follows,

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣ =

∣∣∣∣(ρ− αp2 − (1− α)ρp2)2

1− p2
− (ρ− (α− ε)p1 − (1− (α− ε))ρp1)2

1− p1

∣∣∣∣
≤ρ2 |p1 − p2|+ 2α |ρ(ρ− 1)| |p2 − p1|+ α2(1− ρ)2

∣∣∣∣ p2
2

1− p2
− p2

1

1− p1

∣∣∣∣+
2εp1(1− ρ) |ρ− αp1 − (1− α)ρp1|

1− p1
+
ε2p2

1(1− ρ)2

1− p1
≤ 8.5ε (13)
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Combining the bounds in (7), (12) and (13) the error for in each cell in Ra,l is bounded by
4(4ε+ 8.5ε) = 50ε.

C.6. Fourth region Ra,r
Let Ra,r = {(p, q)|ρ ≤ p < 1, ρp ≤ q ≤ ρ}. Clearly Ra,r ⊆ Ra, and by Lemma C.1 we know that
WGI is increasing in p and decreasing in q in Ra,r.

We are now ready to define the cells. The cells will have two parameters pc ∈ [1− ρ, 1− ε) and
α ∈ [ε, 1]. Let

cellRa,r(pc, α) = {(p, q)|pc ≤ p ≤ pc + ε, (α− ε)ρ+ (1− α+ ε)ρp ≤ q ≤ αρ+ (1− α)ρp} .

The cells would have pc = iε, for ρ/ε ≤ i ≤ 1/ε − 1 and α = jε, for 1 ≤ j ≤ 1/ε. This implies
that there are O(ε−2) cells in Ra,r. Since in Ra,r we have ∂WGI

∂q ≤ 0, there are p1, p2 ∈ [1− ρ, 1),
such that the maximum WGI value in cellRa,r(pc, α) is obtained at a point (p1, q1) = (p1, (α− ε)ρ+
(1− α+ ε)ρp1) and the minimum value at (p2, q2) = (p2, αρ+ (1− α)ρp2)

We bound ∆1 as follows,

∆1 =

∣∣∣∣q2
2

p2
− q2

1

p1

∣∣∣∣ =

∣∣∣∣(αρ+ (1− α)ρp2)2

p2
− ((α− ε)ρ+ (1− α+ ε)ρp1)2

p1

∣∣∣∣
≤ρ2 (|p2 − p1|+ 2α |p1 − p2|+ 2ε |1− p1|) + ρ2

∣∣∣∣α2(1− p2)2

p2
− α2(1− p1)2

p1
− ε(ε− 2α)(1− p1)2

p1

∣∣∣∣
≤8ε (14)

and ∆2 as follows,

∆2 =

∣∣∣∣(ρ− q2)2

1− p2
− (ρ− q1)2

1− p1

∣∣∣∣ =

∣∣∣∣(ρ− αρ− (1− α)ρp2)2

1− p2
− (ρ− (α− ε)ρ− (1− (α− ε))ρp1)2

1− p1

∣∣∣∣
≤ρ2(1− α)2 |p1 − p2|+ ρ2ε |2− 2α+ ε| (1− p1) ≤ 3ε (15)

Combining the bounds in (7), (14) and (15) the error for in each cell in Ra,r is bounded by
4(8ε+ 3ε) = 44ε.

C.7. WGI is continuous in p = 0 and p = 1

We show that the value of WGI is continuous at both extreme points p = 0 and p = 1 for point
(p, q) ∈ R. Namely, we show that its value is 4ρ(1−ρ). This will allow us to extend the sub-domains
from p ∈ (0, 1) to p ∈ [0, 1]. Recall that,

GWI(p, q) = 4

(
ρ− q2

p
− (ρ− q)2

1− p

)
Consider p ∈ (0, δ] for δ < 1/2. Since (p, q) ∈ R this implies also that q ≤ p ≤ δ. Therefore,

0 ≤ q2

p
≤ δ

We also have that

ρ2 − 6δ ≤ (ρ− δ)2

1− δ
≤ ρ2
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the upper bound follows since the function is decreasing in δ. For the lower bound, we have that
1/(1− δ) < 1 + 2δ for δ < 1/2. This implies the following:

Lemma C.2 Let (p, q) ∈ R such that p ≤ δ ≤ 1/2. Then

|GWI(p, q)− 4ρ(1− ρ)| ≤ 6δ

For p ≈ 1 we have that for point (p, q) ∈ R that p− (1− ρ) ≤ q ≤ min(p, ρ) and hence q ≈ ρ.
Similarly we show,

Lemma C.3 Let (p, q) ∈ R such that 1− δ ≤ p ≤ 1, where δ ≤ 1/2. Then

|GWI(p, q)− 4ρ(1− ρ)| ≤ 3δ

Appendix D. Solution for the dependent case

In this section we are going to provide a minimal solution for the WGI in the dependent case.

Lemma D.1 Let a = D>v X and b = (Dv � y)>X , and assume b = λa. The solutions for
min (WGIw) are w1,2 = ± a

‖a‖

Proof Recall that according to 6:

WGIw = WGI(Pw, Qw) = 4

(
ρ− Q2

w

Pw
− (ρ−Qw)2

1− Pw

)
and that Pw = a>w+1

2 and Qw = b>w+ρ
2 . Denote x = a>w and therefore b>w = λa>w = λx we

find the solution for:

g(x) =4ρ−
4
(
λx+ρ

2

)2

x+1
2

−
4
(
ρ− λx+ρ

2

)2

1− x+1
2

= 4ρ− 2 (ρ+ λx)2

1 + x
− 2 (ρ− λx)2

1− x

=4ρ−
2
(
ρ2 + λ(λ− 2ρ)x2

)
1− x2

We substitute z = x2 and derive:

∂g

∂z
= −2

λ(λ− 2ρ)(1− z) + (ρ2 + λ(λ− 2ρ)z)

(1− z)2
= −2 · (λ− ρ)2

(1− z)2

by the chain rule:

∂g

∂x
=
∂g

∂z
· ∂z
∂x

=
−4x(λ− ρ)2

(1− x2)2

First we note that x = 0 is an extreme point. Next, since 4(λ−ρ)2

(1−x2)2
> 0, if x > 0 then g is decreasing,

and if x < 0 then g is increasing. Therefore, the minimal points are at the edges of the feasible
interval of x.

Since x = a>w and ‖w‖ ≤ 1, according to · operator we have: −‖a‖ ≤ x ≤ ‖a‖. If w = a
‖a‖

then x = ‖a‖, and if w = − a
‖a‖ then x = −‖a‖. Therefore, w1,2 = ± a

‖a‖ are the solutions for this
case. Clearly, both solutions attain the same value of WGI.
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Appendix E. Maximizing Information Gain for Pw and Qw

In this appendix we characterize various optimization problems that search for a feasible stochastic
linear classifiers. The optimization problems depend on the information we assume about Pw and
Qw, and their solutions are used in the proposed algorithms. We will assume that the vectors a and b
are linearly independent throughout the appendix.

We first discuss the basic problem where the value of both Pw and Qw are given (Appendix E.1).
In Appendix E.2 we then show, that the optimal solution within a cell (as define in Appendix C) is
found in one of the corners of that cell. The solution is described in Appendix E.1 and E.2 and used
in algorithm FixedPQ. Next, in Appendix E.3 we solve the optimization used in FindPSearchQ
for finding a feasible stochastic linear classifier where only the value of Pw is given.

Finally, in Appendix E.4, we show that the set of feasible stochastic linear classifiers restricts the
domain of WGI where solutions can be found.

E.1. Values of Pw and Qw are given

In this section we assume that the values of both Pw and Qw are given, and we would like to compute
whether there exists a feasible w, namely, ‖w‖ = 1, that attains those values. Such a w implies a
feasible stochastic linear classifier. Let the values be: Pw = p and Qw = q. The following lemma
characterizes the solution.

Lemma E.1 Let a = D>v X and b = (Dv � y)>X , and assume that they are linearly independent.
For the quadratic optimization problem:

w∗ = arg min ‖w‖22
Pw = p

Qw = q

We have that,

w∗ =
(2q − ρ)(a · b)− (2p− 1)‖b‖2

‖a‖2‖b‖2 − (a · b)2
a +

(2p− 1)(a · b)− (2q − ρ)‖a‖2

‖a‖2‖b‖2 − (a · b)2
b

We will use Lemma E.1 in the following way. If for a given (p, q) we have that resulting w∗ has
‖w∗‖ ≤ 1, then we found a feasible stochastic linear classifier. Otherwise, we can conclude that
there is no feasible stochastic linear classifier for (p, q), since w∗ minimizes the norm.
Proof Recall that

Pw = 0.5 ·D>v Xw + 0.5 = p and Qw = 0.5 · (Dv � y)>Xw + 0.5ρ = q

We define a>w = 2p− 1 = p̄ and b>w = 2q − ρ = q̄. With this notation we have

min 0.5

d∑
i=1

w2
i

a> · w − p̄ = 0

b> · w − q̄ = 0
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We solve the optimization using the Lagrange multipliers:

L(w, λ1, λ2) = 0.5
d∑
i=1

w2
i + λ1(a>w − p̄) + λ2(b>w − q̄)

Considering the derivatives of the Lagrangian, we have

∂L

∂wi
= wi + λ1ai + λ2bi = 0 (16)

which implies that w = −λ1a− λ2b. Also,

∂L

∂λ1
= a>w − p̄ = 0 (17)

Using that w = −λ1a − λ2b we have that −λ1‖a‖2 − λ2(a · b) − p̄ = 0 which implies that
λ1 = −λ2(a·b)+p̄

‖a‖2 .1 We consider the other derivative,

∂L

∂λ2
= b>w − q̄ = 0 (18)

Similarly, this implies that −λ1(a · b)− λ2‖b‖2 − q̄ = 0. Solving for λ1 and λ2 and w∗ we get,

λ2 =
p̄(a · b)− q̄‖a‖2

‖a‖2‖b‖2 − (a · b)2

λ1 =
q̄(a · b)− p̄‖b‖2

‖a‖2‖b‖2 − (a · b)2

w∗ =
q̄(a · b)− p̄‖b‖2

‖a‖2‖b‖2 − (a · b)2
a +

p̄(a · b)− q̄‖a‖2

‖a‖2‖b‖2 − (a · b)2
b (19)

Notice that this solution is valid only when the denominator is not 0. Therefore, it is valid if the a
and b vectors are not in the same direction, i.e., ∀λ : a 6= λb.

E.2. Values of Pw and Qw are within specific ranges

In this section we consider finding a feasible stochastic linear classifier inside a certain cell of values
of Pw and Qw (see Appendix C). The cell has the parameters pc and α, in addition to ε ∈ (0, 1). Let
U(Pw, ρ) and L(Pw, ρ) be linear functions which bound the values of Qw in the cell from above
and below, respectively. The exact linear function depend on the sub-domain we are considering,
namely the upper and lower boundaries of the region. Formally we solve the following quadratic
optimization problem:

min ‖w‖22
p ≤ Pw ≤ p+ ε

(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ) ≤ Qw ≤ αU(Pw, ρ) + (1− α)L(Pw, ρ)

1. We note that ‖a‖ > 0 since we assume a coordinate with a fixed positive value for every sample, to allow for a
threshold.
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Since we minimize the norm of w, if there exists a feasible stochastic linear classifier in the cell, the
result of this optimization would be feasible. If there is no feasible stochastic linear classifier in this
cell, the result of this optimization would be a non feasible w (either ‖w‖ > 1 or no solution at all).

Lemma E.2 Let a = D>v X and b = (Dv � y)>X , and assume they are linearly independent. Let
ε ∈ (0, 1), α ∈ [ε, 1] and p ∈ [0, 1− ε]. Let U(Pw, ρ) and L(Pw, ρ) be linear functions, such that:

∀Pw ∈ [p, p+ ε] :

{
L(Pw, ρ) < U(Pw, ρ) p ∈ (0, 1)

L(Pw, ρ) = U(Pw, ρ) p = 0 or p = 1

Then the solution for:

min ‖w‖22
p ≤ Pw ≤ p+ ε

(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ) ≤ Qw ≤ αU(Pw, ρ) + (1− α)L(Pw, ρ)

coincides with a solution of

min ‖w‖22
Pw = p′

Qw = q′

for p′ ∈ {p, p+ε} and q′ ∈ {(α−ε)U(Pw, ρ)+(1−α+ε)L(Pw, ρ), αU(Pw, ρ)+(1−α)L(Pw, ρ)}

We note that in order to compute the actual value, one could use the solution of Lemma E.1 in
order to evaluate each of the four combinations for (p′, q′). The above lemma guarantees that the
optimal solution indeed coincides in one of the corners.
Proof The above optimization is equivalent to the following optimization problem:

min 0.5

d∑
i=1

w2
i

hI︷ ︸︸ ︷
p− Pw ≤ 0

hII︷ ︸︸ ︷
Pw − (p+ ε) ≤ 0

hIII︷ ︸︸ ︷
(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ)−Qw ≤ 0

hIV︷ ︸︸ ︷
Qw − αU(Pw, ρ)− (1− α)L(Pw, ρ) ≤ 0

Since Pw, Qw, U and L are all linear functions of w with the constants X , y, Dl and ρ, this
formulation corresponds to an optimization problem with a quadratic target and linear constraints.
We solve using the Lagrange multipliers:

L(w, λ1, λ2, µ1, µ2) = 0.5 ·
d∑
i=1

w2
i + λ1hI + λ2hII + µ1hIII + µ2hIV
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We want to minimize L s.t λ1, λ2, µ1, µ2 ≥ 0.
First we consider the pair hI and hII ; if both constraints are summed the result is,

p− Pw + Pw − (p+ ε) = −ε < 0

Therefore at least one of the constraints is strictly negative (otherwise their sum cannot be negative).
Since L is to be minimized, for every w the solution (w, λ1, λ2...), is going to select at least one of
λ1 > 0 or λ2 > 0 in order to use the negative term and reach a smaller value of L. According to the
complementary slackness this means that either Pw = p or Pw = p+ ε (of course we cannot have
both).

Next, we consider constraints hIII and hIV ; we denote with ∆ the sum between these two
constraints:

∆ =(α− ε)U(Pw, ρ) + (1− α+ ε)L(Pw, ρ)−Qw +Qw − αU(Pw, ρ)− (1− α)L(Pw, ρ)

=ε (L(Pw, ρ)− U(Pw, ρ))

Since ε > 0 we only need to consider the term (L(Pw, ρ)− U(Pw, ρ)). We have three cases: Pw = 0,
Pw = 1 and 0 < Pw < 1.

For the cases Pw = 0 and Pw = 1, according to the definition of U and L (L(0, ρ)− U(0, ρ)) =
0 or (L(1, ρ)− U(1, ρ)) = 0 correspondingly. For both ∆ = 0, and both hIII and hIV collapse
to Qw = 0 or ρ. Therefore the solution is attained either at (0, 0) for when Pw = 0 or at (1, ρ) for
when Pw = 1.

Next, since for 0 < Pw < 1, L(Pw, ρ)− U(Pw, ρ) < 0 and ε > 0 therefore ∆ < 0. Similarly to
the Pw constraints, according to the complementary slackness, this means that either hIII or hIV is
tight.

Therefore each minimal norm solution occurs when exactly one of hI or hII is tight, and when
one of hIII or hIV is tight. In each of those four cases, the solution occurs in one of the corners of
the cell, which in turn is the same as solving the optimization problem for constant values of Pw and
Qw for each of the corners of the cell and taking the best solution.

E.3. Given value Pw search over Qw
This section takes a different approach then the previous ones. We search for a feasible stochastic
linear classifier given a value for only Pw. Instead of minimizing the norm of the classifier, we search
for Qw values that minimize the WGI under the constraint that the solution is feasible.

The following lemma characterizes the solution when we minimize directly WGI for a given Pw.
(Note that when we fix the value of Pw the function WGI is convex.)

Lemma E.3 Let a = D>v X and b = (Dv � y)>X , and assume that they are linearly independent.
Let b̄ = b− (a·b)

‖a‖2a. Then for:

w∗ = arg min WGI(p,Qw)

Pw = p
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then the two solutions are,

w∗ =
2p− 1

‖a‖2
a±

√
‖a‖2 − (2p− 1)2

‖a‖‖b̄‖
b̄

Proof The first observation we have is that for a fixed Pw = p, q = ρp is a maximum for WGI, and
since the second derivative of WGI is negative, we get that WGI attains a minimal value when Qw is
either maximized or minimized. Therefore we substitute the original problem with the following two
optimization problems

Qmax = arg max Qw and Qmin = arg minQw

Pw = p Pw = p

‖w‖2 ≤ 1 ‖w‖2 ≤ 1

where the first constraint is used to fix Pw and the second constraint is used to bound the norm of
w. Now, we will translate the maximization while using the previous expressions for a, b and set
p̄ = 2p− 1.

maxb>w

a>w − p̄ = 0

‖w‖2 ≤ 1

We rewrite b = αa + b̄ as a sum of: (1) α · a which is b’s projection over a and (2) b̄ which is
a vector that is orthogonal to a, i.e., (a · b̄) = 0. (Since a and b are linearly independent we have
b̄ 6= 0.) We write w as:

w = µ1a + µ2b̄ + w̄

where w̄ is orthogonal to a and b̄. The optimization becomes:

max αµ1‖a‖2 + µ2‖b̄‖2

µ1‖a‖2 − p̄ = 0

µ2
1‖a‖2 + µ2

2‖b̄‖2 + ‖w̄‖2 ≤ 1

When we substitute µ1 = p̄
‖a‖2 we get:

max αp̄+ µ2‖b̄‖2

p̄2

‖a‖2
+ µ2

2‖b̄‖2 + ‖w̄‖2 ≤ 1

Since αp̄ is a constant and ‖b̄‖2 is positive, the optimization is equivalent to:

max µ2

µ2
2‖b̄‖2 + ‖w̄‖2 ≤ 1− p̄2

‖a‖2
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Notice that since only µ2 is a variable that contributes to the max, we would like to make it as large
as possible under the constraint. Therefore the optimal solution would be when the w̄ = 0, and the
expression of µ2 would be:

µ2
2‖b̄‖2 = 1− p̄2

‖a‖2
⇒ µ2 = ±

√
‖a‖2 − p̄2

‖a‖‖b̄‖

The maximal solution for the optimization is achieved with a positive µ2 in the above expression:

µ2 =

√
‖a‖2 − p̄2

‖a‖‖b̄‖

Finally the solution for w is,

w =
p̄

‖a‖2
a+

√
‖a‖2 − p̄2

‖a‖‖b̄‖
b̄

Notice that for the minimization problem minQw we simply select the negative value of µ2, and get,

w =
p̄

‖a‖2
a−

√
‖a‖2 − p̄2

‖a‖‖b̄‖
b̄

This implies that the solution is either one of:

w∗1,2 =
2p− 1

‖a‖2
a±

√
‖a‖2 − (2p− 1)2

‖a‖‖b̄‖
b̄

E.4. Feasible Ranges for Pw and Qw
In all of our problems we have constraints such as Pw = p and Qw = q (or their range variants).
However we should note that not all possible values of p and q are applicable for a given data:

Lemma E.4 Let a = D>v X and b = (Dv � y)>X and let w be a feasible stochastic linear
classifier. Then:

0.5− 0.5‖a‖ ≤ Pw ≤ 0.5 + 0.5‖a‖
0.5ρ− 0.5‖b‖ ≤ Qw ≤ 0.5ρ+ 0.5‖b‖

Proof First:

− ‖a‖‖w‖ ≤ a> · w ≤ ‖a‖‖w‖ → −‖a‖ ≤ a> · w ≤ ‖a‖
− ‖b‖‖w‖ ≤ b> · w ≤ ‖b‖‖w‖ → −‖b‖ ≤ b> · w ≤ ‖b‖

where the left-hand side is a property of ·, and the right-hand is because w is feasible. Applying the
above inequalities in expression 5: Pw = 0.5a> · w + 0.5 and Qw = 0.5b> · w + 0.5ρ concludes
the proof.
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p

q

1− ρ ρ

ρ

Figure 6: Partition Pw to slices for ρ ≥
0.5

p

q

1− ρ ρ

ρ

Figure 7: Partition (Pw, Qw) in to trape-
zoid cells for ρ ≥ 0.5

Appendix F. Approximation Algorithms

This section details the three algorithms discussed in theorem 6.2:

Theorem 6.2 Let S be a sample, Dv be a distribution over S, and ε be an approximation parameter.
Let a = D>v X and b = (Dv � y)>X . Then: For the case where a and b are linearly independent,
algorithms FixedPQ and FixedPSearchQ guarantee an ε-approximation for WGI using a
stochastic linear classifier. Algorithm FixedPQ runs in time O(Nd) + O

(
ε−2 log

(
ε−1
))

, and
algorithm FixedPSearchQ runs in time O(Nd) + O

(
d
ε

)
. And for the case where a and b are

linearly dependent, i.e., b = λa, algorithm DependentWGI runs in time O(Nd), and achieves the
optimal result for WGI using a stochastic linear classifier.

For each algorithm we provide pseudo code, correctness proof and a complexity analysis:
Algorithm FixedPQ is in Appendix F.1, Algorithm FixedPSearchQ is in Appendix F.2 and
Algorithm DependentWGI is in Appendix F.3.

As mentioned all three algorithms depend on a the weighted average of the data, and b the
weighted average of the positive class. We note here that both a and b, along with other static
related computations such as ‖a‖, ‖b‖ are treated as global variables which are computed once in
the beginning of each algorithm. We also note that the constant C = 100 used in the pseudo code
corresponds to the bound from Appendix C.

F.1. FixedPQ Approximate minimal Gini Index in cells of Pw, Qw
In this section we describe Algorithm FixedPQ. After computing the expressions as described
earlier, we generate a list candidates that contains pairs (p, q) which are corners of the trapezoid
cells:

Initially we generate a set of equally spaces Pw values from the interval [max (0, 0.5(1− ‖a‖)),
min (1, 0.5(1 + ‖a‖))]. This interval is the intersection of the domain of WGI and the feasible range
of w as described in Appendix E.4. The set of Pw values also includes the values for ρ and 1− ρ in
order to ensure that the candidates partition the domain according to the regions defined in Appendix
C. Figure 7 shows the partition to trapezoid cells.

Next, for eachPw value we define equally spaced values in ranges [max (0, p+ ρ− 1, 0.5(ρ− ‖b‖)),
min (ρp, 0.5(ρ+ ‖b‖))] and [max (ρp, 0.5(ρ− ‖b‖)),min (ρ, p, 0.5(ρ+ ‖b‖))]. Again, these ranges
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take into consideration both the sub-domains of the WGI and the feasible ranges of the stochastic
linear classifier.

The equally spaced values are generated using the GetRange function, and we always partition
into C

ε values in order to achieve an approximation of ε (see correctness below). This results in
O(ε−1) values of Pw, and for each of those O(ε−1) for the Qw values below and above Qw = ρPw.
The total number of candidates is O(ε−2).

The list candidates now contains pairs of (Pw, Qw) which are sorted according to WGI in an
ascending order. For each point made of Pw and Qw values will try to fit a stochastic linear classifier:
First we use the function GetCandidateWeightsTerms to get the scalars α and β. Since we also
know ‖a‖, ‖b‖ and (a · b) we measure the feasibility of the classifier w before computing it. Once
we find a feasible classifier, we compute it explicitly and return it.

Algorithm correctness Denote w∗ the optimal feasible solution with respect to WGI: WGIw∗ =
min{w|‖w‖≤1}WGIw. Let Cells be the union of non-intersecting trapezoid cells parametrized by
step size ε/C. We denote c∗ ∈ Cells the cell which contains w∗. Denote Wc the feasible solutions
proposed to cell c ∈ Cells by the optimization in Appendix E.2 (since w∗ is feasible, we know that
at least one corner of cell c is feasible). Specifically for c∗, we denote the best proposed solution as
w1:

w1 = arg min
w∈Wc∗

(WGI(w))

Since both w∗, w1 ∈ c∗ according to the bound we get WGIw∗ ≤WGIw1 ≤WGIw∗ + ε.
Next, we define WCells as the union of the solutions from all the cells: WCells =

⋃
c∈CellsWc.

WCells is the collection of all the classifiers that would have been created from evaluating every point
in candidates. Since Wc∗ ⊂WCells we have w1 ∈WCells. Let w2 be the minimal solution from all
the solutions in WCells:

w2 = arg min
w∈WCells

(WGIw)

In particular,WGIw∗ ≤WGIw2 ≤WGIw1 ≤WGIw∗+ε, and we notice thatw2 is actually the
result returned by the algorithm. We therefore conclude that the algorithm returns an ε approximation
to the optimal WGI.

Time complexity We start by computing ρwhich consists of dot-product over vectors of dimension
N and takes time O(N). Next, we calculate a, b, by multiplying an N dimensional vector by an
N × O(d) matrix, which is done in time O(Nd). Computing the expressions that are used often
takes time O(d).

We create a list candidates, consisting of O(ε−2) pairs (p, q) in timeO(ε−2). Next, we compute
the WGI for each candidate (p, q) in O(1) time, and we sort them using the WGI values in time
O
(
ε−2 log (ε−2)

)
= O

(
ε−2 · log (ε−1)

)
.

Finally we try to match a classifier for each point: we iterate over (sorted) candidates, and
we call the function GetCandidateWeightsTerms which runs in time O(1) since it is using the
pre-calculated expressions. There are at most O

(
ε−2
)

items in the list. Therefore this step costs
O
(
ε−2
)
. Once a solution is found to be feasible , only then do we compute the weight vector in time

O(d).
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Algorithm FixedPQ(X - dataset, Dv - data distribution, y - labels, ε - approximation range)
1 Store globally: ρ← Dv · y,a> ← Dt

vX, b
> ← (Dv � y)>X

2 Compute once and store globally: ‖a‖, ‖b‖, (a · b)
3 candidates← new List()
4 foreach p ∈GetRange (max (0, 0.5(1− ‖a‖)), min (1, 0.5(1 + ‖a‖)), Cε )

⋃
{ρ, 1− ρ} do

5 foreach q ∈GetRange (max (0, p+ ρ− 1, 0.5(ρ− ‖b‖)), min (ρp, 0.5(ρ+ ‖b‖)), Cε ) do
6 candidates.Insert((p, q))

end
foreach q ∈GetRange (max (ρp, 0.5(ρ− ‖b‖)), min (ρ, p, 0.5(ρ+ ‖b‖)), Cε ) do

7 candidates.Insert((p, q))
end

end
8 candidates← candidates.Sort(ascending=True, by = WGI(p, q))
9 foreach p, q ∈ candidates do

10 (α, β)← GetCandidateWeightsTerms(p, q)
11 if α2 · ‖a‖2 + 2αβ · (a · b) + β2 · ‖b‖2 ≤ 1 then
12 return (α · a + β · b,WGI(p, q))

end
end

13 return "Error - Impossible"
Procedure GetCandidateWeightsTerms(p, q)

1 p̄← 2p− 1 , q̄ ← 2q − ρ
2 return

(
q̄·(a·b)−p̄·‖b‖2
‖a‖2·‖b‖2−(a·b)2

, p̄·(a·b)−q̄·‖a‖2
‖a‖2·‖b‖2−(a·b)2

)
Procedure GetRange(lower, upper, steps)

1 return {p| equally spaced points in [lower,upper] with step= upper - lower
steps }

Algorithm 2: Approximating optimal WGI with 2 ranges
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The final complexity is:

O(Nd) +O(d) +O
(
ε−2
)

+O
(
ε−2 · log (ε−1)

)
+O

(
ε−2
)

+O(d) = O(Nd) +O
(
ε−2 · log (ε−1)

)
F.2. FixedPSearchQ Approximate minimal Gini Index in range of Pw
In this section we describe Algorithm FixedPSearchQ. After computing the global expressions
as described earlier, we generate a list candidates that contains values p which are equally spaced
values on the feasible range of Pw:

This set is generated from the interval [max (0, 0.5(1− ‖a‖)),min (1, 0.5(1 + ‖a‖))]. This
interval is the intersection of the domain of WGI and the feasible range of w as described in
Appendix E.4. The set of Pw values also includes the values for ρ and 1− ρ in order to ensure that
the candidates partition the domain according to the regions defined in Appendix C. Figure 6 shows
the partition to slices of trapezoid cells.

The equally spaced values are generated using the GetRange function, and we partition into
C
ε values in order to achieve an approximation of ε (see correctness below). This results in O(ε−1)

values of Pw.
Next, we compute b̄ which is b minus a’s projection over it. This allows for the computation of

u and v. These vectors are components of the final solution.
Finally, for each Pw we fit two solutions which are functions of Pw, u and v. We keep the best

result ŵ and its matching WGI ĝ using the function SetCandidateIfBetter, and return ŵ and ĝ at
the end of the loop.

Algorithm correctness Given an ε parameter for the algorithm, we know that the optimal feasible
solution w∗ belongs to some range of Pw in the grid, denote that range as C∗ = [α, β].

Denote p∗ = Pw∗ , q
∗ = Qw∗ . First we note that p∗ ∈ C∗ (by definition), second, denote by Cq

the Q range that would have included w∗ if we were to partition into trapezoid cells. Since w∗ is
feasible, at least one of the corners of C∗ ×Cq is feasible. There is a feasible solution that we denote
as wc at α or β. Without loss of generality assume it is α. According to the bound on the WGI in
Appendix C, this candidate solution is at most ε away from w∗. Since our algorithm considers all
the possible feasible solutions for α it also considers wc and therefore the result of the optimization
problem as presented in Appendix E.3 denoted as w1 is at least as good as wc:

WGIw1 −WGIw∗ ≤WGIwc −WGIw∗ ≤ ε

Finally, if the algorithm returns a different solution w2 it is only because WGIw2 ≤WGIw1 , and
we have

WGIw∗ ≤WGIw2 ≤WGIw1 ≤WGIw∗ + ε

namely, w2 is also an ε approximation.

Time complexity We start by calculating ρ which consists of dot-product of vectors of dimension
N and done in time O(N). Next, we calculate a an b, by multiplying an N dimensional vector by an
N ×O(d) matrix in time O(Nd). We calculate expressions that are used often, each in time O(d).

Finally the loop iterates over O(ε−1) values of p. For each such value, the algorithm computes a
weight vector and uses the method SetCandidateIfBetter which has time complexity O(d). The
total cost of all the iterations is O(dε ).
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Algorithm FixedPSearchQ(X - dataset, Dv - data distribution, y - labels, ε - approximation
range)

1 Store globally: ρ← Dv · y,a> ← Dt
vX, b

> ← (Dv � y)>X
2 Compute once and store globally: ‖a‖, ‖b‖, (a · b)

3 b̄← b− (a·b)
‖a‖2 · a

4 u = 1
‖a‖2 · a, v = 1

‖a‖‖b̄‖ · b̄
5 ŵ ← ⊥, ĝ ← ⊥
6 foreach p ∈GetRange (max (0, 0.5(1− ‖a‖)), min (1, 0.5(1 + ‖a‖)), Cε )

⋃
{ρ, 1− ρ} do

7 p̄← 2p− 1

8 w1 ← p̄ · u +
√
‖a‖2 − p̄2 · v

9 ŵ, ĝ ← SetCandidateIfBetter(w1,ŵ,ĝ,p)
10 w2 ← p̄ · u−

√
‖a‖2 − p̄2 · v

11 ŵ, ĝ ← SetCandidateIfBetter(w2,ŵ,ĝ,p)

end
12 if ŵ = ⊥ then
13 return "Error - Impossible"

end
14 return ŵ, ĝ

Procedure SetCandidateIfBetter(w,ŵ,ĝ,p)
1 q ← b>w+ρ

2
2 if WGI(p, q) ≤ ĝ then
3 return w,WGI(p, q)

end
4 else
5 return ŵ, ĝ

end
Procedure GetRange(lower, upper, steps)

1 return {p| equally spaced points in [lower,upper] with step= upper - lower
steps }

Algorithm 3: Approximating optimal WGI with one range over Pw
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The final complexity is:

O(Nd) +O(d) +O

(
d

ε

)
= O(Nd) +O

(
d

ε

)
F.3. DependentWGI Dependent constraints case

In this section we describe Algorithm DependentWGI. Since we have an analytical solution
(Appendix D), we simply apply it and return its result as w and the corresponding WGI g.

Algorithm DependentWGI(X - dataset, Dv - data distribution, y - labels)
1 Store globally: ρ← Dv · y,a> ← Dt

vX, b
> ← (Dv � y)>X

2 Compute once and store globally: ‖a‖
3 Get λ s.t b = λa . According to our assumption, this always happens
4 w ← a

‖a‖

5 g ← 4
(
ρ− (ρ+λ‖a‖)2

2(1+‖a‖) −
(ρ−λ‖a‖)2
2(1−‖a‖)

)
6 return w, g

Algorithm 4: Approximating optimal WGI dependent case

Algorithm correctness See Appendix D.

Algorithm complexity We start by calculating ρ which consists of dot-product over vectors of
dimension N in time O(N). Next, we calculate a and b, by multiplying an N vector by an N ×O(d)
matrix in time O(Nd). Also, we calculate ‖a‖ in time O(d). And finally, we extract λ which is O(1)
without verification (simply, λ = b1

a1
), or O(d) with verification (make sure that ∀i ∈ [1, d] : λ = bi

ai
).

We compute w in time O(d) and the drop in constant time.
The final complexity is:

O(Nd) +O(d) +O(d) = O(Nd)

Appendix G. WGI not convex

In this section we are going to show that the WGI is non convex in w.

Lemma G.1 The function WGIw is non convex

Proof Let x1, x2 ∈ Rd be samples s.t x1,1 = −x2,1 = 2x and ∀i ∈ [2, d] : x1,i = x2,i (x1 and x2

are opposite in the first dimension, and the same in all other). Let y1 = 1 be the label of x1 and let
y2 = 0 be the label of x2. Also let D be the data distribution s.t D(x1) = D(x2) = 0.5. We note
that this entails that ρ = 0.5 and that a1 = 0 while b1 = x.

We define three feasible stochastic linear classifiers (1) w0 = 0 all zeros vector, (2) w1 whose
first coordinate is 1 and the rest 0: w1,1 = 1, ∀i ∈ [2, d] : w1,i = 0 and (3) wm whose first coordinate
is 0.5 and the rest 0: w1,1 = 0.5, ∀i ∈ [2, d] : w1,i = 0. We see that

a>w0 = a>w1 = a>wm = 0

b>w0 = 0, b>w1 = x, b>wm = 0.5x
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Since WGIw = 4
(
ρ− Q2

w
Pw
− (ρ−Qw)2

1−Pw

)
by equation 5 we get:

WGIw = 4

(
ρ−

(b
>·w+ρ

2 )2

a>·w+1
2

−
(ρ− b>·w+ρ

2 )2

1− a>·w+1
2

)
= 4

(
ρ− (ρ+ b> · w)2

2(1 + a> · w)
− (ρ− b> · w)2

2(1− a> · w)

)

We substitute the values of ρ, a> · w and b> · w:

WGIw0 = 4

(
0.5− 0.52

2
− 0.52

2

)
= 1

WGIw1 = 4

(
0.5− (0.5 + x)2

2
− (0.5− x)2

2

)
= 4

(
0.25− x2

)
= 1− 4x2

WGIwm = 4

(
0.5− (0.5 + 0.5x)2

2
− (0.5− 0.5x)2

2

)
= 1− x2

Since wm = 0.5 · w0 + 0.5 · w1, in order to show non convexity we show that WGIwm >
0.5 ·WGIw0 + 0.5 ·WGIw1 :

1− x2 > 0.5 · 1 + 0.5(1− 4x2) = 1− 2x2

which concludes the proof.

Appendix H. Approximate γ Margin With a Stochastic Tree

In this appendix we show that the class of decision trees with stochastic linear classifiers has an
efficient representation with a bounded error for a γ margin feasible linear separator.

Theorem H.1 Let w be a γ margin feasible linear separator, then there exists a stochastic tree T
with feasible linear separators in the internal nodes such that the error of the tree is bounded by ε
and the depth of T is O

(
ln (ε−1)γ−2

)
.

Proof Let y ∈ {0, 1} be a binary label. Let w be a linear separator such that ∀x : (2y−1) ·w ·x ≥ γ.
We denote Zi as a random variable such that: Pr (Zi = 1) = 1+w·x

2 and Pr (Zi = −1) = 1−w·x
2 .

Let S =
∑h

i=0 Zi be a random variable which is the sum of h independent Zis. We note that
E [Zi] = 1 · Pr (Zi = 1) − 1 · Pr (Zi = −1) = w · x and therefore by the expectation of a sum
E [S] =

∑h
i=0E[Zi] = h(w · x).

Let x be a positive sample, meaning w · x ≥ γ. We bound the probability of the sum S to be
negative by using Hoeffding’s inequality:

Pr (S ≤ 0) = Pr (S − E [S] ≤ −E [S]) = Pr (S − E [S] ≤ −h(w · x))

≤ exp
−2 (h(w · x))2∑h

i=0 22
= exp

−h (w · x)2

2

Since w · x ≥ γ, we get Pr (S ≤ 0) ≤ exp −hγ
2

2 , and if we want to drive the probability below ε:

Pr (S ≤ 0) ≤ exp
−hγ2

2
≤ ε→ −hγ

2

2
≤ ln ε→ h ≥ 2 ln (ε−1)γ−2
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Similarly, for a negative sample and Pr (S ≥ 0) ≤ ε we also require h ≥ 2 ln (ε−1)γ−2.
We now describe a stochastic decision tree T : T is a full tree of depth h ≥ 2 ln (ε−1)γ−2. Each

internal node contains the stochastic linear separator w and each leaf l ∈ leaves(T ) is labeled 1 if
the path from root(T ) to l contains more left turns than right and 0 otherwise.

We notice that when predicting for sample xi using T , the decision in each internal node is
modeled by Zi. A positive sample x is classified positive according to the expectation over the
leaves:

Pr (yi = 1) =
∑

l∈leaves(T )

label(l) Pr (Reach(x, l))

We consider all the positive labels, since the negative labels contribute 0 to the expectation:

Pr (yi = 1) =
∑

l∈leaves(T )|label(l)=1

Pr (Reach(x, l))

By the construction of T , this probability equals the probability of reaching leaves with more left
turns than right (therefore these leaves are labeled as 1). Namely,

Pr (yi = 1) =
∑

l∈leaves(T )

label(l) Pr (Reach(x, l)) = Pr (S ≥ 0) ≥ 1− ε

And therefore the error probability Pr (yi = 0) ≤ ε. Similarly, we can show that the error for a
negative sample is also bounded by ε. Finally this ensures that the expected error is also smaller than
ε as required.

Appendix I. Empirical Evaluations

I.1. Validating Strong Learnability

In this section we test our classifier in various learning scenarios to verify it captures the target
function well. We demonstrate this ability with targets with increasing difficulty as well as unbalanced
classes. All experiments were carried in the setting of a 2-dimensional space on random unit size
vectors. The reported results are the average of 10 repetitions of each experiment, and the number of
internal nodes in the tree is 15 unless otherwise noted.

Single Hyperplane: In the first experiment the concept class is a hyperplane which intersects
the origin and both classes have equal weight. As figure 8 shows, the algorithm constantly selects
hyperplanes which are very close to the target function, and indeed as a result the accuracy of the
trained model is around 0.99 which shows that the target is captured well.

Single Hyperplane and Artificial Bias: Next, we investigate the behavior when we add a bias
term to the classifier. We model the bias term by adding a constant-valued feature to each example.
We note that since the decision boundary intersects the origin there is no reason to add this bias term,
however, we want to examine the case where the classifier and the target are mismatched (in practice
when the target function is unknown it may be beneficial to use a bias in different scenarios).
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Figure 8: Single Hyperplane Decisions
The decisions taken by the proposed classifier. The title explains the position
in the tree hierarchy (root is index 0). On the left the input distribution s.t the
circle size is relative to sample weight and the color is based on the true label.
On the right the decision of the internal node.
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Table 1: Bias effects on confidence
b bias cb positive mean θb normalization coefficient

0 0.8 1
1 0.71 0.707

1.5 0.67 0.555
2 0.63 0.447
3 0.6 0.316
5 0.55 0.196
10 0.51 0.099

Now, the data contains an artificial constant that the classifier should theoretically ignore. A-
priori, we know it is possible to cancel the effect of the bias: both a and b will have their last
coordinate to be the value of the bias, the decision in each node of the tree - w is a linear combination
of the form w = αa + βb. Therefore, for the bias to be canceled out, the classifier needs to enforce
α− β = 0.

In practice, we indeed see a trend of the classifier to reduce the last coordinate to 0. However as
shown in table 1, we also see a drop in the confidence when the bias is increased. This phenomena is
explained if we consider the limitations we imposed on the stochastic linear classifier:

When the bias (denoted as b) is zero, the data vector x is exactly norm one i.e 1 =
∑
x2
i . Since

the stochastic linear classifier is restricted to consider input vectors of norm ≤ 1, once a bias b > 0 is
introduced, all the true data coordinates (xi) are normalized by a factor θb which is:

1 =
∑

(θb · xi)2 + b2 → θb =
1√

1 + b2

Denote xb and wb the data and the classifier if the data is modeled with bias b. Even if we assume that
∀b : w0 = wb (the algorithm completely ignores the bias) we still need to consider how the classifier
output changes because of this added bias. Denote by c = w0·x0+1

2 (the result of the prediction
without bias) thus w0 · x0 = 2c− 1, the new prediction for bias b > 0 is

cb =
wb · xb + 1

2
=
w0 · xb + 1

2
=
θb · w0 · x0 + 1

2
= θb(c− 0.5) + 0.5

The first transition is because we assumed that w0 = wb.
The confidence is the distance cb − 0.5 and therefore for b is θb(c− 0.5) and since θb < 1 we

have that cb is always smaller than the confidence for bias 0 (which is c−0.5). In other words, even if
we have the same stochastic linear classifier, we lose a factor of θb in confidence due to the restriction
‖x‖ ≤ 1. We notice that by weakening the restriction to ‖w · x‖ ≤ 1 we could have avoided the
reduction in confidence however it is unclear what effect it would have on our solution since the
optimization solved in Appendix E.1 will no longer hold.

Table 1 shows the drop in prediction confidence in the first internal node as the bias changes. We
note that in our tests the weight in the predictor that matched the bias was reduced to almost 0. The
middle column shows that the prediction confidence was indeed reduced according to the relation
described above.

Single Hyperplane with Unbalalnced Labels In the next test, we show strong learnability even
for unbalanced classes. For this experiment we changed the ratio between classes from 1:1 we
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had in the previous experiments to 2:1 ratio between the classes. We observed that our classifier’s
accuracy dropped to 0.94. In order to understand this drop we considered the first split of the tree. We
noticed that even though the accuracy dropped, when considering the soft accuracy i.e the average
of ‖yi − ŷi‖ we see that both the "basic" balanced case and the unbalanced case both consistently
reach to scores around 0.3. We expected the soft accuracy value to be comparatively low compared
to the accuracy since we now care about the confidence of the classification and not the sign. We
know that the stochastic linear classifier could potentially reach perfect confidence but it is rarely
achieved in practice. Therefore the drop in accuracy is attributed to the fact that the classifier tries
to optimize the distances to the separating hyperplane and not the sign, but it still preforms well in
terms of accuracy (as it still scores accuracy of 0.94).

Multiple Hyperplanes - XOR In the next set of experiments the target function is a XOR of the
input hyperplanes (XOR is the product of the signs of w · x for every w in the target function).
We chose this type of targets, since our classifier is an aggregation of linear decisions and should
therefore capture this structure well.

In the first experiment we have two fixed hyperplanes. The reason the hyperplanes are fixed is
to make sure the classes are balanced. In the second experiment, we again have two hyperplanes
but now these are chosen randomly, which may result in very unbalanced classes (for instance if the
two hyperplanes lie very very close to each other). In the last experiment we raise the number of
hyperplanes to three.

As expected, the accuracy goes down as the target becomes more complex: in the first experiment
the classifier has an accuracy of 0.94 while just changing to unbalanced classes in the second
experiment causes the accuracy to drop to 0.9. The third experiment which has a more complex target
achieves an initial accuracy of 0.81. For the last experiment we also tested adding more internal
splits, raising the number of internal nodes from 15 (which we use as a default parameters) to 30
raises the accuracy to 0.9. Raising the number of nodes to 60 gives just 0.03 more to a total of 0.93.
In general we see deceasing accuracy gains as we add more nodes.

Finally, considering all the above experiments we can conclude that the proposed classifier is
able to capture these target concepts well (even non linear ones).

I.2. Comparison to other classifiers

This section discuss empirical evaluations of our classifier on synthetic data-sets we created with
the motivation of understanding the benefit of our decision tree using stochastic linear classifiers,
compared to decision tree with decision stumps, e.g., CART, and a standard linear classifier, e.g.,
linear SVM. We selected the simulated data, with the goal of highlighting the similarities and
differences between the classifiers. In the following, we described the results of two simulated data
sets.

In the first experiment we demonstrate that unlike standard decision tree algorithms, our method
fits well a data-set which is labeled according a random linear boundary with noise in a high
dimension. Specifically, we select a random hyperplane w and each sample x is a random unit
vector, where the the label is y = sign(w·x) and dimension is d = 100. We add random classification
noise, i.e., flip the label with probability of θ. We show the accuracy of our model compared to both
CART and linear SVM as a function of the noise rate θ in Figure 9. Clearly, SVM is ideal for this
task, and indeed it outperforms the other two classifiers. We ran both CART and our method to build
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Figure 9: Hyperplane with noise.
Accuracy of the different classifiers for linearly separable points. In orange, our stochas-
tic classifier, blue is CART and grey is linear SVM.

decision trees of depth 10. The results show that our method achieves competitive performance to
SVM while outperforming CART.

The second synthetic data set demonstrates the ability of our classifier to handle non-linearly
separable examples, where the boundaries are not axis aligned. Again, all samples are random unit
vectors of dimension d. The labels correspond to the XOR of the samples with two hyperplanes,
which are perpendicular to each other and are not axis aligned. Specifically we takew1 = [1d/2,1d/2]
and w2 = [−1d/2,1d/2] and the label is y = sign(x ·w1)⊕ sign(x ·w2). Both decision trees were
allowed to reach depth of 10 and the sample size is 10, 000. We used various dimension sizes from
d = 6 to d = 30, and the results are plotted in Figure 3.

The results were in line with out intuition. First, Linear SVM achieves the worst performance
since it does not have the expressive power required for representing this target function. Second, a
decision tree algorithm, such as CART, which considers only a single attribute in each split, requires
a significant depth to approximate this high-dimensional XOR. Finally, our method achieves a
good accuracy since it is not limited to a single hyperplane, as is Linear SVM, nor is it limited to
axis aligned decisions, as is CART. We do note, that since our method is stochastic, we need to
continuously repeat a hyperplane in order to make a split more significant. This explains why, due to
the limited depth of the decision tree, our performance deteriorate as the dimension increases. An
alternative is to limit the number of nodes in the decision tree. Further experiments show that our
method can achieve the above performance with only 50 internal nodes (rather than a depth of size
10, which implies 1024 internal nodes).

40


	Introduction
	Related Work
	Model
	Decision Tree Learning Algorithms
	Stochastic Linear Classifier
	Approximately Minimizing the Gini Index Efficiently
	Empirical Evaluation
	Conclusion
	Decision tree learning algorithm: pseudo code
	Extending the boosting framework to the stochastic settings
	Bounding the WGI by regions
	Partitioning the WGI to monotone regions
	Overview of the partition into cells
	First region: Rb,l
	Second region: Rb,r
	Third region Ra,l
	Fourth region Ra,r
	WGI is continuous in p=0 and p=1

	Solution for the dependent case
	Maximizing Information Gain for Pw and Qw
	Values of Pw and Qw are given
	Values of Pw and Qw are within specific ranges
	Given value Pw search over Qw
	Feasible Ranges for Pw and Qw

	Approximation Algorithms
	FixedPQ Approximate minimal Gini Index in cells of Pw,Qw
	FixedPSearchQ Approximate minimal Gini Index in range of Pw
	DependentWGI Dependent constraints case

	WGI not convex
	Approximate  Margin With a Stochastic Tree
	Empirical Evaluations
	Validating Strong Learnability
	Comparison to other classifiers


