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Abstract

We consider the challenge of differentially private PCA. Currently known methods for
this task either employ the computationally intensive exponential mechanism or require an
access to the covariance matrix, and therefore fail to utilize potential sparsity of the data.
The problem of designing simpler and more efficient methods for this task has been raised
as an open problem in Kapralov and Talwar (2013).

In this paper we address this problem by employing the output perturbation mech-
anism. Despite being arguably the simplest and most straightforward technique, it has
been overlooked due to the large global sensitivity associated with publishing the leading
eigenvector. We tackle this issue by adopting a smooth sensitivity based approach, which
allows us to establish differential privacy (in a worst-case manner) and near-optimal sample
complexity results under eigengap assumption. We consider both the pure and the approx-
imate notions of differential privacy, and demonstrate a tradeoff between privacy level and
sample complexity. We conclude by suggesting how our results can be extended to related
problems.

1. Introduction

Differential Privacy has become a crucial requirement in many machine learning tasks in-
volving private data such as medical and financial records (Dwork (2008); Dwork et al.
(2014a); Chaudhuri et al. (2011); Blum et al. (2013); McSherry and Talwar (2007)). Infor-
mally speaking, a mechanism is said to be differentially private if one can hardly distinguish
between two outputs of the algorithm corresponding to samples that differ in one entry.
Since each entry typically corresponds to records of a single person, differential privacy
essentially requires that the participation of a single individual in the sample (e.g. medi-
cal tests) would not reveal its private information. This requirement inherently implies a
tradeoff between privacy and accuracy. Accordingly, considerable efforts have been made
to identify structural properties that enable us to reduce this conflict.

Principal component analysis (PCA) is a fundamental dimensionality reduction tech-
nique in machine learning and data science. Finding a low-rank approximation of a given
dataset is beneficial in terms of time and space complexity. In some scenarios (e.g. vision
tasks), it also has the benefit of noise removal.

c©2000 Alon Gonen and Ran Gilad-Bachrach.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v1/submitted.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v1/submitted.html


Gonen and Ran-Bachrach

In view of the above, it is not surprising that differentially private PCA has received
substantial attention recently (Blum et al. (2005); Chaudhuri et al. (2012); Kapralov and
Talwar (2013); Hardt and Roth (2013); Dwork et al. (2014b)).

Our main contribution is a simple yet efficient method to make PCA differentially pri-
vate. In a nut-shell, our method modifies standard PCA algorithm by adding a post-
processing step in which a suitable noise is added to the output. Therefore, it is straight-
forward to combine it with any PCA implementation, including implementation that make
use of unique properties of the data such as sparsity. To achieve that, we show that if there
is a large eigengap between the leading eigenvalues of the covariance matrix, then the PCA
problem becomes less sensitive to changes in its inputs. Hence, we can compute the amount
of noise to inject as a function of the eigen gap.

1.1 Problem Definition

Let us now describe the considered problem formally. Let D an unknown distribution
defined on the unit ball in Rd.1 Given a low-rank parameter k P rds, our ultimate goal is to
approximately solve

min
UPU

F pUq “ ´trpUUJCq, where C :“ Ex„DrxxJs, U “ tU P Rdˆk : UJU “ Iku , (1)

while preserving differential privacy. The input to the learning algorithm A consists of a
sample S “ px1, . . . , xnq drawn i.i.d. according to D. Its output is denoted by Û P U . The
sample complexity of the algorithm is a function n : p0, 1q3 Ñ N, where npεg, εp, δpq is the
minimal size of an i.i.d. sample S “ px1, . . . , xnq „ Dn for which the following conditions
simultaneously hold:

εg-accuracy: 2with constant probability over both the draw of the sample S according to
Dn and the internal randomness of the algorithm,

F pÛq ď min
UPU

F pUq ` εg .

pεp, δpq-differential privacy: Let dpS, S1q be the minimal number of elements that should
be removed or added to the sample S1 to obtain the sample S. We say that S and S1 are
neighboring samples if dpS, S1q ď 1. We require that for all neighboring samples S, S1, and
for all U P U ,

ppApSq “ Uq ď exppεpqppApS1q “ Uq ` δp , (2)

(where p refers to the density function). The stricter notion of “pure” differential privacy
requires also that δp “ 0.

2. Algorithms and Main Result

In this paper we focus on particularly simple and efficiency-preserving method, named
output perturbation. As its name suggests, the basic idea is to add noise to the output

1. Our results can be easily scaled to balls of larger radius.
2. Given a confidence parameter δ, standard techniques can be used to decrease the probability of failure

to δ while incurring only logarithmic overhead in terms of sample complexity.
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of an (approximately) exact algorithm. Arguably, this is the simplest and most flexible
method, as it can be applied to any algorithm in a black-box fashion while preserving its
efficiency. We assume an access to an algorithm A which (approximately) minimize the
empirical risk

F̂ pUq :“ ´trpUUJĈq, Ĉ :“
1

n

n
ÿ

i“1

xix
J
i .

We also assume that the algorithm A outputs the gap between the k-th and the pk ` 1q-
th eigenvalues of Ĉ. This assumption is not restrictive, as every reasonable PCA solver
possesses this capability. Based on the output of A, our mechanism determines the noise
level. The main challenge in our work is to set the noise level so that differential privacy
holds for any sample, and high accuracy is achieved under eigengap assumption.

Before adding the noise, there is another subtle issue which should be carefully addressed.
To illustrate this challenge, consider the case k “ 1. Clearly, a unit vector u P Rd is a leading
eigenvector if and only if ´u is also a leading eigenvector. Since the sign of the vector is
arbitrary, a PCA solver might use it to leak private information, such as whether a specific
point x˚ was in the dataset ot not. Overcoming this potential risk is possible by negating
the output of the PCA solver with probability 1{2 before adding the noise. More generally,
for the case k ą 1, we will replace Û by RÛ , where R P Rdˆd is a random orthogonal matrix.
We then add the noise and perform QR decomposition to obtain the final output. A detailed
pseudocode of our method is given in Algorithm 1. To simplify the presentation and for

Algorithm 1 Differentially private PCA using Output perturbation

Parameters: εg, δg, εp, δp P p0, 1q, k P rds, PURE P tTRUE, FALSEu
Input: Û :“ arg minUPU ´trpUĈq, G “ λ1pĈq ´ λ2pĈq
Oracle: ApSq “ pŨ :“ arg minUPU F̂ pUq, λkpĈq ´ λk`1pĈqq
Draw a random orthogonal matrix R P Rdˆd
Replace Û with U “ RU
if PURE “ TRUE then

Draw E :“ EPURE P Rdˆk as described in Equation (4)
else

Draw E :“ EAPPROX P Rdˆk as described in Equation (3)
end if
Return the matrix Ũ “ QRpU ` Eq.

the sake of conciseness, we focus on the case k “ 1. The case of k ą 1 is a straightforward
extension of the case k “ 1

Theorem 1 (Main theorem: approximate case) Given that PURE “ FALSE, Algo-
rithm 1 is pεp, δpq-differentially private. Furthermore, if GAPpDq :“ λ1pErxxJsq´λ2pErxxJsq ą
0, then its sample complexity is at most3

npεg, εp, δpq “ Õ

˜ ?
d

GAPpDqεpεg

¸

3. We use the Õ notation to hide logarithmic dependencies.
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Theorem 2 (Main theorem: pure case) Given that PURE “ TRUE, Algorithm 1 is εp-
differentially private. Furthermore, if GAPpDq :“ λ1pErxxJsq ´ λ2pErxxJsq ą 0, then its
sample complexity is at most

npεg, εpq “ Õ

˜

d3{2

GAPpDqεpεg

¸

3. Related Work

Differentially private PCA has been extensively investigated in Chaudhuri et al. (2012);
Hardt and Roth (2013); Kapralov and Talwar (2013); Blum et al. (2005); Dwork et al.
(2014b); Hardt and Roth (2012). The lower bound of Dwork et al. (2014b) implies that our
sample complexity for the approximate case (see Theorem 1) is optimal up to logarithmic
factors. For the pure case, the lower bound given by Chaudhuri et al. (2012) scales with d,
whereas our upper bound (see Theorem 2) scales with d3{2.

The first proposed method for differential private PCA was Sub-Linear Queries (SULQ)
(Blum et al. (2005)). It employs the general strategy of input perturbation by adding random
Gaussian noise to the empirical covariance matrix. Both the algorithm and its analysis have
been refined recently by Dwork et al. (2014b). Restating their results within our framework
gives approximate differential privacy with sample complexity bound identical to Theorem 1.
They also consider the gap-free scenario. As we mentioned previously, the main limitation
of this method is that it requires an access to the covariance matrix, which might be too
costly in terms of space and time. Many fast PCA implementations (e.g. Shamir (2016);
Ghashami et al. (2016); Clarkson and Woodruff (2012); Jain et al. (2016); Jin et al. (2015))
avoid working with the covariance matrix and consequently utilize potential sparsity of the
data. As we mentioned previously, our output perturbation can be combined with any of
these methods.

Another approach that has been investigated in Chaudhuri et al. (2012); Kapralov and
Talwar (2013) is to use the exponential mechanism (Dwork et al. (2014a)). While this
approach achieves pure differential with optimal sample complexity (also in the gap-free
case), the only theoretically analyzed implementation of the associated sampling method
runs in time Opd6q.

Besides the spectral gap assumption, another common approach is to assume some form
of incoherence. This route has been taken by Hardt and Roth (2013, 2012) who provide
several interesting differentially private methods for PCA.

4. Analysis

In this section we prove our main result. We start by defining the local and global sensitivity
of PCA, and proceed to define and analyze the smooth sensitivity.

4.1 Local and Global Sensitivity up To Equivalence

In the context of output perturbation, the sensitivity of a sample is defined as the maximum
distance between two outputs of PCA corresponding to the neighboring samples. Unless
specified otherwise, the distance is measured according to the `2-norm. Due to the equiva-
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lence between outputs discussed above, it makes sense to define the notion of distance be-
tween equivalent solutions. Namely, for any U P U , we define rU s “ tRU : R P Rd, RJR “
Idu. The distance between rU s and rV s is defined by }rU s ´ rV s} “ mint}U 1 ´ V 1} : U 1 P
rU s, V 1 P rV su. Since our algorithm replaces the output U of PCA by RÛ , where R is a
random orthogonal matrix, this modification does not harm our analysis.

Definition 3 (Global and local sensitivity) The `2-local sensitivity of a PCA algorithm
A : X n Ñ U w.r.t. a sample S “ px1, . . . , xnq is defined as

LSpSq :“ LSApSq “ max
S1:dpS,S1qď1

}rApSqs ´ rApS1qs} .

The global sensitivity of A is defined as suptLSpSq : S P supppDnqu. The `1-local sensitivity
is defined analogously.

It is known that adding noise proportional to the global sensitivity (using a suitable noise
distribution depending on the privacy parameters) yields differential privacy (Dwork et al.
(2014b)). The following example due to Chaudhuri et al. (2012) illustrates the difficulty in
preserving both accuracy and privacy using this approach. Let u, u1 P Rd be two orthonor-
mal vectors and consider two samples S and S1, where S consists of n ` 1 copies of u and
n copies of u1, whereas S1 consists of n ` 1 copies of u1 and n copies of u. The leading
eigenvectors associated with S and S1 are u and u1, respectively. To satisfy differential
privacy in this case, one should inject a noise proportional to the distance between u and
u1. In particular, the amount of noise does not decreases as a function of the sample size,
hence accuracy can not be preserved.

An easy computation shows that the eigengap in the previous examples scales inversely
with the sample size. The following theorem shows that the larger the eigengap the smaller
is the local sensitivity. We first make the following definition.

Definition 4 Given a sample S “ px1, . . . , xnq, we denote the eigengap between the two
leading eigenvalues of the empirical covariance matrix 1

n

řn
i“1 xix

J
i by GAPpSq.

Theorem 5 Let S “ px1, . . . , xnq P supppDnq be a sample and suppose GAPpSq ą 0. Then
there exists a global constant C ą 0 such that the `2-sensitivity of PCA is at most 3C

n¨GAPpSq .

Furthermore, the global `2-sensitivity is
?

2. The `1-local sensitivity is at most
?
d times

larger than the `2-local sensitivity, and the `1-global sensitivity is at most 2.

This result can be proved in several ways. The approach taken here exploits recent results
on strict saddle problems, which include PCA as a special case.

Proof Let S “ px1, . . . , xnq P supppDnq and S1 “ px1, . . . , xn´1q P supppDn´1q be two
neighboring samples and let u, u1 be the minimizers of the corresponding empirical risks.
Denote by Ĉ “ n´1

řn
i“1 xix

J
i and Ĉ 1 “ n´1

řn
i“1 xix

J
i . By KKT conditions (Borwein et al.

(2010)), there exist λ :“ λpuq and λ1 “ λpu1q such that,

u “ arg min
vPRd

´vJCv ` λp}v}2 ´ 1q
looooooooooooomooooooooooooon

“:L̂pvq

, u1 “ arg min
vPRd

´vJĈ 1v ` λ1p}v}2 ´ 1q
looooooooooooomooooooooooooon

“:L̂1pvq
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Also, λ and λ1 admit the closed forms:

λ “ uJĈu, λ1 “ u1JĈ 1u1 .

That is, λ is the leading eigenvalue of Ĉ and λ1 is the leading eigenvalue of Ĉ 1. By first-order
conditions, both ∇L̂puq “ 0 and ∇L̂1pu1q “ 0. Also,

∇L̂pu1q “ ´Ĉu1`λu1 “ n´ 1

n
∇L̂1pu1q´n´1xnxJnu´

n´ 1

n
λ1u1`λu1 “ n´1xnx

J
nu´pλ

1´λqu`n´1λ1u1

Since }xi} ď 1 for all i, by using Weyl’s inequality we obtain that }∇L̂pu1q} ď 3
n .

We next use the strict saddle property of PCA to bound the distance between u and u1.
Concretely, it is shown in Gonen and Shalev-Shwartz (2017) that our formulation of PCA
is pα, γ, τq-strict saddle with α, γ, τ “ C´1GAPpSq for some constant C ą 0 (see Gonen
and Shalev-Shwartz (2017)). Theorem 5 in this paper implies that if n “ Ωp1{G2q, then u1

lies in a C´1GAPpSq-strongly convex region (of the objective F̂ ) around the minimizer u.
By strong convexity (see Nesterov (2004)),

∇L̂pu1qJpu´ u1q “ p∇L̂pu1q ´∇L̂puqqJpu´ u1q ě C´1GAPpSq}u´ u1}2 .

Using Cauchy-Schwarz inequality, we obtain that

}∇L̂pu1q} }u´ u1} ě C´1GAPpSq}u´ u1}2 ñ }u´ u1} ď
C

GAPpSq
}∇L̂pu1q} ď 3C

nGAPpSq
.

The bound on the `2-local sensitivity follows immediately. The bound on the `1-local sen-
sitivity follows from the fact that the `1-distance is at most

?
d larger than the `2-distance.

The bounds on the global sensitivity are simply the `2 and the `1 distances between two
perpendicular unit vectors.

It is tempting to replace the global sensitivity with the local one in hope of ensuring dif-
ferential privacy in a worst case manner and achieving high accuracy under the common
eigengap assumption. In general, this approach is problematic since the local sensitivity
itself might be sensitive.4 This brings us to the notion of smooth sensitivity, which we
describe in the next part.

4.2 Background on Smooth sensitivity

Originated in (Nissim et al. (2007)), the notion of smooth sensitivity provides a systematic
framework for generating insensitive surrogate for the local sensitivity. It consists of two
main ingredients: a) Finding a suitable smooth upper bound on the local sensitivity. b)
Generating noise according to an admissible distribution scaled by the smooth upper bound.

Definition 6 (smooth upper bound on the local sensitivity (Nissim et al. (2007)))
For β ą 0, a function SU :

Ť

nPN supppDnq Ñ Rě0 is a β-smooth upper bound on the local
sensitivity LS if it satisfies the following conditions:

4. The following example due to Dwork et al. (2014a) illustrates this idea. Suppose that we would like to
compute the median of a given sequence in a differential private manner. Let S be a sample consisting
of n{2` 1 zeros and n{2 elements of magnitude at least 106. Assuming that we break ties in favor of the
smaller value, the local sensitivity of S is zero. On the other hand, by removing a single zero element
from S, we obtain a neighboring sample whose local sensitivity is at least 106.
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1. SUpSq ě LSpSq for every sample S

2. For every two neighboring samples S, S1,

expp´βqSUpS1q ď SUpSq ď exppβqSUpS1q .

The following characterization of the smooth sensitivity is often useful.

Definition 7 Let LS be any point-wise upper bound on the local sensitivity. For a sample
S and k P N, we define

ApkqpSq “ max
S1: dpS,S1qďk

LSpS1q .

Lemma 8 (Nissim et al. (2007)[Claim 3.2]) Let LS be any point-wise upper bound
on the local sensitivity and define ApkqpSq as above. The function U :

Ť

nPN supppDnq Ñ R
defined by

UpSq “ max
kPrns

expp´βkqApkqpSq

is a β-smooth upper bound on the local sensitivity.

Analogously to the global sensitivity, the smooth local sensitivity determines the scale
of the noise associated with our perturbed output. However, due to the change in the
sensitivity level, the privacy guarantees are slightly worse than the standard case. For
example, as explained in Nissim et al. (2007), drawing the noise according to any sub-
gaussian distribution can not yield pure differential privacy. If one insists on obtaining pure
differential privacy, more heavy-tailed distributions such as Cauchy distribution should be
used. We discuss one non-pure (and less noisy) and one pure (and more noisy) possibilities.

Theorem 9 (Nissim et al. (2007)[Lemmas 2.7 and 2.10])
Let εp, δp P p0, 1q be the differential privacy parameters. The following claims hold:

1. Gaussian noise: Suppose that UpSq is a β-smooth upper bound on the local sensi-
tivity, where β “

εp
4pd`lnp2{δpqq

. Define the noise matrix in Algorithm 1 by

EAPPROX “
5UpSq ¨

a

2 lnp2{δq

εp
Z ,

where Z is a standard d-dimensional Gaussian random variable. Then Algorithm 1 is
pεp, δpq-differentially private.

2. Cauchy noise: Suppose that UpSq is a β-smooth upper bound on the `1-local sen-
sitivity, where β “

εp
6d . Define the noise matrix in Algorithm 1 by

EPURE “
6UpSq

εp
Z ,

where Z1, . . . , Zd are drawn i.i.d. according to the density function fpzq “ 1
πp1`z2q

, is

εp-differentially private.

Remark 10 Lemmas 2.7 and 2.10 in Nissim et al. (2007) refer to the noisy output Û before
the QR step. However, since differential privacy is immune to post-processing (Dwork et al.
(2014a)), the claim holds for the output Ũ as well.
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4.3 Smooth Sensitivity of PCA

In this part we bound the smooth sensitivity of PCA and establish the privacy properties
of Algorithm 1.

Lemma 11 Let S “ px1, . . . , xnq be a sample of size n and suppose that GAPpSq ą 0. For
any sample S1 “ pz1, . . . , zmq with dpS, S1q ď k, we have that

maxt0, n ¨ GAPpSq ´ ku ď m ¨ GAPpS1q ď n ¨ GAPpSq ` k .

Furthermore, for each side of the above inequality, there exists a sample S1 with dpS, S1q “ k
for which the inequality holds with equality.

Proof Let H “
řn
i“1 xix

J
i , M “

řm
i“1 ziz

J
i and denote by P “ H ´M . Using Weyl’s

inequality (Bhatia (1997)[Section 3.2]), we obtain that

λ1pMq ě λ1pHq ` λdpP q, λ2pMq ď λ2pHq ` λ1pP q

Since the `2-norm of the xi’s (similarly, the zi’s) is at most 1 and dpS, S1q ď k, both the
rank and the trace-norm of P are at most k.5Therefore,

λ1pMq ´ λ2pMq ě λ1pHq ´ λ2pHq ` λdpP q ´ λ1pP q

ě λ1pHq ´ λ2pHq ´
d
ÿ

i“1

|λipP q|

ě λ1pHq ´ λ2pHq ´ k .

This concludes the inequality. Letting u2 be the second leading eigenvector of H, the right
side of the inequality is attained by setting S1 “ S `

řk
i“1 u2. The left side is attained

analogously.

Combining the last lemma with Theorem 5, Lemma 8 and Theorem 9, we conclude that
Algorithm 1 is differentially private.

Corollary 12 (Approximate differential privacy) Suppose that PURE “ FALSE and let

EPURE “
5 maxkPrns expp´βkqApkqpSq ¨

a

2 lnp2{δq

εp
Z , (3)

where Z is standard d-dimensional Gaussian random variable and

ApkqpSq “

#

C
n¨GAPpSq´k n ¨ GAPpSq ´ k ą 0
?

2 otherwise

Then Algorithm 1 is pεp, δpq-differentially private.

5. The trace norm of P is
řd

i“1 |λipP q|. Since P is the sum of k rank-1 matrices of trace 1, it follows using
the triangle inequality that the trace norm of P is at most k.
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Corollary 13 (Pure differential privacy) Suppose that PURE “ TRUE and let

EPURE “
6 maxkPrns expp´βkqApkqpSq

εp
Z , (4)

where Z1, . . . , Zd are i.i.d. Cauchy random variables and

ApkqpSq “

#

C
?
d

n¨GAPpSq´k n ¨ GAPpSq ´ k ą 0

2 otherwise

Then Algorithm 1 is εp-differentially private.

4.4 Near-optimal accuracy under eigengap assumption

In this part we complete the proof of our main result by bounding the smooth sensitivity
under the eigengap assumption. We start by relating the distributional gap assumption
to the empirical eigengap. The following lemma follows from Matrix Bernstein inequality
(Tropp and Others (2015)).

Lemma 14 Suppose that GAPpDq :“ λ1pErxxJsq ´ λ2pErxxJsq ą 0. If n “ Ω
´

logpdq
GAPpDq2

¯

,

then with probability at least 1´δ{2 over the draw of a sample S according to Dn, GAPpSq ě
GAPpDq{2.

The next two lemma refer to the `1 and the `2 cases, respectively.

Lemma 15 Let εp, δp, εg P p0, 1q, and let S “ px1, . . . , xnq P supppDnq be a sample with
GAPpSq ą 0. Define ApkqpSq as in Corollary 12 and let β “

εp
4pd`lnp2{δpqq

. Suppose that

n ě
2C
?
d

GAPpSqεpεg
`

8pd` lnp2{δpqq lnp
?

2d{pεpεgqq

GAPpSqεp
.

Then
UpSq :“ max

kPN
expp´βkqApkqpSq ď εgεp{

?
d

Proof Assume first that k ď n¨GAPpSq
2 . In particular, this implies that n ¨GAPpSq´k ą 0.

Using that n ě 2C
?
d

GAPpSqεpεg , it follows that

UpSq :“ expp´βkqApkqpSq ď ApkqpSq “
C

n ¨ GAPpSq ´ k

ď
2C

n ¨ GAPpSq
ď εgεp{

?
d .

Assume now that k ą n¨GAPpSq
2 , so expp´βkq ď exp

´

´
βn¨GAPpSq

2

¯

. Using that n ě

8pd`lnp2{δpqq lnp
?
2d{pεpεgqq

GAPpSqεp , we obtain that expp´βkq ď εgεp{p
?

2dq Since Apkq ď
?

2 for all

S and k,
expp´βkqApkqpSq ď εgεp{

?
d .

We proceed to the `1-case.
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Lemma 16 Let εp, εg P p0, 1q and let S “ px1, . . . , xnq P supppDnq be a sample with
GAPpSq ą 0. Define ApkqpSq as in Corollary 13 and let β “

εp
6d . Suppose that

n ě
2Cd3{2

GAPpSqεpεg
`

6d lnp2d{pεpεgqq

GAPpSqεp
.

Then

UpSq :“ max
kPN

expp´βkqApkqpSq ď εgεp{d .

We finally conclude our main result.

Proof (of Theorem 1 and Theorem 2) The differential privacy of the algorithm was
established in Corollary 12 and Corollary 13. We next prove the bounds on the sample
complexity. All the bounds given below hold with constant probability.

In view of Lemma 14, we may assume that GAPpSq is of order GAPpDq. Sample
complexity bounds for PCA (Gonen and Shalev-Shwartz (2017); Blanchard et al. (2007))

show that for n “ Ω
´

1
GAPpDqεg

¯

, the true risk of any unit vector is εg{4-close to its empirical

risk. Therefore, adopting the notation used in Algorithm 1, F pûq ď minF puq ` εg{2. It is
left to show that

F̂ pũq ´ F̂ pûq ď εg{2 .

For the case k “ 1, the QR decomposition step amounts to normalizing the noisy vector u.
Therefore, it suffices to show bound the `2 norm of the noise vector u´ û by εg. For approx-
imate differential privacy, standard concentration bounds give a bound of order

?
d on the

`2 norm of a standard d-dimensional Gaussian vector. Using Lemma 15, we conclude the
bound. For the pure setting, it is known that the median of the absolute value of a Cauchy
random variable is 1. Since the Cauchy distribution is 1-stable, the sum of d i.i.d. Cauchy
random variables is also a standard Cauchy random variable scaled by d. Consequently,
the `1 and the `2 norms of the corresponding vector can be bounded by d (with constant
probability). The desired bound follows from Lemma 16.

5. Discussion

In this work we studied the problem of adding privacy properties to the commonly used
PCA algorithm. We showed that we can add privacy as a post processing step to any PCA
solver while maintaining good accuracy. Moreover, the post processing step is efficient and
preserves the utility of the PCA algorithm. This is a significant improvement over previous
results that are either not computationally efficient or otherwise require changes to the
implementations of PCA solvers.

We believe that some of the techniques used in our paper may be beneficial for other
related problems. For example, our approach can be applied to any strict saddle problem for
which we are able to compute the expression ApkqpSq which controls the smooth sensitivity.
Furthermore, our technique for overcoming symmetry between equivalent solutions can be
applied to most known strict saddle problems such as low rank problems whose minima are
unique up to rotation (Ge et al. (2017)).
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