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Abstract

The normalized maximum likelihood (NML) distribution achieves minimax log loss and
coding regret for the multinomial model. In practice other nearly minimax distributions
are used instead as calculating the sequential probabilities needed for coding and prediction
takes exponential time with NML. The Bayes mixture obtained with the Dirichlet prior
Dir(1/2, . . . , 1/2) and asymptotically minimax modifications of it have been widely studied
in the context of large sample sizes. Recently there has also been interest in minimax op-
timal coding distributions for large alphabets. We investigate Dirichlet priors that achieve
minimax coding regret when the alphabet size m is finite but large in comparison to the
sample size n. We prove that a Bayes mixture with the Dirichlet prior Dir(1/3, . . . , 1/3) is
optimal in this regime (in particular, when m > 5

2n + 4
n−2 + 3

2 ). The worst-case regret of
the resulting distribution approaches the NML regret as the alphabet size grows.

Keywords: minimax regret, normalized maximum likelihood, Bayes mixture, large alpha-
bet, universal coding, universal prediction, online learning

1. Introduction

Let xn−1 = (x1, . . . , xn−1) be a sequence of observations from a finite set X , and suppose we
wish to predict the next observation xn. This requires choosing the sequential probabilities
for all xn−1. When xn is observed, we incur the log loss − log p(xn|xn−1) (see e.g. Cesa-
Bianchi and Lugosi, 2006). Predicting all n observations sequentially, our goal is then to
minimize the cumulative log loss −

∑n−1
k=0 log p(xk+1|xk) = − log p(xn).
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An analogous problem appears in source coding where we try to minimize the code-
lengths for each block xn of n symbols. For any probability distribution p, there exists a
uniquely decodable code with code-lengths − log p(xn) (ignoring integer constraints), and
vice versa. The code-length also plays an important role in the minimum description length
(MDL) principle (Grünwald, 2007) where it can be used as a model selection criterion.

The performance of the distribution or strategy p can be measured relative to a known
class of distributions P such as all i.i.d. or Markov sources. For a distribution q, we define
its regret relative to the sequence xn as the excess code-length or log loss compared to the
optimal distribution in P in hindsight:

regret(q, xn) = log
1

q(xn)
− inf
p∈P

log
1

p(xn)
= sup

p∈P
log

p(xn)

q(xn)
.

A special role is given to the distribution that achieves minimax (pointwise) regret

inf
q

sup
xn∈Xn

regret(q, xn),

i.e. minimizes the regret in the worst case. Such minimax methods have been shown to be
robust with respect to different data generating mechanisms where a good choice of prior
is challenging (Eggeling et al., 2014; Määttä et al., 2016).

In this paper we consider the case where we have a parameterized discrete memoryless
source over an alphabet X of size m. Each xi ∈ X is generated independently according to
a probability mass function in the parametric family {p(x; θ) : θ ∈ Θ ⊂ Rd}. Thus

p(xn; θ) =
n∏
i=1

p(xi; θ).

Of particular interest is the multinomial model p(x; θ) = θx,
∑m

j=1 θj = 1, extended to
sequences xn by the i.i.d. assumption. The shortest code-length or least log loss in hindsight
is achieved by the maximum likelihood model p(xn; θ̂(xn)), where

θ̂(xn) = arg max
θ

p(xn; θ).

Shtarkov (1987) proved that for this model (and all other models for which the maxi-
mum likelihood measure is normalizable), the minimax regret is achieved by the normalized
maximum likelihood (NML) distribution

pNML(xn) =
p(xn; θ̂(xn))

Cmn
,

where Cmn =
∑

xn p(x
n; θ̂(xn)) is the Shtarkov sum that goes over all xn ∈ {1, . . . ,m}n. The

NML distribution has uniform regret logCmn for all sequences xn.
The normalizing constant often renders using NML impractical. Even though the nor-

malizing constant can be calculated in linear time in the multinomial case (Kontkanen and
Myllymäki, 2007), obtaining the sequential probabilities needed for coding takes exponen-
tial time. Consequently, other nearly minimax distributions such as Bayes mixtures for
which the sequential predictions can be obtained efficiently have been studied.
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Bayes mixtures exhibit useful properties for approximation of the NML distribution. In
certain exponential families Bayes mixtures are asymptotically minimax for both the worst-
case and the expected regret (Takeuchi and Barron, 1998). For the multinomial model,
Krichevsky and Trofimov (1981) proposed using a Bayes mixture with the Dir(1/2, . . . , 1/2)
prior which has higher regret than the minimax level by a vanishing amount everywhere
except for the boundaries of the frequency composition simplex. This distribution is also
the Jeffreys prior which has a special role as the invariant (or reference) prior (Bernardo,
1979). Barron et al. (2014) showed that even exact representation of NML is possible using
signed mixtures. However, this strategy requires high computational complexity when the
alphabet size is large and is in practice sensitive to numerical errors.

In recent years large alphabet methods have been gaining more attention. The alpha-
bet size can be larger than the sample size or even infinite in application areas such as
natural language processing (Chen and Goodman, 1996) and Bayesian network structure
learning (Silander et al., 2018). Images can also be considered as data associated with a
large alphabet where each pixel can take on 224 different values.

Different strategies for data compression on large alphabets have subsequently been
proposed. The regret over infinite alphabets is infinite (Kieffer, 1978) since describing the
symbols that appear in the sequence requires an unbounded number of bits. In particu-
lar, Orlitsky and Santhanam (2004) showed that when n = o(m),

logCmn ∼ n log
m

n
,

and thus the regret is high when m is large. The work on minimax compression with large
alphabets has subsequently focused on subclasses of i.i.d. distributions such as envelope
classes (Acharya et al., 2014; Bontemps, 2011) and patterns (Orlitsky et al., 2004) that
can be compressed with vanishing regret. Recently there has also been work on codes
that do not assume a fixed subclass in advance but provide optimistic bounds within sub-
classes (Boucheron et al., 2015; Orlitsky and Suresh, 2015).

However, as these codes target a different class of distributions, their code-lengths are
not interchangeable with code-lengths for i.i.d. distributions and thus they are not useful
in for example model selection. A coding distribution for the i.i.d. class is still needed to
calculate a target minimax distribution. Therefore such distributions have recently been
proposed for large alphabets (Yang and Barron, 2017).

In this paper we study the minimax optimal Bayes mixture with a Dirichlet prior in the
large (but finite) alphabet setting. Our main theorem (Theorem 6) states that the minimax
optimal Dirichlet prior is Dir(1/3, . . . , 1/3) when m > 5

2n + 4
n−2 + 3

2 . We also prove that
the worst-case regret of the resulting distribution approaches that of the NML distribution
when m grows and can be used as an approximation of the NML regret. The Bayes mixture
also allows more efficient calculation of the marginal and conditional probabilities needed
for e.g. coding and prediction than earlier proposed distributions.

The rest of this paper is structured as follows. In Section 2 we discuss related work on
Bayes mixtures in the large sample size setting, and then prove the minimax optimality of
the Dir(1/3, . . . , 1/3) prior in the large alphabet setting. In Section 3 we prove that the
worst-case regret of the 1/3-mixture approaches the NML regret as the alphabet size grows
and study the worst-case regret numerically and as an approximation to the NML regret.
Section 4 is reserved for discussion and conclusions.
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2. Main result

Given a class P of distributions parameterized by a parameter set Θ, the Bayes mixture is
given by the weighted mixture pBayes(x

n) =
∫

Θ p(x
n; θ)q(θ) dθ for some prior distribution q

on the parameter space. The corresponding conjugate prior for the multinomial model is
the Dirichlet distribution. In the symmetric case where each outcome x ∈ {1, . . . ,m} has
equal prior probability, its density function takes the form

q(θ;α) =
Γ(mα)

Γ(α)m

m∏
j=1

θα−1
j ,

where α > 0 is a hyperparameter and Γ(·) is the gamma function Γ(z) =
∫∞

0 xz−1e−x dx.
The probabilities for the sequences xn are obtained by taking the weighted mixture

pB,α(xn) =

∫
Θ

n∏
i=1

p(xi; θ)q(θ;α) dθ =
Γ(mα)

Γ(α)m

∏m
j=1 Γ(nj + α)

Γ(n+mα)
,

where nj is the number of occurrences of symbol j in xn.
The choice of α can be interpreted as the amount of prior mass, or “pseudo-count”

given to each of the outcomes. Small differences in α can be crucial in for example Bayesian
network structure learning (Silander et al., 2007; Suzuki, 2017). The Krichevsky-Trofimov
estimator (Krichevsky and Trofimov, 1981) obtained with α = 1/2 is asymptotically maxi-
min (Xie and Barron, 1997). However, it is not asymptotically minimax as its regret is
higher than the minimax regret by a nonvanishing amount on the boundaries of the fre-
quency composition simplex where some of the symbols do not occur at all.

Xie and Barron (2000) proposed an asymptotically minimax version of the Krichevsky-
Trofimov estimator that puts extra mass to the boundaries of the probability simplex with a
horizon-dependent strategy. Later, Watanabe and Roos (2015) proved that a simpler Bayes
procedure pB,αn with the horizon-dependent hyperparameter

αn =
1

2
− log 2

2

1

log n

achieves asymptotic minimaxity. Here αn converges to the asymptotic value 1/2 at a loga-
rithmic rate as n → ∞ regardless of the alphabet size. However, in practice we deal with
a finite amount of data. As the alphabet size grows, the minimax optimal hyperparameter
moves further away from αn when the sample size is finite.

In certain application areas the alphabet size can be large (but finite) in comparison
to the sample size. In this case the minimax optimal hyperparameter α can be different.
We now consider finding the minimax optimal Dirichlet prior for the Bayes mixture in
the large alphabet setting. Specifically, if m is large compared to n, we want to find
α∗ = arg minα maxxn regret(pB,α, x

n), where

regret(pB,α, x
n) = log

p(xn; θ̂(xn))

pB,α(xn)
=

m∑
j=1

nj log
nj
n
− log pB,α(xn).

Our main theorem (Theorem 6) states that when m > 5
2n+ 4

n−2 + 3
2 , the minimax optimal

hyperparameter is α∗ = 1
3 .
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We prove this result by showing that there is always a sequence whose regret is decreasing
as a function of α when m ≥ n (Lemma 3) and a sequence whose regret is increasing as
a function of α when m > 5

2n + 4
n−2 + 3

2 (Lemma 5). Furthermore, at the point α = 1/3
these sequences achieve the highest regret (Lemma 2). Thus the point α = 1/3 has to be
the minimax point. We start by proving the following technical result:

Lemma 1 For k ≥ 2, the function

d(k) = k log k − k log 3− log Γ(k +
1

3
) + log Γ(

1

3
)

satisfies d(k) ≤ 0, where equality holds if and only if k = 2.

Proof The derivative of d is d′(k) = log (k/3)− ψ(k + 1/3) + 1, where ψ is the digamma
function, defined as the logarithmic derivative of the gamma function. Using the inequality
ψ′(k) > 1/k + 1/(2k2) (e.g., Guo and Qi, 2013), we can show that if k > 2/3, we have
d′′(k) = 1/k − ψ′(k + 1/3) < 0. Moreover, since d′(2) < 0, the derivative d′ must also be
negative for all k ≥ 2 and therefore d is decreasing. The claim holds since d(2) = 0.

Lemma 1 allows us to prove the following result which characterizes the sequences that
achieve maximum regret for pB,1/3 in the case m ≥ n:

Lemma 2 Let m,n be integers such that m ≥ n ≥ 1 and xn be a sequence where all the
symbols are different. Then for all sequences yn we have regret(pB, 1

3
, xn) ≥ regret(pB, 1

3
, yn),

where equality holds if and only if no symbol in yn occurs more than twice.

Proof Let yn be a sequence with at least one symbol occurring more than once and j be
a symbol that occurs nj > 1 times in yn. Furthermore, let zn be the same sequence as yn

except nj − 1 occurrences of j are each replaced by a different non-occurring symbol. We
first note that the regret of a sequence wn can be written as

regret(pB,α, w
n) =

m∑
j=1

{nj log nj − log Γ(nj + α)}+ κ,

where κ is a quantity that does not depend on the sequence wn and 0 log 0 = 0. Now

regret(pB, 1
3
, yn) = regret(pB, 1

3
, zn)− nj(1 log 1− log Γ(1 +

1

3
))

− (nj − 1) log Γ(
1

3
) + nj log nj − log Γ(nj +

1

3
)

= regret(pB, 1
3
, zn) + nj log nj − nj log 3− log Γ(nj +

1

3
) + log Γ(

1

3
).

Hence from Lemma 1 we have

regret(pB, 1
3
, yn) = regret(pB, 1

3
, zn) + d(nj) ≤ regret(pB, 1

3
, zn),

where equality holds if and only if nj = 2. Finally, as any sequence yn can be transformed
into a sequence where all the symbols are different by repeated application of the above
procedure, the claim holds.

We now proceed to proving that if m ≥ n, there is always a sequence whose regret is
decreasing as a function of α:
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Lemma 3 Let m,n be integers such that m ≥ n ≥ 2 and xn be a sequence where all the
symbols are different. Then the function α 7→ regret(pB,α, x

n) is decreasing.

Proof Taking the derivative with respect to α, we obtain

∂

∂α
regret(pB,α, x

n) = mψ(n+mα)−mψ(mα)− n

α
.

Repeated application of the identity ψ(n+ 1) = ψ(n) + 1/n gives

mψ(n+mα)−mψ(mα)− n

α
= m

(
n−1∑
k=0

1

mα+ k

)
− n

α
=

n−1∑
k=0

(
1

α+ k
m

− 1

α

)
< 0

for all positive α.

In turn, we can find a sequence whose regret is increasing as a function of α when α ≥ 1/3
and m > 5

2n+ 4
n−2 + 3

2 . This requires first proving the following lemma:

Lemma 4 Let α > 0 and m,n be integers such that m ≥ n ≥ 1. Then

mψ(n+mα)−mψ(mα) >
1

2α
+

1

2(α+ 1)
+

2m(n− 1)

2mα+ n− 1
.

Proof We can first write

mψ(n+mα)−mψ(mα) =

n−1∑
k=0

1

α+ k
m

.

Applying the trapezoidal rule∫ n

1
f(x) dx <

n∑
k=1

f(k)− 1

2
(f(1) + f(n)),

where f is a convex function, we have

n−1∑
k=0

1

α+ k
m

>
1

2

(
1

α
+

1

α+ n−1
m

)
+

∫ n−1

0

dx

α+ x
m

>
1

2

(
1

α
+

1

α+ 1

)
+

∫ n−1

0

dx

α+ x
m

=
1

2α
+

1

2(α+ 1)
+m log

(
1 +

n− 1

mα

)
.

Using the inequality log (1 + x) ≥ 2x/(2 + x) valid for x ≥ 0 gives the result

1

2α
+

1

2(α+ 1)
+m log

(
1 +

n− 1

mα

)
≥ 1

2α
+

1

2(α+ 1)
+

2m(n− 1)

2mα+ n− 1
.
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Lemma 5 Let m,n be integers such that

m >
5

2
n+

4

n− 2
+

3

2

if n > 2 or m ≥ 2 if n = 2. Then the regret of a sequence where each symbol occurs twice
(and one symbol occurs once if n is odd) is an increasing function of α when α ≥ 1/3.

Proof Assume first that n is even and let xn be a sequence where n/2 symbols occur twice.
Taking the derivative of the regret we obtain

∂

∂α
regret(pB,α, x

n) = mψ(n+mα)−mψ(mα) +
n

2
(ψ(α)− ψ(2 + α))

= mψ(n+mα)−mψ(mα)− n
(

1

2α
+

1

2(α+ 1)

)
.

Plugging in n = 2, we get 1/(α+1/m)−1/(α+1) which is positive for m ≥ 2. Now assume
that n > 2 is odd and take xn to be a sequence where (n − 1)/2 symbols occur twice and
one symbol occurs once. Taking the derivative gives

∂

∂α
regret(pB,α, x

n) = mψ(n+mα)−mψ(mα) +
n− 1

2
(ψ(α)− ψ(2 + α))− 1

α

= mψ(n+mα)−mψ(mα)− (n− 1)

(
1

2α
+

1

2(α+ 1)

)
− 1

α
.

Thus, if the derivative is positive in the odd case, it is also positive in the even case. For
the derivative to be positive in the odd case, from Lemma 4 we have the inequality

1

2α
+

1

2(α+ 1)
+

2m(n− 1)

2mα+ n− 1
− (n− 1)

(
1

2α
+

1

2(α+ 1)

)
− 1

α
> 0,

from which we can solve

m >
(n− 1)(2α(n− 1) + n)

2α(n− 2)

for α > 0, n > 2. Clearly this bound is decreasing as a function of α. Plugging α = 1/3
into the bound, we have

m >
5

2
n+

4

n− 2
+

3

2
.

Therefore if m satisfies the bound above, the derivative is positive for all α ≥ 1/3.

We are now ready to prove the main result:

Theorem 6 Let n,m be integers such that

m >
5

2
n+

4

n− 2
+

3

2

if n > 2 or m ≥ 2 if n = 1, 2. Then

arg min
α

max
xn

regret(pB,α, x
n) =

1

3
.
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Proof We denote r(α) = maxzn regret(pB,α, z
n). From Lemma 2, we have r(1/3) =

regret(pB,1/3, x
n) = regret(pB,1/3, y

n), where xn is a sequence where each symbol is different
and yn is a sequence where each symbol in the sequence occurs twice (and one symbol
occurs once if n is odd). Using Lemma 3, we have r(α) ≥ regret(pB,α, x

n) > r(1/3) for all
0 < α < 1/3. From Lemma 5, we have r(α) ≥ regret(pB,α, y

n) > r(1/3) for all α > 1/3
when m > 5

2n + 4
n−2 + 3

2 if n > 2 or m ≥ 2 otherwise. Consequently, when n ≥ 2, the
function r is minimized at the point α = 1/3. In the case n = 1 it is straightforward to
verify that the worst-case regret is constant as a function of α.

The bound approaches 5
2n + 3

2 , while numerical results show that the minimum m/n
ratio for which the optimal hyperparameter is a∗ = 1

3 converges to between 2.1 and 2.2.

3. Properties of the 1/3-mixture

In this section, we study the asymptotic behavior of the pB,1/3 mixture as the alphabet size
grows and present numerical experiments for the worst-case regret in comparison to other
coding distributions. Furthermore, we show how the optimal hyperparameter α∗ can be
found efficiently for any given n,m with ε precision.

3.1. Asymptotic behavior

The following theorem states that the worst-case regret of pB,1/3 grows asymptotically at
the same rate as the regret of the NML distribution when n = o(m):

Theorem 7 If n = o(m), then

max
xn

regret(pB, 1
3
, xn) = n log

m

n
+

3

2

n(n− 1)

m
+O

(
n3

m2

)
.

Proof When n = o(m), by definition there is an m0 such that m ≥ n for all m ≥ m0.
Then as per Lemma 2, the worst-case regret for pB,1/3 occurs when xn is a sequence where
all the symbols are different. Thus

max
xn

regret(pB, 1
3
, xn) = log Γ(n+

m

3
)− log Γ(

m

3
)− n log

n

3
.

Applying Stirling’s approximation

log Γ(x) = x log x− x+
1

2
log

2π

x
+ o(1)

and using the identity log
(
m
3 + n

)
= log m

3 + log
(
1 + 3n

m

)
, we have

max
xn

regret(pB, 1
3
, xn) =

(
m

3
+ n− 1

2

)
log

(
1 +

3n

m

)
+ n log

m

n
− n+ o(1).

Using the Taylor expansion log (1 + x) = x− x2

2 + x3

3 − · · · results in

max
xn

regret(pB, 1
3
, xn) = n log

m

n
+

3

2

n(n− 1)

m
+O

(
n3

m2

)
.

8
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This asymptotic form is the same as for the NML regret in the case n = o(m) as given
by Szpankowski and Weinberger (2012). Thus, if n is fixed and m → ∞, the difference
between the worst-case regret of the 1/3-mixture and the NML regret approaches zero.

3.2. Numerical experiments

Even though the NML regret logCmn , which can be used in e.g. model selection with the
MDL principle, can be calculated in time O(n+m) (Kontkanen and Myllymäki, 2007), this
may still be impractical if n or m is large. However, it directly follows from Theorem 7 that
when m is large compared to n, we have

logCmn ≈ max
xn

regret(pB, 1
3
, xn) = log Γ(n+

m

3
)− log Γ(

m

3
)− n log

n

3
.

That is, the NML regret logCmn can be approximated in constant time by the worst-case
regret of the 1/3-mixture. This approximation is compared to the NML regret in Table 1
for different values of n and m. It can be seen that the approximation approaches the exact
value of the NML regret as m increases.

n m approx logCmn

50
10 15.990 13.238

100 60.555 60.004
1000 153.292 153.276

10000 265.282 265.281

500
100 172.606 144.029

1000 609.691 603.928
10000 1533.550 1533.379

100000 2652.883 2652.881

5000
1000 1738.564 1451.782

10000 6101.034 6043.158
100000 15336.133 15334.406

1000000 26528.893 26528.873

Table 1: Comparison between the approximation given by the worst-case regret of the 1/3-
mixture and the NML regret for different values of n and m.

We also evaluated the actual worst-case regret of the 1/3-mixture (which differs from
the approximation when m < n) as a function of m for n = 100, 1000. Furthermore, we
evaluated the worst-case regrets of the Bayes procedures with α = 1/2, the asymptotic
hyperparameter αn = 1/2 − log 2/ log n2 as given by Watanabe and Roos (2015), and the
optimized hyperparameter α∗. We also include the tilted Stirling ratio distribution given
by Yang and Barron (2017). These worst-case regrets are visualized in Figure 1 which shows
the difference in regret from the NML regret for each distribution.
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Figure 1: Worst-case regret differences from NML regret as a function of alphabet size when
(a) n = 100 and (b) n = 1000. A vertical line is shown at 5

2n+ 4
n−2 + 3

2 .

The worst-case regrets of the procedures given by the Jeffreys prior (α = 1/2) and the
asymptotic hyperparameter αn stray further away from the NML regret as the alphabet size
increases. The 1/3-mixture achieves lower worst-case regret already when m is of the order
of n/2 and approaches the NML regret as m increases. The tilted Stirling ratio distribution
achieves lower worst-case regret than the 1/3-mixture for larger n and moderate m, but
does not approach the NML regret as m→∞ (Yang and Barron, 2017).

Similar to the Bayes procedure, the tilted Stirling ratio distribution depends on a tilting
parameter which we optimized by a grid search. For the optimized Bayes procedure we used
an efficient algorithm for finding the minimax optimal hyperparameter α∗ for given n,m.
It allows for computation of α∗ with ε precision in time O(log (min {n,m}) log (1/ε)). The
algorithm makes use of the following lemma proved by Watanabe and Roos (2015) which
reduces the number of possible worst-case sequences to min{n,m} (when two sequences are
considered the same if their count vectors (n1, . . . , nm) are permutations of each other and
thus their regrets are equal):

Lemma 8 (Watanabe and Roos, 2015, Lemma 5) The possible worst-case sequences in

max
xn

regret(pB,α, x
n)

have l non-zero counts (l = 1, 2, . . . ,m), each of which is
⌊
n
l

⌋
or
⌊
n
l

⌋
+ 1 and all the other

counts are zeros.

Since the count vector of each possible worst-case sequence contains at most two different
elements, we can evaluate the regret in constant time if we know the counts of the differ-
ent elements. Thus we can find the optimal α with ε precision in time O(min {n,m}/ε)
by considering all α on a grid with length ε intervals. This can be further reduced to
O(min {n,m} log (1/ε)) by using the following lemma:

10
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Lemma 9 If n > 1, the function

α 7→ max
xn

regret(pB,α, x
n)

is unimodal on the interval (0,∞).

Proof We first consider the regret for a fixed xn. We have

∂

∂α
regret(pB,α, x

n) =
∂

∂α
log

p(xn; θ̂(xn))

pB,α(xn)
= − ∂

∂α
log pB,α(xn).

Levin and Reeds (1977) proved that when n > 1, the derivative of log pB,α with respect to
α has at most one zero on the interval (0,∞) and if this happens at a finite α, the zero
has to be a local maximum. Therefore the regret for any xn as a function of α is either
decreasing, increasing or decreases up to a point and increases from that point on.

All monotone functions and functions that decrease up to a point and increase from that
point on are strictly quasiconvex. Since the maximum of strictly quasiconvex functions is
strictly quasiconvex, the worst-case regret as a function of α is strictly quasiconvex. The
claim follows from the fact that a strictly quasiconvex function is strictly unimodal.

Lemma 10 in Appendix A states that α∗ is always on the interval (0, 1]. Further-
more, since the function maxxn regret(pB,α, x

n) is unimodal as a function of α, we can opti-
mize it with an algorithm such as golden section search (Kiefer, 1953) in time O(log (1/ε))
on the fixed-length interval (0, 1]. As each evaluation of the function to be optimized
by golden section search takes time O(min {n,m}), the optimal hyperparameter α∗ can
be found in O(min {n,m} log (1/ε)) time with ε precision. Appendix A additionally de-
scribes how the worst-case regret can be found in O(log (min {n,m})) time, resulting in
an O(log (min {n,m}) log (1/ε)) time algorithm. This algorithm can be used to find the
minimax optimal α with ε precision efficiently for any practical values of n and m.

4. Discussion

The choice of α is important if we wish to achieve as low regret as possible even in the
worst case, and can be critical in for example Bayesian network structure learning (Silander
et al., 2007). The 1/3-mixture provides a coding distribution whose worst-case performance
is almost optimal when the size of the alphabet is large. This result holds not only in the
limit, but for all values of n as long as m exceeds the derived bound.

The 1/3-mixture can be useful in for example model selection with the MDL principle
since its regret can be calculated in time not dependent on m, or by allowing approximation
of the NML regret in constant time. The Bayes mixture also allows more efficient calculation
of the marginal and conditional probabilities needed for e.g. coding and prediction than an
earlier proposed tilted Stirling ratio distribution (Yang and Barron, 2017).

The minimax optimality of the Dir(1/3, . . . , 1/3) prior can also serve as a theoretical
justification for choosing the hyperparameters in a model with Dirichlet priors when the
alphabet size is large. Application areas where large alphabets arise naturally include for
example natural language processing and Bayesian networks.

11
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There are several questions remaining for future work. One possibility is to examine the
Dirichlet prior which minimizes the worst-case expected regret in the large alphabet regime.
Attention should also be given to providing tight bounds between the regrets of the mixture
distributions and the NML distribution. Finally, the behavior of Bayes mixtures should be
studied in the large alphabet setting as building blocks in models that incorporate context.
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Appendix A. Fast computation of the optimal hyperparameter

Lemma 10 The minimax optimal hyperparameter α∗ is always on the interval (0, 1].

Proof We first prove that for the coding distribution pB,α with α ≥ 1, the worst-case regret
is always given by a sequence where a single symbol occurs n times. Let xn be any sequence
where two symbols u and v occur nu ≥ 0 and nv ≥ 0 times, respectively. Furthermore,
let yn be the same sequence as xn except all occurrences of v have been replaced by u.
Thus the symbol u occurs in yn in total N = nu + nv times. Now, assuming fixed N , the
difference in regret between the sequences yn and xn as a function of nv is

w(nv) = regret(pB,α, y
n)− regret(pB,α, x

n) = qα(N) + qα(0)− qα(nv)− qα(N − nv),

where we denote
qα(k) := k log k − log Γ(k + α).

Due to symmetry of w, we can restrict its domain to be 0 ≤ nv ≤ N/2. Taking the second
derivative of w, we have

d2

dn2
v

w(nv) = ψ′(α+N − nv)−
1

N − nv
+ ψ′(α+ nv)−

1

nv
.

Using the inequality ψ′(x) < 1/x + 1/x2 (e.g., Guo and Qi, 2013), it is straightforward to
show that the second derivative is always negative for α ≥ 1. Furthermore, since w′(N2 ) = 0,
the derivative is positive for all α ≥ 1 and w is minimized at nv = 0, where w(0) = 0.
Thus w is always non-negative and regret(pB,α, y

n) ≥ regret(pB,α, x
n). Applying the above

procedure repeatedly to any sequence xn, we get that the sequence where a single symbol
occurs n times has higher or equal regret than the arbitrary sequence xn.

Finally, let xn be any sequence where a single symbol occurs n times. Since

∂

∂α
regret(pB,α, x

n) = m(ψ(n+mα)− ψ(mα))− (ψ(n+ α)− ψ(α))

= m

(
n−1∑
k=0

1

mα+ k

)
−
n−1∑
k=0

1

α+ k

=

n−1∑
k=0

1

α+ k
m

− 1

α+ k
> 0,

we have that the worst-case regret always increases as a function of α on the interval [1,∞).
Thus maxyn regret(pB,1, y

n) < maxyn regret(pB,α, y
n) for all α > 1 and the α that minimizes

the worst-case regret has to belong to the interval (0, 1].

Given n,m and α, we now describe a way to perform the search for the worst-case
sequence of the Bayes mixture pB,α in time O(log(min {n,m})). Combined with golden
section search (see Section 3.2), this yields an O(log (min {n,m}) log (1/ε)) time algorithm
for finding the optimal hyperparameter with ε precision. For convenience, we allow the
counts nj to be any non-negative real numbers as long as

∑m
j=1 nj = n. We also denote any

sequence with a count vector consisting of a symbols with count x, b symbols with count
x+ 1 and the remaining m− b− a symbols with count zero as xna,b.
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Consider now the following function which represents the difference in regret by replacing
x/y y counts in a count vector with a single x count:

hα(x, y) = x log
x

y
− log Γ(x+ α) +

x

y
log Γ(y + α) + (1− x

y
) log Γ(α).

This function has the following properties which are straightforward to verify:

1. hα(x, x) = 0

2. hα(x, y) = −x
yhα(y, x)

3. ahα(x, y) + bhα(x+ 1, y) = regret(pB,α, x
n
a,b)− regret(pB,α, y

n
c,0), where c = n/y.

A key observation is described in the following lemma (Watanabe and Roos, 2015):

Lemma 11 The second derivative ∂2

∂x2
hα(x, y) has at most one zero.

Proof We have
∂2

∂x2
hα(x, y) =

1

x
− ψ′(x+ α).

Using the inequality (ψ′(x))2 + ψ′′(x) > 0 given by Batir (2007), we can prove that the
second derivative has at most one zero since the derivative

d

dx

(
x− 1

ψ′(x+ α)

)
=
ψ′′(x+ α)

ψ′(x+ α)2
+ 1

is positive, meaning that the function x− 1/ψ′(x+α) is increasing from −1/ψ′(α) < 0 and

thus has at most one zero coinciding with the zero of ∂2

∂x2
hα(x, y).

Since we have limx→0+
∂2

∂x2
hα(x, y) = ∞, it follows from Lemma 11 that the function

x 7→ hα(x, ·) is either convex on the whole interval (0,∞) or convex up to an inflection point
c and concave from that point on. Let there now be the sequences `1

n
a1,b1 , `2

n
a2,b2 , . . . , `t

n
at,bt ,

where `1, . . . , `t ∈ {
⌊
n
l

⌋
: l = 1, 2, . . . ,m} =: L and `1 < `2 < · · · < `t. Furthermore, we let

`c be the largest `i ∈ L such that `i < c and `d ∈ L be such that `d > `c and hα(x, `d) ≤ 0
for all c ≤ x ≤ `d − 1 and x ≥ `d + 1. In particular, this means that replacing `j/`d `d
counts in a count vector with a single `j 6= `d count would result in lower or equal regret.
Consider now the following lemma:

Lemma 12 Let c be such that the function t 7→ hα(t, ·) is concave for all t ≥ c and
x, z ∈ N, y ∈ R be such that c ≤ x < x + 1 ≤ y < y + 1 ≤ z. If hα(t, z + 1) ≤ 0 for all
c ≤ t ≤ z and there exist sequences xna,b, y

n
·,0, z

n
d,e, then regret(pB,α, x

n
a,b) ≤ regret(pB,α, z

n
d,e).

Moreover, if we have c ≤ z < z + 1 ≤ y < x and hα(t, z) ≤ 0 for all t ≥ z + 1, then
regret(pB,α, x

n
a,b) ≤ regret(pB,α, z

n
d,e).

Proof For the first part, we have hα(y, z + 1) ≤ 0 and thus hα(z + 1, y) ≥ 0. Moreover,
hα(y, y) = 0 and the function t 7→ hα(t, ·) is concave, and thus also hα(z, y) ≥ 0. Hence

regret(pB,α, z
n
d,e)− regret(pB,α, y

n
c,0) = dhα(z, y) + ehα(z + 1, y) ≥ 0.
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Again, by concavity we have hα(x, y) ≤ 0 and hα(x+ 1, y) ≤ 0. Therefore

regret(pB,α, x
n
a,b)− regret(pB,α, z

n
d,e) ≤ regret(pB,α, x

n
a,b)− regret(pB,α, y

n
c,0)

= ahα(x, y) + bhα(x+ 1, y) ≤ 0

The other part follows from a similar argument.

In particular, we have `c < `c+1 < · · · < `d−3 < `d−3 + 1 ≤ `d−2 ≤ y < y + 1 ≤ `d−1, where
y ∈ [`d−2, `d−2 + 1) and there exists a sequence yn·,0 since `d−2 = bn/lc for some l and thus
y = n/l. Since now hα(x, `d) ≤ 0 for all c ≤ x ≤ `d − 1 and hα(`d, `d) = 0, by concavity of
t 7→ hα(t, ·), we have hα(t, `d−1 + 1) ≤ 0 for all c ≤ t ≤ `d−1. Lemma 12 then verifies that
we only need to check the regrets of the sequences corresponding to `d−2, `d−1 and `d to
find the maximum regret amongst the sequences corresponding to `c+1, `c+2, . . . , `d−1, `d.

Consider now the remaining sequences corresponding to `d+1, `d+2, . . . , `t in the concave
region. In this region we have `d < `d + 1 ≤ `d+1 ≤ y < `d+2 < `d+3 < · · · < `t, where
y ∈ [`d+1, `d+1 + 1) and there exists a sequence yn·,0. As hα(x, `d) ≤ 0 for all x ≥ `d + 1,
Lemma 12 shows that the maximum regret is given by `d or `d+1 on this interval.

Putting these together, in the concave region, the maximum regret is achieved by one
of the sequences corresponding to `d−2, `d−1, `d or `d+1. That is, given `d, we only need
to examine a constant number of cases to find the maximum regret. We now show that
such `d always exists in the concave region and finding it can be done in logarithmic time.
Consider first the following lemma:

Lemma 13 Let n ∈ N and c ∈ R be such that x 7→ hα(x, y) is concave for all c ≤ x ≤ n.

• If there exists a smallest z ∈ N such that c ≤ z < n and hα(z + 1, z) ≤ 0, then
hα(x, z) ≤ 0 for all c ≤ x ≤ z − 1, x ≥ z + 1 and hα(x+ 1, x) ≤ 0 for all x ≥ z + 1.

• If such integer z does not exist, then hα(x, n) ≤ 0 for all c ≤ x ≤ n− 1.

Proof Assume that there exists a smallest z ∈ N such that c ≤ z < n and hα(z+ 1, z) ≤ 0.

• Assume x ≥ z+1. Since hα(z, z) = 0 and hα(z+1, z) ≤ 0, by concavity of x 7→ hα(x, y)
we must have hα(x, z) ≤ 0 and hα(z, x) ≥ 0. Since also hα(x, x) = 0, by concavity of
x 7→ hα(x, y) we must have hα(x+ 1, x) ≤ 0.

• Assume c ≤ x ≤ z − 1. We must have hα(z − 1, z) ≤ 0, as otherwise hα(z, z − 1) ≤ 0
which is a contradiction since z is the smallest integer such that hα(z + 1, z) ≤ 0.
Thus by concavity hα(x, z) ≤ 0 for all x ≤ z − 1 since hα(z, z) = 0.

If the smallest z ∈ N does not exist, we have hα(n, n− 1) > 0 and thus hα(n− 1, n) < 0.
By the fact that hα(n, n) = 0 and concavity of the function t 7→ hα(t, n), we now have
hα(x, n) < 0 for all c ≤ x ≤ n− 1.

As Lemma 13 states that if `d is the smallest integer for which hα(`d + 1, `d) ≤ 0, then
hα(x+ 1, x) ≤ 0 for all x ≥ `d + 1, we can find `d in time O(log n) by a binary search like
routine (Algorithm 1). This algorithm returns the first integer z on the range [start, end]

such that f(z) is true, assuming that f(x) is false for all x < z and true for all x ≥ z.
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Algorithm 1: Finding smallest z such that f(x) is false for x < z and true for x ≥ z
Function BIN(f, start, end)

l, h← start, end + 1
while l 6= h do

m← b(l + h)/2c
if not f(m) then l← m+ 1
else h← m

end
return l

Finally, we note that in the convex region, the highest regret is achieved at the bound-
aries of the interval, i.e. by one of the sequences corresponding to `1, `2, `c−1 or `c. The
proof is identical to the one in the concave region, except it uses the fact that if x 7→ hα(x, ·)
is concave, then x 7→ −hα(x, ·) is convex. We omit the details here for brevity.

From Lemma 8, we know that the possible worst-case sequences are of the form `na,b.
The previous lemmas can then be used to formulate the final procedure which is described
in Algorithm 3. Given n,m and α, the function F finds the worst-case regret. The algorithm
first uses the BIN routine to find the smallest integer c such that the function x 7→ hα(x, ·) is
concave for all x ≥ c. On the next line, the algorithm uses BIN to find the smallest integer
y in the concave region such that h(y + 1, y) is negative. The variable `d is subsequently
set as the smallest ` ≥ y such that there exists a sequence `na,b for some a, b ∈ N0.

The functions PREV and NEXT find for a given k the previous (next) x such that there
exists a sequence xna,b for some a, b ∈ N0. Using these functions, the maximum regret can
be found by considering all the possible cases. The regret for each case is calculated in
constant time by Algorithm 2. Since there can be multiple count vectors that consist of the
integers k and k+1, the sign of hα(k, k+1) is checked by REGRET. It is easy to verify that if
hα(k, k + 1) < 0, the count vector with maximum amount of k counts should be preferred,
and the count vector with maximum amount of k + 1 counts otherwise.

The MINIMAX function uses golden section search to minimize the maximum regret
F(n,m,α) on the fixed-length interval (0, 1]. Since the BIN routine works in time O(log n)
and all other operations are constant time operations, this yields an O(log (n) log (1/ε))
time algorithm. However, both of the binary searches can also be performed by considering
only the numbers bn/mc , bn/(m− 1)c , . . . , n as possible inputs for the function f , which
takes O(logm) time. Thus the total time complexity is O(log (min {n,m}) log (1/ε)).
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Algorithm 2: Calculating the regret in constant time

Function REGRET(n,m, k, α)
if hα(k, k + 1) < 0 then

let xn be any sequence with a count vector consisting of k and k + 1
with the maximum possible amount of k counts

end
else

let xn be any sequence with a count vector consisting of k and k + 1
with the maximum possible amount of k + 1 counts

end
return regret(pB,α, x

n)

Algorithm 3: Finding the minimax optimal hyperparameter α∗

Function F(n,m,α)

Function PREV(k)
if k ≤ 1 then

return 0
end
return largest x ∈ N such that x < k and ax+ b(x+ 1) = n for some a, b ∈ N0

Function NEXT(k)
if k ≥ n then

return n
end
return smallest x ∈ N such that x > k and ax+ b(x+ 1) = n for some a, b ∈ N0

c← BIN(f(x) := 1/x− ψ′(x+ α) < 0, 1, n)
y ← BIN(f(x) := hα(x+ 1, x) ≤ 0,max (c, bn/mc), n)
`d ← smallest ` ∈ N such that ` ≥ y and a`+ b(`+ 1) = n for some a, b ∈ N0

maxregret ← 0
for k ∈ {`d, NEXT(`d), PREV(`d), PREV(PREV(`d)),

PREV(c), PREV(PREV(c)), bn/mc , NEXT(bn/mc)} do
if max (1, bn/mc) ≤ k ≤ n then

maxregret ← max (maxregret, REGRET(n,m, k, α))
end

end
return maxregret

Function MINIMAX(n,m,α)
α∗ ← optimize α 7→ F(n,m,α) with GSS on the range (0, 1] with ε precision
return α∗
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