
Journal of Machine Learning Research 83:1–19, 2018 Submitted 02/2018; Published 04/2018

Robust Inference for Multiclass Classification

Uriel Feige uriel.feige@weizmann.ac.il
Weizmann Institute of Science, Israel

Yishay Mansour mansour.yishay@gmail.com
Tel Aviv University, Israel

Robert E. Schapire schapire@microsoft.com
Microsoft Research, New York

Editor: Mehryar Mohri and Karthik Sridharan

Abstract

We consider the problem of robust inference in which inputs may be maliciously corrupted
by a powerful adversary, and the learner’s goal is to accurately predict the original, uncor-
rupted input’s true label given only the adversarially corrupted version of the input. We
specifically focus on the multiclass version of this problem in which more than two labels are
possible. We substantially extend and generalize previous work which had only considered
the binary case, thus uncovering stark differences between the two cases. We show how
robust inference can be modeled as a zero-sum game between a learner who maximizes
the expected accuracy, and an adversary. The value of this game is the best-attainable
accuracy rate of any algorithm. We then show how the optimal policy for both the learner
and adversary can be exactly characterized in terms of a particular hypergraph, specifi-
cally, as the hypergraph’s maximum fractional independent set and minimum fractional
set cover, respectively. This characterization yields efficient algorithms in the size of the
domain (number of possible inputs). For the typical setting that the domain is huge, we
also design efficient local computation algorithms for approximating maximum fractional
independent set in hypergraphs. This leads to a near optimal algorithm for the learner
whose complexity is independent of the domain size, instead depending only on the rank
and maximum degree of the underlying hypergraph, and on the desired approximation
ratio.

1. Introduction

Consider a detection system whose goal is to determine the access level of a given user.
The system observes a large variety of legitimate users and the access level they should be
granted. Its task is to guard against malicious users trying to disguise themselves to gain
illegitimate access by modifying some of their behavioral characteristics. The challenge is
to accurately determine access level in the face of such deliberate maliciousness.

Such a task can be viewed as a classification problem with adversarial corruption of
data. The learner (in this case, the detection system) attempts to classify an input (a
description of a user) according to its label (access level), but is thwarted by an adversary
(malicious user) who modifies the original, uncorrupted input to produce a corrupted input

c© 2018 U. Feige, Y. Mansour & R.E. Schapire.

Feige Mansour Schapire

(modified behavioral characteristics). The goal is to determine the correct label, given only
the corrupted input.1

In this paper, we study the general problem of designing inference algorithms for mul-
ticlass classification that are robust against adversarial corruption of inputs.2 We focus on
the case in which the corruption is of a worst-case adversarial nature. This case is inter-
esting for two reasons. First, positive results in the adversarial model extend to any other
setting. Second, adversarial corruption can model situations in which corruption is due
to maliciousness (such as a malicious user trying to gain a higher access level) that is not
merely the result of random noise.

We model such situations as a zero-sum game between a learner and an adversary who
may choose how inputs are corrupted. Given an input corrupted by the adversary, the
learner’s goal is to accurately predict the label of the original, uncorrupted input. Since
our focus is on this inference task, we suppose that key aspects of the problem at hand are
given, or have already been determined through learning or other means. Specifically, we
assume that uncorrupted inputs are randomly generated by a distribution that is known,
as is common in other inference works. We also assume that the set of corrupted inputs
to which any particular uncorrupted input can be mapped is bounded and known to the
learner. Finally, we suppose that the learner is able to query the target function (i.e., obtain
the correct label of uncorrupted inputs of its choosing).

We show that this inference problem is fundamentally related to properties of a partic-
ular, natural hypergraph. The vertices of this hypergraph are the uncorrupted inputs, and
each hyperedge is a set of uncorrupted inputs that are “confusable” in the sense that they
all can be mapped to the same corrupted input, but all have different labels. In terms of
this hypergraph, we prove that the learner’s optimal policy (strategy for selecting labels on
a given uncorrupted input) can be characterized exactly as a maximum fractional indepen-
dent set. Furthermore, the adversary’s optimal policy can be similarly characterized as a
minimum fractional set cover on this same hypergraph.

As discussed shortly, this characterization substantially generalizes earlier work of Feige
et al. (2015) on binary (two-class) classification to the multiclass case, and furthermore,
points to intrinsic differences in the nature of the two cases. For instance, in the binary
case, an optimal learner can always make deterministic label predictions, whereas in the
multiclass case, randomized predictions are sometimes required for optimality. In terms of
computation, our characterization immediately yields an efficient algorithm for finding an
optimal learner policy that runs in time polynomial in the input domain size.

In many settings, however, we require algorithms that run in time polynomial in the
logarithm of the input domain size, i.e., polynomial in the dimension. For this, we develop
an efficient local algorithm for approximating the maximum fractional independent set in a
hypergraph. The end result is an efficient algorithm for robust inference whose accuracy is
near optimal.

In a nutshell, local algorithms receive as input a particular query (e.g., is a given vertex
in the independent set), and can access the input through probes (e.g., for a graph, probing
the existence of some edge). They then must produce an output for the query. The goal

1. See Mansour et al. (2015) for other motivating examples from spam detection and hardware failures.
2. Corruption can manifest in multiple ways, for example: missing attributes, incorrect measurement units

(Kilogram vs. pounds, dollars vs. cents, etc.) and in general almost any noise models.

2

Robust Inference for Multiclass Classification

is that the output should be feasible, that is, consistent across queries (e.g., combining the
replies to all queries should produce an independent set), and should also be near optimal.

Our work reinforces the connection between classical machine learning notions, such as
inference, and the design of sub-linear algorithms, specifically, local algorithms. The con-
nections already appear in (Mansour et al., 2015; Feige et al., 2015) where local algorithms
were designed for solving a specific linear program (Mansour et al., 2015) and minimal
vertex cover (Feige et al., 2015). We extend the connection to include maximum fractional
independent set and minimum fractional set cover. An intriguing aspect is that we require
only the fractional solution, which can be computed in polynomial time.

Related work

The most related work is that of Feige et al. (2015) which discusses the same model of robust
inference, but restricted to binary classification. This assumption results in modeling the
problem as a bipartite graph where the optimal adversary policy uses a maximum matching
and the optimal learner policy uses a minimum vertex cover. In this work, we extend the
setting to an arbitrary number of labels, revealing a distinct and rich structure not seen in
the binary case. Here, the modeling moves from a bipartite graph to a hypergraph, and
the optimal policies of the learner and the adversary change to be a maximum independent
set and minimum set cover. Unlike matching and vertex cover, both polynomially solvable
on bipartite graphs, maximum independent set and minimum set cover are hard to ap-
proximate. Fortunately, we need to find only a fractional solution, thus admitting efficient
algorithms.

The work of Mansour et al. (2015) discusses a static robust inference problem, where the
adversary selects one of m modification rules to corrupt the input before the uncorrupted
input is sampled. Their main result is an efficient algorithm to derive a near optimal
policy for the learner. The main difference is that in their model, the modification rule is
selected before the uncorrupted input is realized, while in our model the adversary selects
the corruption (modification rule) after the uncorrupted input is realized.

The work of Globerson and Roweis (2006) and its extensions (Teo et al., 2007; Dekel
and Shamir, 2008) discuss a robust learning model where an uncorrupted sample is drawn
from an unknown distribution, and the goal is to learn a linear classifier that would be
able to overcome missing attributes in future test examples. They discuss both the static
model (where the set of missing attributes is selected independently from the uncorrupted
input) and the dynamic model (where the set of missing attributes may depend on the
uncorrupted input). The work of Feige et al. (2015) extends the robust learning model to
handle corrupted inputs (and not only missing attributes) and an arbitrary hypothesis class
(rather than only linear classifiers).

Local computation approximation algorithms for combinatorial problems such as max-
imal independent set and hypergraph 2-coloring were derived in (Rubinfeld et al., 2011;
Alon et al., 2012; Mansour et al., 2012). The works of (Mansour and Vardi, 2013; Even
et al., 2014) gave local algorithms which find a near optimal maximum matching in bipar-
tite graphs. The work of Feige et al. (2015) gives a near optimal minimum vertex cover
for bipartite graphs, and based on it derives an efficient near optimal robust inference for
binary classification.

3

Feige Mansour Schapire

Our local algorithms use the multiplicative weights approach, which has many applica-
tions in designing approximation algorithms (see, Arora et al. (2012) for a survey). Many
such algorithms (e.g., Allen-Zhu and Orecchia (2015)) have a logarithmic number of iter-
ations; however, converting such algorithms to a local algorithm would naively imply that
their running time might be linear. The main difference is that our algorithm does not
depend on the size of the hypergraph, but only on its rank and degree.

There is a vast literature in statistics, operation research and machine learning regarding
various noise models. Typically, most noise models assume a random process that generates
the noise. In computational learning theory, popular noise models include random classifi-
cation noise (Angluin and Laird, 1988) and malicious noise (Valiant, 1985; Kearns and Li,
1993). In the malicious noise model, the adversary gets to arbitrarily corrupt some small
fraction of the examples; in contrast, in our model the adversary can always corrupt every
example, but only in a limited way.

In statistics, there is a notion of robust statistics (see Huber (1981)) whose main goal
is to ensure that the small fraction of corrupted inputs (also referred to as outliers) will
not significantly change the outcome of the estimation. The main issue is the ability of
the learning algorithm to overcome a (small) fraction of outliers. Over the years, for many
important machine learning tasks robust statistical estimators have been developed. The
main difference is that in our setting every input is affected.

Another vast literature in operations research which is remotely related is that of robust
optimization and stability, where the main task is to understand how minor changes in the
input can affect the outcome of a (specific) algorithm (see, Ben-Tal et al. (2009)). We differ
in two important ways from that literature. First, we do not assume any metric for our
corruptions, while in large part the robustness there is measured as a function of the norm
of the modification. Second, that literature, to a large extent, discusses the stability and
robustness of specific algorithms, such as linear programs, while our starting point is trying
to derive algorithms immune to such corruption.

2. The inference model

We begin with a formal description of our inference problem. There is a finite domain X
from which uncorrupted inputs are generated randomly according to some distribution D,
and a finite domain Z of corrupted inputs (possibly the same as X). There is a set of k
labels Y = {1, . . . , k}, with ∆(Y) denoting the set of distributions over Y. An arbitrary
target function f : X → Y maps each uncorrupted input x ∈ X to its “true” label f(x) ∈ Y.

As discussed earlier, the adversary maliciously replaces each uncorrupted input x ∈ X
with a corrupted version z ∈ Z; we suppose that such a replacement z is restricted to come
from a nonempty set ρ(x) ⊆ Z. We assume that 1 ≤ |ρ(x)| ≤ α and |ρ−1(z)| ≤ β where
ρ−1(z) = {x : z ∈ ρ(x)}.

Thus, the basic scenario is the following. First, an uncorrupted input x is randomly
selected according to D. Next, given x, the adversary selects some corrupted input z ∈ ρ(x).
The learner observes z and predicts a distribution over labels h(z) ∈ ∆(Y) for the label of
f(x). Finally, the learner attains a gain g(h(z), f(x)). In this work, we use the accuracy gain
g(p, y) = p(y), for p ∈ ∆(Y) and y ∈ Y, which measures the probability of a randomized
prediction based on p actually matching the correct label y. (We use gain rather than loss

4

Robust Inference for Multiclass Classification

for mathematical convenience.) Since our focus is on the inference problem of predicting
f(x) given z, we assume that the learner has direct knowledge or query access to f , ρ, ρ−1

and D.
The goal of the learner is to maximize the expected gain, while the adversary would like

to minimize it. This defines a zero-sum game which has a value accuracy∗. Specifically, the
learner’s optimal gain is

accuracy∗ = max
h:Z→∆(Y)

Ex∼D[min
z∈ρ(x)

g(h(z), f(x))].

Intuitively, the max operator is the learner’s selection of a hypothesis h to maximize the
accuracy, and the min operator is the adversary’s selection of a corrupted input z based
on the realized uncorrupted input x to minimize the accuracy. The goal of the learner
is to (implicitly) define a hypothesis h : Z → ∆(Y) whose expected accuracy is close to
accuracy∗.

We say that the learner’s hypothesis is ε-optimal if it guarantees accuracy at least
accuracy∗− ε, and the adversary policy is ε-optimal if it guarantees an accuracy which is at
most accuracy∗ + ε. We refer to a 0-optimal policy (for either player) as simply an optimal
policy.

Note that there is no hypothesis class, and so any hypothesis h : Z → ∆(Y) is permitted.
Furthermore, the learner can access the target function f through a query oracle, which
can be thought of as solving the inference problem for the uncorrupted inputs, i.e., given
an uncorrupted input deduce its label. Note that in our robust inference setting there is no
explicit sample; however, the learner can generate uncorrupted inputs using the distribution
D and label them using its access to the target function f .

3. Characterizing the optimal policies

In this section we characterize exactly the optimal policies of both the learner and the
adversary in terms of a particular hypergraph G(X , E). The vertices of G are the uncor-
rupted inputs, namely X , and every vertex x ∈ X is weighted by its probability D(x).
The hyperedges of G consist of all sets e of uncorrupted inputs that are “maximally con-
fusable” in the sense that: (1) they can all be mapped by the adversary to the same
corrupted input z; (2) they all have different labels; and (3) the set e is maximal, meaning
it cannot be made larger while maintaining the first two properties. More precisely, for
each corrupted input z ∈ Z let κ(z) ≤ k be the number of different labels in ρ−1(z), i.e.,
κ(z) = |{f(x) : z ∈ ρ(x)}|. We include a hyperedge e ∈ E for every subset e ⊆ ρ−1(z)
consisting of exactly κ(z) vertices, all with different labels (so |e| = κ(z), and f(x1) 6= f(x2)
for all x1, x2 ∈ e). We associate the corrupted input z with e, and define cor(e) = z.

3.1. Adversary policy

In terms of the hypergraphG, we claim that the optimal adversary strategy can be computed
using the following linear program, called LP-cover:

min
we

∑
e∈E

we such that ∀x ∈ X
∑
e:x∈e

we ≥ D(x)

∀e ∈ E we ≥ 0.

5

Feige Mansour Schapire

The LP defines a nonnegative weight we for each edge e ∈ E , along with fractional covering
constraints that ensure the weights of edges incident to each vertex x are not less than its
weight D(x). This defines a fractional set-cover problem, with weights on the elements.
Indeed, standard set cover (which is NP-complete) is obtained by setting D(x) = 1 for all
x, and by requiring that the weights we be integers.

Lemma 1 The value of LP-cover upper bounds the learner’s accuracy. Furthermore, LP-
cover’s solution yields an explicit optimal policy for the adversary.

The adversary strategy will be define by computing weights for each edge e ∈ E of G to
achieve a fractional cover, namely,
Proof [Proof sketch:] The adversary solves LP-cover and uses the weights we to define
a policy as follows for a given input x. First, from among all edges that include x, the
adversary selects edge e randomly with probability we/

∑
e′:x∈e′ we′ , and maps x to cor(e).

The main idea in the proof is to upper bound the accuracy, for any learner hypothesis
h(z) ∈ ∆(Y), by

Pr
x,z

[h(z) = f(x)] =
∑
e∈E

∑
x∈e

we∑
e′:x∈e′ we′

D(x)Pr[h(e) = f(x)] ≤
∑
e∈E

we .

3.2. Learner policy

For the learner we consider the dual program to LP-cover, called LP-MIS, which finds
weights bx on the vertices:

max
bx

∑
x∈X

bxD(x) such that ∀e ∈ E
∑
x∈e

bx ≤ 1

∀x ∈ X bx ≥ 0.

This LP computes a fractional independent set; standard independent set is obtained, as
before, by setting D(x) = 1 for all x, and by requiring an integral solution.

Claim 2 The value of LP-MIS is a lower bound on the learner’s accuracy. Furthermore,
LP-MIS’s solution yields an explicit optimal policy for the learner.

Proof [Proof sketch:] The learner solves LP-MIS, and uses bx to define the following hypoth-
esis. For each corrupted input z ∈ Z and label y ∈ Y let max(y|z) = maxx∈ρ−1(z),f(x)=y bx,
and max(y|z) = 0 if there is no x ∈ ρ−1(z) with f(x) = y. The learner, given a corrupted

input z, returns a distribution h(z) ∈ ∆(Y) such that Pr[h(z) = y] = max(y|z)∑
j∈Y max(j|z) . In the

full proof we show that for any x ∈ ρ−1(z) and f(x) = y we have Pr[h(z) = y] ≥ bx. The
learner accuracy can be lower bounded as follows:

Ex,z[Pr[h(z) = f(x)]] ≥
∑
x∈X

D(x) min
z∈ρ(x)

Pr[h(z) = f(x)] ≥
∑
x∈X

D(x) min
z∈ρ(x)

bx =
∑
x∈X

D(x)bx,

6

Robust Inference for Multiclass Classification

which implies that the objective function of LP-MIS lower bounds the accuracy.

If the weights bx happen to be integral, then LP-MIS yields an ordinary independent
set, resulting in a prediction strategy that is perhaps more intuitive: Let S ⊂ X be an
independent set, i.e., for any e ∈ E we have |e ∩ S| ≤ 1. Given an observable z, we claim
that the inputs in ρ−1(z)∩S must all have the same label.3 Therefore, the learner policy is
the following: Given z, if ρ−1(z)∩S 6= ∅ we return f(x) for some x ∈ ρ−1(z)∩S, otherwise
return an arbitrary label.

In the binary case, it was shown in Feige et al. (2015) that the learner’s optimal policy is
deterministic (without loss of generality). However, with k ≥ 3 classes, the use of random-
ized predictions, as in the policy defined by LP-MIS, becomes necessary for optimality. As
a concrete example, suppose there are k = 3 classes, and that D is uniform over a domain X
consisting of three inputs x1, x2, x3, each labeled by its index (so f(xi) = i for i = 1, 2, 3).
Furthermore, suppose Z consists of three inputs z1,2, z1,3, z2,3, with ρ−1(zi,j) = {xi, xj}.
Then the optimal (randomized) policy, given zi,j , chooses uniformly at random between
classes i and j, thus obtaining accuracy 1/2. However, it can be shown that no determin-
istic policy achieves accuracy exceeding 1/3.

3.3. Optimality

We showed that the value of LP-cover upper bounds the learner’s accuracy and that LP-
MIS lower bounds the learner’s accuracy. By the strong duality theorem, this implies that
the value of the zero-sum game, induced by the robust inference game, is exactly this value.

Theorem 3 Let accuracy∗ be the value of the LP-cover (and LP-MIS). The learner can
guarantee an accuracy of at least accuracy∗ and the adversary can guarantee that the ac-
curacy is at most accuracy∗. Furthermore, the optimal policies can be computed in time
polynomial in |X |, and |E|.

In the above theorem, given a corrupted input z, to generate a prediction h(z) the
algorithm queries f on all inputs X . In Section 4, we design a local algorithm that generates
predictions according to a near optimal learner policy, and the number of queries depends
on α and β but not on |X |. An important observation is that given access to values bx that
give rise to a near optimal value of LP-MIS we can generate a near optimal prediction. By
observing that in the proof of Lemma 2, for computing h(z) the learner needs to access bx
only for x ∈ ρ−1(z), we derive the following corollary.

Corollary 4 Given oracle access to values bx which have a value accuracy for LP-MIS,
we can compute a learner prediction h(z) while accessing only β values of bx, and guarantee
a learner accuracy of accuracy.

3. Otherwise, there is a corrupted input z and x1, x2 ∈ S, x1, x2 ∈ ρ−1(z) and f(x1) 6= f(x2). But there
is an edge e such that {x1, x2} ⊂ e ∈ E , and we have |e ∩ S| ≥ 2, contradicting the fact that S is an
independent set.

7

Feige Mansour Schapire

4. Efficient Local Algorithm

In Section 3, we showed that the optimal learner policy is characterized by a maximum
weight fractional independent set on a specific hypergraph. In this section, we derive a
local computation algorithm that computes a near optimal fractional weighted independent
set. We begin with an informal overview of local algorithms.

4.1. Informal overview

The goal of local algorithms is to handle the case that the input is so huge that we do
not even want to read all of it. The main idea is that rather than computing a complete
solution, we produce the solution as needed in the form of responses to queries.

For example, for computing a maximum independent set, the input is a graph G(V,E)
and a query asks when a given vertex v ∈ V is in the independent set. We desire a few
properties from such an algorithm. First, we would like it to maintain feasibility, meaning
that if we consider all the possible queries v ∈ V and the replies given by the algorithm, the
set of vertices that it declares to be in the independent set actually do form an independent
set. Achieving only feasibility is in fact fairly straightforward since we can simply claim
that all the vertices are not in the independent set. This means that we also need to assure
some level of quality for the resulting solution. Ideally, we would like to guarantee that the
resulting independent set is of maximum size, but often we must settle for it being only
approximately optimal, namely 1− ε times the optimal size.

In our setting we are given a hypergraph and would like to compute a near maximum
weight fractional independent set. That is, given a vertex x, we would like to compute the
weight bx so that the weights satisfy the feasibility of LP-MIS, and the sum of the weights is
near maximum. Our main goal is to develop an algorithm that depends only on the degree
and the rank of the hypergraph, not on its size.

One popular method for developing local algorithms is to derive them from synchronous
distributed algorithms Parnas and Ron (2007). A synchronous distributed algorithm works
in rounds, where in each round each vertex sends information to its neighbors. (This is very
similar to synchronous message passing algorithms.) The main insight is that the number
of rounds of the distributed algorithm bounds the information flow from a vertex in the
graph. Thus, if the distributed algorithm runs in T rounds, then the output of a vertex
x cannot depend on any vertex y which is of distance T + 1 or more. This is because the
information has to propagate in the distributed algorithm.

Simulating a distributed algorithm by a local algorithm is rather straightforward. If the
distributed algorithm runs in T rounds, and we are interested in the output of vertex x, we
do the following: We run all the vertices up to distance T from x for their first round, all
the vertices up to distance T − 1 for two rounds, and in general, run vertices at distance
T − t for t rounds. With this approach, any vertex has all the information it needs when
we run it. This means that the most crucial parameter is the number of rounds, which
both bounds the number of simulation rounds and, more importantly, the radius of the
neighborhood we need to consider.

Our basic distributed algorithm for the maximum weight fractional independent set uses
an algorithm based on the multiplicative weights approach (see, Arora et al. (2012) for a
survey). The algorithm works in rounds, building weights on vertices. Intuitively, we would

8

Robust Inference for Multiclass Classification

like to increase the fractional weights on vertices which have few “conflicts.” We achieve
this effect by taking the set of least expensive vertices (up to a multiplicative factor of
1 + ε) and increase their weights. Now, when a vertex increases its weight, it increases the
cost of all the edges it belongs to, which in turn, increases the cost of the vertices. This
intuitively implies that if we increase the weight of a vertex with a large connectivity, it
will influence many edges. Also, a vertex with large connectivity is influenced by the many
edges it shares, and its cost can increase significantly even without increasing its weight.
One of the ingredients in our algorithm is the initialization of the costs.

In order to analyze our algorithm, we present a class of algorithms, to which our al-
gorithm belongs. We show that any algorithm in this class of algorithms has the desired
approximation ratio for the maximum weight fractional independent set on the given hy-
pergraph.

4.2. The set-up

We next present our algorithm for an arbitrary hypergraph G(X , E), where X are the
vertices and E ⊂ 2X are the hyperedges. We suppose that edges have rank at most r,
i.e., |e| ≤ r, and vertices have degree at most d, i.e., |{e : x ∈ e}| ≤ d. (Note that in our
application, r ≤ k and d ≤ αβk.) We have a nonnegative weight functionD over the vertices.
We wish to find a fractional independent set of nearly maximal weight. For simplicity in
stating our forthcoming algorithms, we assume that every vertex in G is contained in some
hyperedge (this holds in our application since ρ(x) 6= ∅, and also in general since vertices
which do not appear in any hyperedge can always be added to the independent set).

Given a vertex x, our local algorithm can be applied to determine the weight bx, with
running time that depends only on the degree d and rank r of G. By Corollary 4 this gives
an efficient way to compute a near optimal learner policy.

Essentially, we will show that in order to determine bx we need to consider only a certain
radius T from x in G, which depends only on the degree and the rank and does not depend
on the number of nodes |X |. To bound this radius we use a distributed algorithm, which
works in rounds, so the number of rounds would bound the radius. To prove the performance
of our distributed algorithm, we present a class of algorithms that includes our distributed
algorithm, and show that any algorithm in that class is near optimal.

4.3. A distributed algorithm for approximating weighted fractional MIS

We present a synchronous distributed algorithm (based on the multiplicative weights ap-
proach) parameterized by an integer T (for total number of rounds) and by a small error
parameter ε > 0. The algorithm assigns costs c(e) to edges and values λ(x) to vertices.
The parameters (c or λ) at the end of round t are denoted by a subscript t. Initially, the
cost of edge e is c0(e) = maxx∈eD(x). Edge costs are updated throughout the execution
of the algorithm. The edge costs induce costs c(x) on vertices, where c(x) =

∑
e|x∈e c(e).

In addition, the algorithm assigns and updates integer values λ(x) to vertices. Initially all
these values are λ0(x) = 0. The final fractional solution is obtained by appropriately scaling
the final λT (x) values.
Algorithm WFMIS:

1. Parameters: T ≥ 1 and ε > 0.

9

Feige Mansour Schapire

2. Initialize λ0(x) = 0 for every vertex x ∈ X , c0(e) = maxx∈eD(x) for every edge e ∈ E ,
and c0(x) =

∑
e|x∈e c0(e).

3. Repeat for 1 ≤ t ≤ T :

(a) Every vertex x for which ct−1(x)
D(x) ≤ (1 + ε)t is considered t-active.

(b) For every t-active vertex x, update λt(x) = λt−1(x) + 1. For vertices that are
not t-active, keep λt(x) = λt−1(x).

(c) For an edge e, let At(e) denote the number of t-active vertices in e. For every
edge e, update ct(e) = (1 + ε)At(e)ct−1(e) = (1 + ε)

∑
x∈e λt(x)c0(e).

(d) For every vertex x, ct(x) =
∑

e|x∈e ct(e).

4. For every edge e, let se be such that cT (e) = (1 + ε)sec0(e), i.e., se =
∑

x∈e λT (x). For

every vertex x, set λ̄(x) = mine|x∈e[
λT (x)
se

].

Proposition 5 The values of λ̄(x) in WFMIS form a fractional independent set. More-
over, for s = maxe se it holds that T − log d

ε ≤ s ≤ T + r.

Proof [Proof sketch:] For every edge e ∈ E , for each x ∈ e we have λ̄(x) ≤ λT (x)
se

, which

implies that
∑

x∈e λ̄(x) ≤
∑

x∈e
λT (x)
se

= 1, implying that the λ̄(x) values are a fractional
independent set. The upper bound that s ≤ T + r is proved since we can “overshoot” by
at most r. The lower bound follows from bounding the cost of the vertex with the highest
weight.

4.4. Class of fraction MIS algorithms (NFMIS)

It remains to analyze the approximation ratio of algorithm WFMIS. For this we present a
class of algorithms NFMIS. NFMIS will represent a class of algorithms, where members of
this class differ by the certain choices that they make. We will show that every algorithm in
this class has a good approximation ratio, and that WFMIS belongs to the class NFMIS. As
in algorithm WFMIS, vertices and edges have costs, and vertices also have weights. Unlike
WFMIS, in every iteration, only one vertex updates its value in each iteration.

Algorithm NFMIS (a class of algorithms):

1. Parameter: T ≥ 1 and ε > 0.

2. Initialize λ0(x) = 0 for every vertex x ∈ X , c0(e) = maxx∈eD(x) for every edge e ∈ E ,
and c0(x) =

∑
e|x∈e c0(e).

3. Repeat for t = 1, 2, . . . and stop at an arbitrary value of t = τ , provided that at t = τ
the inequalities (1 + ε)T ≤Mτ+1 ≤ (1 + ε)T+r hold, where Mt = minx[ct−1(x)

D(x)]:

(a) Let xt be an arbitrary vertex satisfying Mt ≤ ct−1(x)
D(x) ≤ (1 + ε)rMt.

(b) Update λt(xt) = λt−1(xt) + 1. For vertices x 6= xt keep λt(x) = λt−1(x).

10

Robust Inference for Multiclass Classification

(c) For every edge e containing xt, update ct(e) = (1 + ε)ct−1(e). For every edge e
not containing xt keep ct(e) = ct−1(e).

(d) For every vertex x, ct(x) =
∑

e|x∈e ct(e).

4. Let τ denote the last iteration of the algorithm. For every edge e, let se be such that
cτ (e) = (1 + ε)sec0(e). For every vertex x, set λ̄(x) = mine|x∈e[

λτ (x)
se

].

The different algorithms in NFMIS may differ in the decision when to stop (Step 3) and
the selection of the vertex xt (Step 3a).

Proposition 6 The values λ̄(x) in NFMIS form a fractional independent set.

The proof of Proposition 6 is similar to that of Proposition 5, and hence omitted.

Proposition 7 The WFMIS algorithm belongs to the class of algorithms NFMIS.

Proof [Proof sketch:] The proof is by induction on the number of iterations, showing that

at the beginning of iteration t, for every vertex x we have ct−1(x)
D(x) ≥ (1 + ε)t−1. This implies

that all the active vertices are at most a factor 1 + ε from the minimum ratio. By making
the process sequential, we might have a vertex wait for r − 1 other vertices, which implies
that it might be (1 + ε)r from the minimum ratio, and in NFMIS. The stopping condition
is also related by the same ratio.

4.5. Near optimality

In both algorithms we scaled λ(x) to λ̄ by using the individual se. The feasibility is main-
tained if we used the coarser bound of λ̄(x) = λ(x)/s, where s = maxe se. In the following,
to derive the approximation bound, we assume the coarser bound λ̄(x) = λ(x)/s. Note that
the more refined bound of λ̄(x) = λ(x)/se ≥ λ(x)/s can only increase the weight of the
fractional independent set.

Lemma 8 Every algorithm within the class NFMIS has an approximation ratio no worse
than

Wτ

opt∗((1+ε) ln rd
ε + r + 1) + (1 + 2ε)(1 + 2rε)Wτ

,

where Wτ =
∑τ

t=1D(xt) and opt∗ is the weight of a maximum fractional independent set.

Proof [Proof sketch:] Let W =
∑

xD(x), λ∗(x) be vertex values in a maximum weight
fractional independent set in G, and let opt∗ be its weight, namely opt∗ =

∑
x λ
∗(x)D(x).

Let Ct be the total cost of edges at the end of round t, i.e., Ct =
∑

e ct(e). Consider an
assignment c′ of costs to vertices such that c′(x) =

∑
e:x∈e ct(e)λ

∗(x). Since for every edge
e we have

∑
x∈e λ

∗(x) ≤ 1, we have that,

Ct−1 ≥
∑
e∈E

∑
x∈e

ct−1(e)λ∗(x) ≥Mt

∑
x∈X

λ∗(x)D(x) = Mtopt
∗,

11

Feige Mansour Schapire

since, by definition, Mt = minx
ct−1(x)
D(x) and opt∗ =

∑
x λ
∗(x)D(x). This implies that Mt ≤

Ct−1

opt∗ .
Recall that we denote by xt the vertex chosen at iteration t (hence it could be that

xt and xt′ for t′ 6= t actually refer to the same vertex in G). Then xt has ratio at most
(1 + ε)rMt. It follows that

Ct ≤ Ct−1 + ε(1 + ε)rMtD(xt) ≤ Ct−1

(
1 +

ε(1 + ε)rD(xt)

opt∗

)
.

For ε ≤ 1
4r , we bound Cτ ≤ C0(1+ε)

(1+2ε)(1+2rε)
∑τ
t=1D(xt)

opt∗ . We define Wτ =
∑τ

t=1D(xt),
and note that Wτ is the total weight accumulated by WFMIS before the scaling of Step 4,

i.e., Wτ =
∑

x λτ (x)D(x). Then we can write Cτ ≤ dW (1+ε)
(1+2ε)(1+2rε)Wτ

opt∗ , since C0 ≤ dW .

Given Cτ , the sum of costs of all edges, we upper bound Cmax = maxe[
cτ (e)
c0(e)], the

largest multiplicative increase of cost of any edge e, and show that Cmax ≤ (1+ε)r+1rCτ
W ≤

rd(1 + ε)
(1+2ε)(1+2rε)Wτ

opt∗ +r+1
.

We derive that Cmax ≤ (1 + ε)
σ+

(1+2ε)(1+2rε)Wτ
opt∗ +r+1

, where σ = (1+ε) ln rd
ε . Consequently,

in Step 4 of NFMIS we have se ≤ σ+ (1+2ε)(1+2rε)Wτ

opt∗ +r+1 for every edge e. Since s = maxe se

we have that s ≤ σ + (1+2ε)(1+2rε)Wτ

opt∗ + r + 1. We also recall that
∑

x λτ (x)D(x) = Wτ .
Hence after scaling λτ (x) by at most s we have that the value of the fractional solution is
at least opt∗ Wτ

opt∗(σ+r+1)+(1+2ε)(1+2rε)Wτ
.

From Lemma 8 we can deduce the following theorem.

Theorem 9 For a given 0 < δ < 1
8 and for d ≥ 2, algorithm WFMIS has an approximation

ratio of at least 1
1+δ whenever T is at least 11(r+3) ln rd

δ2
.

4.6. From distributed to local algorithm

The following theorem summarizes our main result regarding our efficient robust inference
algorithm.

Theorem 10 For any 0 < δ < 1/8, a (1− δ)-optimal randomized strategy for the learner
in the robust inference game can be computed by a local algorithm that, given a corrupted

input z, explores a neighborhood of radius T = O

(
k(ln kα+maxi<k[i ln β

i
])

δ2

)
= O

(
k2 ln(αβ)

δ2

)
from the vertices ρ−1(z) and runs in time O(βdT) = exp(O(k

2 log2(αβ)
δ2

)).

For a constant k = O(1) this gives a radius of O
(

ln(αβ)
δ2

)
and a running time of exp(log2(αβ)

δ2
).

12

Robust Inference for Multiclass Classification

References

Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon barrier:
A faster and simpler width-independent algorithm for solving positive linear programs in
parallel. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 1439–1456, 2015.

Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In SODA, pages 1132–1139, 2012.

Dana Angluin and Philip Laird. Learning from noisy examples. Mach. Learn., 2(4):343–370,
April 1988.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012.

A. Ben-Tal, L. El Ghaoui, and A.S. Nemirovski. Robust Optimization. Princeton Series in
Applied Mathematics. Princeton University Press, October 2009.

Ofer Dekel and Ohad Shamir. Learning to classify with missing and corrupted features.
In Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML
2008), pages 216–223, 2008.

Guy Even, Moti Medina, and Dana Ron. Best of two local models: Local centralized and
local distributed algorithms. CoRR, abs/1402.3796, 2014. URL http://arxiv.org/abs/

1402.3796.

Uriel Feige, Yishay Mansour, and Robert E. Schapire. Learning and inference in the presence
of corrupted inputs. In Proceedings of The 28th Conference on Learning Theory, COLT
2015, pages 637–657, 2015.

Amir Globerson and Sam T. Roweis. Nightmare at test time: robust learning by feature
deletion. In Machine Learning, Proceedings of the Twenty-Third International Conference
(ICML 2006), pages 353–360, 2006.

Peter J. Huber. Robust Statistics. Wiley, 1981.

Michael J. Kearns and Ming Li. Learning in the presence of malicious errors. SIAM J.
Comput., 22(4):807–837, 1993.

Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In APPROX-RANDOM, pages 260–273, 2013.

Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms
to local computation algorithms. In ICALP (1), pages 653–664, 2012.

Yishay Mansour, Aviad Rubinstein, and Moshe Tennenholtz. Robust probabilistic infer-
ence. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 449–460, 2015.

13

http://arxiv.org/abs/1402.3796
http://arxiv.org/abs/1402.3796

Feige Mansour Schapire

M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and a
connection to distributed algorithms. Theoretical Computer Science, 381(1–3), 2007.

Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In ICS, pages 223–238, 2011.

Choon Hui Teo, Amir Globerson, Sam T. Roweis, and Alexander J. Smola. Convex learning
with invariances. In Advances in Neural Information Processing Systems 20, Proceedings
of the Twenty-First Annual Conference on Neural Information Processing Systems, Van-
couver, British Columbia, Canada, December 3-6, 2007, pages 1489–1496, 2007.

L. G. Valiant. Learning disjunction of conjunctions. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence - Volume 1, IJCAI’85, pages 560–566, 1985.

14

Robust Inference for Multiclass Classification

Appendix A. Missing proofs

Proof [Proof of Lemma 1] Given an input x, the adversary solves the LP-cover and uses
the weights we to define a policy as follows. First, the adversary selects an edge e such that
x ∈ e with probability we/

∑
e′:x∈e′ we′ . Recall that each edge e is associated with a unique

corrupted input cor(e). Given that the adversary selected edge e it maps x to cor(e). (By
construction we have cor(e) ∈ ρ(x).) The learner hypothesis predicts some h(z) ∈ ∆(Y),
where h(z)(j) is the probability for label j. We allow the learner to have a prediction he
for each edge e, thus allow the prediction to depend on the selected edge (and not only
the selected corrupted input z, essentially disclosing more information to the learner). The
upper bound on the expected accuracy is computed as follows,

Pr
x,z

[h(z) = f(x)] = Ex,z[h(z)(f(x))] =
∑
e∈E

∑
x∈X

Pr[e|x] Pr[x]he(f(x))

=
∑
e∈E

∑
x∈X

we∑
e′:x∈e′ we′

D(x)I[x ∈ e]he(f(x))

≤
∑
e∈E

we
∑
x∈X

I[x ∈ e]he(f(x)) =
∑
e∈E

we
∑
x∈e

he(f(x))

≤
∑
e∈E

we
∑
y∈Y

he(y) =
∑
e∈E

we ,

where the first inequality follows from the constraint D(x) ≤
∑

e′:x∈e′ we′ in LP-cover, the
second inequality follows since there is at most one vertex in e for each label in Y, and the
last equality follows since he ∈ ∆(Y).

Proof [Proof of Lemma 2]We show how the learner can use the values of bx to build a pre-
diction. Given the weight bx the learner defines the following hypothesis. For each corrupted
input z ∈ Z and label y ∈ Y we define max(y|z) = maxx∈ρ−1(z),f(x)=y bx, and max(y|z) = 0
if ρ−1(z) = ∅. Namely, max(y|z) is the maximum value of bx over all uncorrupted inputs
x which can be mapped to z and have label y. The learner hypothesis, given a corrupted
input z, returns a distribution h(z) ∈ ∆(Y) such that h(z)(y) = max(y|z)∑

j∈Y max(j|z) . Namely,

h(z) normalizes the values max(y|z) to a distribution.
Note that

∑
j∈Y max(j|z) ≤ 1 since there is an edge e ∈ E that includes all xj =

arg maxx∈ρ−1(z),f(x)=j bx. We can now relate the accuracy to the bx values as follows. For
any x ∈ ρ−1(z) and f(x) = y we have,

h(z)(y) =
max(y|z)∑
j∈Y max(j|z)

≥ max(y|z) ≥ bx

The learner accuracy can be lower bounded as follows:

Pr
x,z

[h(z) = f(x)] ≥
∑
x∈X

D(x) min
z∈ρ(x)

h(z)(f(x)) ≥
∑
x∈X

D(x) min
z∈ρ(x)

bx =
∑
x∈X

D(x)bx,

which implies that the objective function of LP-MIS lower bounds the accuracy.

15

Feige Mansour Schapire

Proof [Proof of Corollary 4] We can observe, as in the proof of Lemma 2, that we need to
compute,

hz(y) =
max(y|z)∑
j∈Y max(j|z)

≥ max(y|z) ≥ bx ,

and for that we need only the values bx of x ∈ ρ−1(z), and there are at most β such values.
Lemma 2 guarantees that the accuracy will be at least accuracy.

Proof [Proof of Proposition 5]For every edge e ∈ E , for each x ∈ e we have λ̄(x) ≤ λT (x)
se

,

which implies that
∑

x∈e λ̄(x) ≤
∑

x∈e
λT (x)
se

= 1, implying that the λ̄(x) values are a
fractional independent set.

Now we show that se ≤ T + r. Consider the last iteration t at which edge e contained
an active vertex x (clearly, t ≤ T). At that iteration, ct−1(x)

D(x) ≤ (1 + ε)t, and consequently

ct−1(e) ≤ (1 + ε)tD(x) ≤ (1 + ε)tc0(e). In that iteration, at most |e| ≤ r vertices in
e were active, hence ct(e) ≤ (1 + ε)rct−1(e). Hence cT (e) = ct(e) ≤ (1 + ε)rct−1(e) ≤
(1 + ε)t+rc0(e) ≤ (1 + ε)T+rc0(e), as desired.

We now show that s ≥ T− log d
ε . First, we show by induction on the number of iterations

of WFMIS, that at the beginning of iteration t, for every vertex x we have ct−1(x)
D(x) ≥ (1+ε)t−1.

The base case is t = 1 and follows from the facts that every vertex of G is contained in some
edge and that c0(e) ≥ D(x) for every edge containing x. For the inductive step, observe
that if a vertex x is active in round t then its cost increases by a factor of at least (1 + ε)
in that round, because of the increase that x itself inflicted on its incident edges.

Let x be the vertex with highest D(x). Then after the last iteration T we have that
cT (x)
D(x) ≥ (1+ε)T . This implies that x has an incident edge e with cT (e) ≥ cT (x)

d ≥ (1+ε)TD(x)
d .

Maximality of D(x) implies that c0(e) = D(x), and hence s ≥ se ≥ T − log d
ε .

Proof [Proof of Proposition 7]We show by induction on the number of iterations of WFMIS,

that at the beginning of iteration t, for every vertex x we have ct−1(x)
D(x) ≥ (1 + ε)t−1. The

base case is t = 1 and follows from the facts that every vertex of G is contained in some
edge and that c0(e) ≥ D(x) for every edge containing x. For the inductive step, observe
that if a vertex x is active in round t then its cost increases by a factor of at least (1 + ε)
in that round, because of the increase that x itself inflicted on its incident edges.

The inequality ct−1(x)
D(x) ≥ (1 + ε)t−1 implies that in every round of WFMIS, the active

vertices all have ratio within a factor of (1 + ε) from the minimum ratio at that round.
However, as vertices are processed in parallel in a round, if we would try to serialize the
activations, an active vertex x might be considered only after some neighbors already in-
creased the cost of its incident edges, at most by a factor of (1 + ε)r−1. Hence x’s own ratio
in the serial activation might be a factor of (1 + ε)r−1(1 + ε) = (1 + ε)r larger than the
minimum vertex ratio at the time that x becomes active. Step 3a of NFMIS accommodates
for this.

Observe also that when WFMIS stops, the minimum ratio vertex x has (1 + ε)T ≤
ct(x)
D(x) ≤ (1 + ε)T+r. This is in agreement with the stopping condition of NFMIS.

16

Robust Inference for Multiclass Classification

Proof [Proof of Lemma 8] Let W =
∑

xD(x) (in the case that D is a distribution we have
W = 1). Let λ∗(x) be vertex values in a maximum weight fractional independent set in G,
and let opt∗ be its weight, namely opt∗ =

∑
x λ
∗(x)D(x).

Let Ct be the total cost of edges at the end of round t, i.e., Ct =
∑

e ct(e). Consider an
assignment c′ of costs to vertices such that c′(x) =

∑
e:x∈e ct(e)λ

∗(x). Since for every edge
e we have

∑
x∈e λ

∗(x) ≤ 1, then we have that,

Ct−1 =
∑
e∈E

ct−1(e)

≥
∑
e∈E

∑
x∈e

ct−1(e)λ∗(x)

=
∑
x∈X

λ∗(x)
∑
e:x∈e

ct−1(e)

=
∑
x∈X

λ∗(x)D(x)
ct−1(x)

D(x)

≥Mt

∑
x∈X

λ∗(x)D(x) = Mtopt
∗,

since, by definition, Mt = minx
ct−1(x)
D(x) and opt∗ =

∑
x λ
∗(x)D(x). This implies that

Mt ≤
Ct−1

opt∗
.

Recall that we denote by xt the vertex chosen at iteration t (hence it could be that
xt and xt′ for t′ 6= t actually refer to the same vertex in G). Then xt has ratio at most
(1 + ε)rMt. It follows that

Ct =Ct−1 + ε
∑
e:xt∈e

ct−1(e)

=Ct−1 + εct−1(xt)

≤Ct−1 + ε(1 + ε)rMtD(xt)

≤Ct−1 + ε(1 + ε)r
Ct−1

opt∗
D(xt)

≤Ct−1

(
1 +

ε(1 + ε)rD(xt)

opt∗

)
.

Observe that 1+ εz ≤ (1+ ε)z(1+2ε) for ε ≤ 1/2,4 and that (1+ ε)r ≤ (1+2rε) for ε ≤ 1
4r .

Consequently, Ct ≤ Ct−1(1 + ε)
(1+2ε)(1+2rε)

D(xt)
opt∗ , and Cτ ≤ C0(1 + ε)

(1+2ε)(1+2rε)
∑τ
t=1D(xt)

opt∗ .
Observe that C0 ≤ dW . We define Wτ =

∑τ
t=1D(xt), and note that Wτ is the total weight

accumulated by WFMIS before the scaling of Step 4, i.e., Wτ =
∑

x λτ (x)D(x). Then we

can write Cτ ≤ dW (1 + ε)
(1+2ε)(1+2rε)Wτ

opt∗ .

Given Cτ , the sum of costs of all edges, let us upper bound Cmax = maxe[
cτ (e)
c0(e)], the

largest multiplicative increase of cost of any edge e. Let x be the vertex whose last increase

4. ln(1 + εz) ≤ εz and z(1 + 2ε) ln(1 + ε) ≥ z(1 + 2ε)(ε− ε2) = zε(1 + ε(1− 2ε))

17

Feige Mansour Schapire

in value gave e the cost Cmaxc0(e). Then prior to being last chosen, the ratio of x was at least
cτ (x)
D(x) ≥

Cmaxc0(e)
(1+ε)D(x) ≥

Cmax
1+ε , where the last inequality follows because c0(e) ≥ D(x). Step 3a

of NFMIS implies that at that point every vertex had ratio at least Cmax
(1+ε)r+1 , implying that

cτ (x)
D(x) ≥

Cmax
(1+ε)r+1 for every vertex x. Consequently,

∑
x cτ (x)∑
xD(x) ≥

Cmax
(1+ε)r+1 . As each edge has

rank at most r, we also have that
∑

x cτ (x) ≤ rCτ . Recall also that
∑

xD(x) = W . It

follows that Cmax ≤ (1+ε)r+1rCτ
W ≤ rd(1 + ε)

(1+2ε)(1+2rε)Wτ
opt∗ +r+1

.

Let σ = (1+ε) ln rd
ε . Since 1 + z ≥ exp(z

1+z), for z ≥ 0, we have that (1 + ε)σ ≥ rd.

Then Cmax ≤ (1 + ε)
σ+

(1+2ε)(1+2rε)Wτ
opt∗ +r+1

. Consequently, in Step 4 of NFMIS we have

se ≤ σ + (1+2ε)(1+2rε)Wτ

opt∗ + r + 1 for every edge e. Defining s = maxe se we have that

s ≤ σ + (1+2ε)(1+2rε)Wτ

opt∗ + r + 1. We also recall that
∑

x λτ (x)D(x) = Wτ . Hence after
scaling λτ (x) by at most s we have that the value of the fractional solution is at least

Wτ

σ+
(1+2ε)(1+2rε)Wτ

opt∗ +r+1
= opt∗ Wτ

opt∗(σ+r+1)+(1+2ε)(1+2rε)Wτ
.

Proof [Proof of Theorem 9] Consider the denominator of the approximation bound in

Lemma 8: opt∗((1+ε) ln rd
ε + r+ 1) + (1 + 2ε)(1 + 2rε)Wτ . For a given 0 < δ < 1, we wish to

choose ε and T in such a way that we can express it as (1 + δ)Wτ . First we choose ε to be
small enough so that (1+2ε)(1+2rε) ≤ 1+ δ

2 . Choosing ε = δ
4(r+3) suffices for this purpose,

and then the denominator becomes at most opt∗(4(r+3) ln rd
δ + ln rd + r + 1) + (1 + δ

2)Wτ .

Choosing Wτ ≥ W̄ = 2opt∗

δ (4(r+3) ln rd
δ + ln rd + r + 1) the denominator indeed becomes at

most (1 + δ)Wτ , and the approximation ratio in Lemma 8 is then 1
1+δ .

Recall that s = maxe se. For the choices of ε and W̄ as above, since we have a 1
1+δ

approximation, we have that
opt∗

1 + δ
≤ Wτ

s
≤ opt∗.

This implies that
Wτ

opt∗
≤ s ≤ (1 + δ)

Wτ

opt∗
.

In addition we have

s ≤ (1 + δ)
Wτ

opt∗
=

2 + 2δ

δ

(
4(r + 3) ln rd

δ
+ ln rd+ r + 1

)
≤ 10(r + 3) ln rd

δ2
, (1)

where the last inequality uses the bounds on δ and d in the theorem, and the fact that
r ≥ 2.

Let us consider now algorithm WFMIS, and recall from Proposition 5 that there the
number of rounds satisfies T ≤ s + log d

ε . Using our upper bound on s and our choice of

ε = δ
4(r+3) we get that:

T ≤ 10(r + 3) ln rd

δ2
+

4(r + 3) log d

δ
≤ 11(r + 3) ln rd

δ2

Observe that we started from a value W̄ , enforced Wτ ≥ W̄ , then deduced that s ≤
10(r+3) ln rd

δ2
and finally deduced that T = 11(r+3) ln rd

δ2
rounds suffice in WFMIS. To complete

18

Robust Inference for Multiclass Classification

the proof we need to show that if we choose T = 11(r+3) ln rd
δ2

we indeed necessarily have that
Wτ ≥ W̄ , validating the chain of implications. This follows from the fact that both s and
Wτ are monotonically nondecreasing between rounds in NFMIS.

Specifically, consider running WFMIS for 11(r+3) ln rd
δ2

rounds. By Proposition 5, at that

time necessarily s > 10(r+3) ln rd
δ2

. Likewise, at that point Wτ ≥ W̄ . (Otherwise continue
running NFMIS until Wτ ≥ W̄ for the first time (this will eventually happen). At that

time, by (1), we have s ≤ 10(r+3) ln rd
δ2

, and since s is monotone, we cannot have at an earlier

time s > 10(r+3) ln rd
δ2

.)

Proof [Proof of Theorem 10] Theorem 9 shows that our distributed algorithm runs in
T = O(r ln rd

δ2
) rounds and computes a 1 − δ approximation to the maximum weighted

fractional independent set for any algorithm in the class NFMIS. Proposition 7 shows that
WFMIS belongs to the class of NFMIS algorithms. Similar to Parnas and Ron (2007) we
can then transform WFMIS to a distributed algorithm to a local algorithm which needs
access only to vertices up to distance T , which implies a running time of at most O(dT).

We now need to translate the parameters of the hypergraph G, rank r and degree d to
the parameters of the original robust inference problems: α, β and k. Recall that k = |Y |
is the number of labels, α bounds the number of corrupted inputs an uncorrupted input
can be mapped to, i.e., for any x we have 1 ≤ |ρ(x)| ≤ α, and β bound the number of
pre-images of a corrupted input, i.e., for any z we have |ρ−1(z)| ≤ β.

Since an edge in G includes only inputs with different labels, we have that r ≤ k.
The degree α of an edge is upper bounded by αmaxi<k

(
β−1
i

)
≤ αβk, since an uncorrupted

input can be mapped to at most α corrupted inputs, and each one has at most β pre-images,
finally, an edge includes at most k uncorrupted inputs with different labels.

Using the above bounds in T = O(r ln rd
δ2

) we get

T = O

(
k(ln kα+ maxi<k[i ln β

i])

δ2

)
= O

(
k ln kα+ k2 lnβ

δ2

)
= O

(
k2 ln(αβ)

δ2

)
The running time is O(dT) which becomes

O(dT) =exp(O

(
k2 log2(αβ)

δ2

)
)

Since we found a (1− δ)-optimal solution to the weighted fractional set cover problem,
by Corollary 4 this implies a near optimal policy for the learner, with an extra factor of β
for the maximum number of the pre-images of z.

19

	Introduction
	The inference model
	Characterizing the optimal policies
	Adversary policy
	Learner policy
	Optimality

	Efficient Local Algorithm
	Informal overview
	The set-up
	A distributed algorithm for approximating weighted fractional MIS
	Class of fraction MIS algorithms (NFMIS)
	Near optimality
	From distributed to local algorithm

	Missing proofs

