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Abstract

Randomized coordinate descent (RCD) methods are state-of-the-art algorithms for training
linear predictors via minimizing regularized empirical risk. When the number of examples
(n) is much larger than the number of features (d), a common strategy is to apply RCD
to the dual problem. On the other hand, when the number of features is much larger than
the number of examples, it makes sense to apply RCD directly to the primal problem. In
this paper we provide the first joint study of these two approaches when applied to L2-
regularized linear ERM. First, we show through a rigorous analysis that for dense data,
the above intuition is precisely correct. However, we find that for sparse and structured
data, primal RCD can significantly outperform dual RCD even if d � n, and vice versa,
dual RCD can be much faster than primal RCD even if n � d. Moreover, we show that,
surprisingly, a single sampling strategy minimizes both the (bound on the) number of
iterations and the overall expected complexity of RCD. Note that the latter complexity
measure also takes into account the average cost of the iterations, which depends on the
structure and sparsity of the data, and on the sampling strategy employed. We confirm
our theoretical predictions using extensive experiments with both synthetic and real data
sets.

Keywords: Coordinate Descent, Stochastic Dual Coordinate Ascent, Empirical Risk Min-
imization

1. Introduction

In the last 5 years or so, randomized coordinate descent (RCD) methods (Shalev-Shwartz
and Tewari, 2011; Nesterov, 2012; Richtárik and Takáč, 2014, 2015) have become immensely
popular in a variety of machine learning tasks, with supervised learning being a prime
example. The main reasons behind the rise of RCD-type methods is that they can be easily
implemented, have intuitive appeal, and enjoy superior theoretical and practical behaviour
when compared to classical methods such as SGD (Robbins and Monro, 1951), especially in
high dimensions, and in situations when solutions of medium to high accuracy are needed.
One of the most important success stories of RCD is in the domain of training linear
predictors via regularized empirical risk minimization (ERM).

The highly popular SDCA algorithm (Shalev-Shwartz and Zhang, 2013b) arises as the
application of RCD (Richtárik and Takáč, 2014) to the dual problem associated with the
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(primal) ERM problem1. In practice, SDCA is most effective in situations where the num-
ber of examples (n) exceeds the number of features (d). Since the dual of ERM is an n
dimensional problem, it makes intuitive sense to apply RCD to the dual. Indeed, RCD can
be seen as a randomized decomposition strategy, reducing the n dimensional problem to a
sequence of (randomly generated) one-dimensional problems.

However, if the number of features exceeds the number of examples, and especially when
the difference is very large, RCD methods (Richtárik and Takáč, 2015) have been found very
attractive for solving the primal problem (i.e., the ERM problem) directly. For instance,
distributed variants of RCD, such as Hydra (Richtárik and Takáč, 2016) and its accelerated
cousin Hydra2 (Fercoq et al., 2014) have been successfully applied to solving problems with
billions of features.

Recently, a variety of novel primal methods for ERM have been designed, including SAG
(Schmidt et al., 2013), SVRG (Johnson and Zhang, 2013), S2GD (Konečný and Richtárik,
2013), proxSVRG (Xiao and Zhang, 2014), mS2GD (Konečný et al., 2016), SAGA (Defazio
et al., 2014), MISO (Mairal, 2015) and S2CD (Konečný et al., 2014). As SDCA, all these
methods improve dramatically on SGD (Robbins and Monro, 1951) as a benchmark, which
they achieve by employing one of a number of variance-reduction strategies. These methods
enjoy essentially identical theoretical complexity bounds as SDCA. In this sense, conclusions
based on our study complexity of primal RCD vs dual RCD are valid also when comparing
primal RCD with appropriate variants of any of the above mentioned methods (e.g., SVRG).
For simplicity, we do not explore this further in this paper, and instead focus on comparing
primal versus dual RCD.

1.1. Contributions

In this paper we provide the first joint study of these two approaches—applying RCD to
the primal vs dual problems—and we do so in the context of L2-regularized linear ERM.
First, we show through a rigorous theoretical analysis that for dense data, the intuition
that the primal approach is better than the dual approach when n ≤ d, and vice versa, is
precisely correct. However, we show that for sparse data, this does not need to be the case:
primal RCD can significantly outperform dual RCD even if d � n, and vice versa, dual
RCD can be much faster than primal RCD even if n� d. In particular, we identify that the
face-off between primal and dual RCD boils down to the comparison of as single quantity
associated with the data matrix and its transpose. Moreover, we show that, surprisingly, a
single sampling strategy minimizes both the (bound on the) number of iterations and the
overall expected complexity of RCD. Note that the latter complexity measure takes into
account also the average cost of the iterations, which depends on the structure and sparsity
of the data, and on the sampling strategy employed. We confirm our theoretical findings
using extensive experiments with both synthetic and real data sets.

1. Indeed, the analysis of SDCA in (Shalev-Shwartz and Zhang, 2013b) proceeds by applying the complexity
result from (Richtárik and Takáč, 2014) to the dual problem, and then arguing that the same rate applies
to the primal suboptimality as well.
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2. Primal and Dual Formulations of ERM

Let X ∈ Rd×n be a data matrix, with n referring to the number of examples and d to the
number of features. With each example X:j ∈ Rd we associate a loss function φj : R→ R,
and pick a regularization constant λ > 0. The key problem of this paper is the L2-regularized
ERM problem for linear models

minw∈Rd

[
P (w) := 1

n

∑n
j=1 φj(〈X:j , w〉) + λ

2‖w‖
2
2

]
, (1)

where 〈·, ·〉 denotes the standard Euclidean inner product and ‖w‖2 :=
√
〈w,w〉. We refer

to (1) as the primal problem. We assume throughout that the functions {φj} are convex
and β-smooth, which is given by the bounds

φj(s) + φ′j(s)t ≤ φj(s+ t) ≤ φj(s) + φ′j(s)t+ β
2 t

2, (2)

for all s, t ∈ R. The dual problem of (1) is

maxα∈Rn

[
D(α) := − 1

2λn2 ‖Xα‖22 −
1
n

∑n
j=1 φ

∗
j (−αj)

]
, (3)

where φ∗j : R→ R is the convex conjugate of φj , defined by φ∗j (s) := sup{st−φj(t) : t ∈ R}.
It is well known that that P (w) ≥ D(α) for every pair (w,α) ∈ Rd×Rn and P (w∗) = D(α∗)
(Shalev-Shwartz and Zhang, 2013b; Qu et al., 2015). Moreover, the primal and dual optimal
solutions, w∗ and α∗, respectively, are uniquely charaterized by w∗ = 1

λnXα∗ and α∗j =
φ′j(〈X:j , w

∗〉) for all j ∈ [n] := {1, . . . , n}. Additionally, it follows from the β-smoothness of

the primal objective (1) that the dual objective (3) is 1
β -strongly convex.

2.1. Note on the setup

We choose the above setup, because linear ERM offers a good balance between the level of
developed theory and practical interest. The coordinate descent methods for primal/dual
linear ERM have been around for years and there is no doubt that they are well suited
for this task. Their convergence rates are well estabilshed and therefore we can confidently
build upon them. We could consider quadratic problems, where the bounds are known to
be tighter, but the setup is less general and therefore of smaller importance to the machine
learning community. For this reasons we believe that linear ERM is the most appropriate
setup for the direct comparison between primal and dual approaches.

As we constrain our analysis to this setup, we do not claim any general conclusions
about the advantage of one approach over the other. The results in this setup are only
meant to offer us new insight into the comparison, which we believe is enlightening.

3. Primal and Dual RCD

In its general “arbitrary sampling” form (Richtárik and Takáč, 2015), RCD applied to the
primal problem (1) has the form

wk+1
i ←

{
wki − 1

u′i
∇iP (wk) for i ∈ Sk,

wki for i /∈ Sk,
(4)
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where u′1, . . . , u
′
d > 0 are parameters of the method and∇iP (w) = 1

n

∑n
j=1 φ

′
j(〈X:j , w〉)Xij+

λwi is the ith partial derivative of P at w. This update is performed for a random subset of
the coordinates i ∈ Sk ⊆ [d] chosen in an i.i.d. fashion according to some sampling ŜP . The
parameters u′i are usually computed ahead of the iterative process and need to be selected
carefully in order for the method to work (Richtárik and Takáč, 2015; Qu and Richtárik,
2016b). A standard result is that one can set u′i := β

nui+λ, where u = (u1, . . . , ud) is chosen
so as to satisfy the Expected Separable Overapproximation (ESO) inequality

P ◦XX> � Diag(p ◦ u), (5)

where P is the d × d matrix with entries Pij = P(i ∈ ŜP , j ∈ ŜP ), p = Diag(P) ∈ Rd
and ◦ denotes the Hadamard (element-wise) product of matrices. The resulting method is
formally described as Algorithm 1. Note, that there are ways to run the method without
precomputing u′i (e.g. (Nesterov, 2012)), but we will focus on the scenario where we compute
them upfront, as this is the more standard way of developing the theory. We will focus on
applying serial coordinate descent to (1) and (3). For the case of generality we include them
in the arbitrary sampling form.

Algorithm 1: Primal RCD: NSync
(Richtárik and Takáč, 2015)

Input: initial iterate w0 ∈ Rd; sampling
ŜP ;
ESO parameters u1, . . . , ud > 0
Initialize: z0 = X>w0

for k = 0, 1, . . . do
Sample Sk ⊆ [d] according to ŜP
for i ∈ Sk do

∆k
i = (next line)
− n
βui+λn

(
1
n

∑n
j=1 φ

′
j(z

k
j )Xij +λwki

)
Update wk+1

i = wki + ∆k
i

end for
for i /∈ Sk do
wk+1
i = wki

end for
Update zk+1 = zk +

∑
i∈Sk

∆k
iX
>
i:

end for

Algorithm 2: Dual RCD: Quartz (Qu et al.,
2015)

Input: initial dual variables α0 ∈
Rn, sampling ŜD; ESO parameters
v1, . . . , vn > 0
Initialize: set w0 = 1

λnXα0

for k = 0, 1, . . . do
Sample Sk ⊆ [n] according to ŜD
for j ∈ Sk do

∆k
j = arg maxh∈R{−φ∗j (−(αj + h))

−h〈X:j , w〉 − vjh
2

2λn }
Update αk+1

j = αkj + ∆k
j

end for
for j /∈ Sk do
αk+1
j = αkj

end for
Update wk+1 = wk + 1

λn

∑
j∈Sk

∆k
jX:j

end for
When applying RCD to the dual problem (3), we can’t proceed as above since the

functions φ∗j are not necessarily smooth, and hence we can’t compute the partial derivatives
of the dual objective. The standard approach here is to use a proximal variant of RCD
(Richtárik and Takáč, 2015). In particular, Algorithm 2 has been analyzed in (Qu et al.,
2015). Like Algorithm 1, Algorithm 2 is also capable to work with an arbitrary sampling,
which in this case is a random subset of [n]. The ESO parameters v = (v1, . . . , vj) must in
this case satisfy the ESO inequality

Q ◦X>X � Diag(q ◦ v), (6)
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where Q is an n× n matrix with entries Qij = P(i ∈ ŜD, j ∈ ŜD) and q = Diag(Q) ∈ Rn.
If we assume that |ŜP | = 1 (resp. |ŜD| = 1) with probability 1 (i.e., of the samplings

are “serial”), then it is trivial to observe that (5) (resp. (6)) holds with

u = Diag(XX>) (resp. v = Diag(X>X)). (7)

The proof of the above and other easily computable expressions for u (resp. v) for more
complicated samplings can be found in (Qu and Richtárik, 2016b).

3.1. Note on the methods

To understand the key differences in convergence properties of these two approaches, we
analyse their behaviour in their most basic formulations. In practice, both methods can be
extended in many different ways, including possibilities as: line-search, adaptive probabil-
ities (Csiba et al., 2015), local smoothness (Vainsencher et al., 2015), and more. All these
extensions offer empirical speed-up, but the theoretical speed-up cannot be quantified. At
the same time all of them use additional computations, which in combination with the last
point renders them uncomparable with standard version of RCD.

4. Iteration Complexity and Total Arithmetic Complexity

In this section we give expressions for the total expected arithmetic complexity of the two
algorithms.

4.1. Number of iterations

Iteration complexity of Algorithms 1 and 2 is described in the following theorem. We do
not claim novelty here, the results follow by applying theorems in (Richtárik and Takáč,
2015) and (Qu et al., 2015) to the problems (1) and (3), respectively. We include a proof
sketch in the appendix.

Theorem 1 (Complexity: Primal vs Dual RCD) Let {φj} be convex and β-smooth.
(i) Let

KP (ŜP , ε) := maxi∈[d]

(
βui+λn
piλn

)
log
(
cP
ε

)
, (8)

where cP is a constant depending on w0 and w∗. If ŜP is proper (i.e., pi > 0 for all i),
and u satisfies (5), then iterates of primal RCD satisfy k ≥ KP (ŜP , ε) ⇒ E[P (wk)−
P (w∗)] ≤ ε.
(ii) Let

KD(ŜD, ε) := maxj∈[n]

(
βvj+λn
qjλn

)
log
(
cD
ε

)
, (9)

where cD is a constant depending on w0 and w∗. If ŜD is proper (i.e., qi > 0 for all i), and u
satisfies (6), then iterates of dual RCD satisfy k ≥ KD(ŜD, ε) ⇒ E[P (wk)−P (w∗)] ≤
ε.

The above results are the standard state-of-the-art bounds for primal and dual coordi-
nate descent. From now on we will use the shorthandKP :=KP (ŜP , ε) andKD :=KD(ŜD, ε),
when the quantity ε and the samplings ŜP and ŜD are clear from the context.
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4.2. Average cost of a single iteration

Let ‖ · ‖0 be the number of nonzeros in a matrix/vector. We can observe, that the com-
putational cost associated with one iteration of Algorithm 1 is O(‖Xi:‖0) assuming that
we picked the dimension i. As the dimension was picked randomly, we have to take the
expectation over all the possible dimensions to get the average cost of an iteration. This
leads us to the cost

WP (X, ŜP ) := O
(
E
[∑

i∈ŜP
‖Xi:‖0

])
= O

(∑d
i=1 pi‖Xi:‖0

)
, (10)

for Algorithm 1 and similarly for Algorithm 2 the average cost is

WD(X, ŜD) := O
(
E
[∑

j∈ŜD
‖X:j‖0

])
= O

(∑n
j=1 qi‖X:j‖0

)
. (11)

From now on we will use the shorthand WP := WP (X, ŜP ) and WD := WD(X, ŜD), when
the matrix X and the samplings ŜP and ŜD are clear from the context.
We remark that the constant hidden in O may be larger for Algorithm 1 than for Al-
gorithm 2. The reason for this is that for Algorithm 1 we compute the one-dimensional
derivative φ′j for every nonzero term in the sum, while for Algorithm 2 we do this only once.
Depending on the loss φj , this may lead to slower iterations. There is no difference if we
use the squared loss as φj . On the other hand, if φj is the logistic loss and we compute φ′j
directly, experimentation shows that the constant can be around 50. However, in practice
this constant can be often completely diminished, for example by using a look-up table.

4.3. Total complexity

By combining the bounds on the number of iterations provided by Theorem 1 with the
formulas (10) and (11) for the cost of a single iteration we obtain the following expressions
for the total complexity of the two algorithms, where we ignore the logarithmic terms and
drop the Õ symbol:

TP (X, ŜP ) := KPWP
(8)+(10)

=
(

maxi∈[d]
βui+λn
piλn

)(∑d
i=1 pi‖Xi:‖0

)
, (12)

TD(X, ŜD) := KDWD
(9)+(11)

=
(

maxj∈[n]
βvj+λn
qjλn

)(∑n
j=1 qj‖X:j‖0

)
. (13)

Again, from now on we will use the shorthand TP := TP (X, ŜP ) and TD := TD(X, ŜD),
when the matrix X and the samplings ŜP and ŜD are clear from the context.

5. Choosing a Sampling that Minimizes the Total Complexity

In this section we identify the optimal sampling in terms of the total complexity. This is
different from previous results on importance sampling, which neglect to take into account
the cost of the iterations (Richtárik and Takáč, 2015; Qu et al., 2015; Zhao and Zhang, 2015;
Needell et al., 2014). For simplicity, we shall only consider serial samplings, i.e., samplings
which only pick a single coordinate at a time. The situation is much more complicated
with non-serial samplings where first importance sampling results have only been derived
recently (Csiba and Richtárik, 2016).
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5.1. Uniform Sampling

The simplest serial sampling is the uniform sampling: it selects every coordinate with the
same probability, i.e. pi = 1/d, ∀i ∈ [d] and qj = 1/n, ∀j ∈ [n]. In view of (12), (13) and
(7), we get

TP = ‖X‖0
(

1 + β
λn maxi∈[d] ‖Xi:‖22

)
and TD = ‖X‖0

(
1 + β

λn maxj∈[n] ‖X:j‖22
)
.

We can now clearly see that whether TP ≤ TD or TP ≥ TD does not simply depend on
d vs n, but instead depends on the relative value of the quantities maxi∈[d] ‖Xi:‖22 and
maxj∈[n] ‖X:j‖22. Having said that, we shall not study these quantities in this paper. The
reason for this is that for the sake of brevity, we shall instead focus on comparing the
primal and dual RCD methods for optimal sampling which minimizes the total complexity,
in which case we will obtain different quantities.

5.2. Importance Sampling

By importance sampling we mean the serial sampling ŜP (resp. ŜD) which minimizes the
bounds KP in 8 (resp. KD in (9)). It can easily be seen (see also (Richtárik and Takáč,
2015), (Qu et al., 2015), (Zhao and Zhang, 2015)), that importance sampling probabilities
are given by

p∗i = βui+λn∑
l(βul+λn) and q∗j =

βvj+λn∑
l(βvl+λn) . (14)

On the other hand, one can observe that the average iteration cost of importance sampling
may be larger than the average iteration cost of uniform serial sampling. Therefore, it is a
natural question to ask, whether it is necessarily better. In view of (12), (13) and (14), the
total complexities for importance sampling are

TP = ‖X‖0 + β
λn

∑d
i=1 ‖Xi:‖0‖Xi:‖22 and TD = ‖X‖0 + β

λn

∑n
j=1 ‖X:j‖0‖X:j‖22. (15)

Since a weighted average is smaller than the maximum, the total complexity of both methods
with importance sampling is always better than with uniform sampling. However, this does
not mean that importance sampling is the sampling that minimizes total complexity.

5.3. Optimal Sampling

The next theorem states that, in fact, importance sampling does minimize the total com-
plexity.

Theorem 2 The optimal serial sampling (i.e., the serial sampling minimizing the total
expected complexity TP (resp, TD)) is the importance sampling (14).

6. The Face-Off

In this section we investigate the two quantities in (15), TP and TD, measuring the total
complexity of the two methods as functions of the data X. Clearly, it is enough to focus on
the quantities

CP (X) :=
∑d

i=1 ‖Xi:‖0‖Xi:‖2 and CD(X) :=
∑n

j=1 ‖X:j‖0‖X:j‖2. (16)
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We shall ask questions such as: when is CP (X) larger/smaller than CD(X), and by how
much. In this regard, it is useful to note that CP (X) = CD(X>). Our first result gives
tight lower and upper bounds on their ratio.

Theorem 3 For any X ∈ Rd×n with no zero rows or columns, we have the bounds ‖X‖2F ≤
CP (X) ≤ n‖X‖2F and ‖X‖2F ≤ CD(X) ≤ d‖X‖2F . It follows that 1/d ≤ CP (X)/CD(X) ≤ n.
Moreover, all these bounds are tight.

Since CP (X) (resp. CD(X)) can dominate the expression (12) (resp. (13)) for total
complexity, it follows that, depending on the data matrix X, the primal method can be up
to d times faster than the dual method, and up to n times slower than the dual method.
Note, that for the above result to hold, we need to have the magnitudes of the individual
entries in X potentially unbounded. However, this is not the case in practice. In the
following sections we study more restricted classes of matrices, for which we are still able
to claim some theoretical results.

6.1. Dense Data

If X is a dense deterministic matrix (Xij 6= 0 for all i, j), then CP (X) = n‖X‖2F and
CD(X) = d‖X‖2F , and we reach the same conclusion as for random data: everything boils
down to d vs n.

6.2. Binary Data

In Theorem 3 we showed, that without further constraints on the data we cannot say
directly from d and n, which of the approaches will perform better. The main argument in
the proof of Theorem 3 is based on the possibility of arbitrary magnitudes of the individual
data entries. In this part we go to the other extreme – we assume that all the magnitudes
of the non-zero entries are the same.

Let Bd×n denote the set of d × n matrices X with (signed) binary elements, i.e., with
Xij ∈ {−1, 0, 1} for all i, j. Note, that the following results trivially hold also for entries in
{−a, 0, a}, for any a 6= 0. By Bd×n6=0 we denote the set of all matrices in Bd×n with nonzero
columns and rows. We have the following theorems, which are proved in the appendix.

Theorem 4 Let d ≤ n ≤ d2

4 −
3
2d − 1. Then there exists a matrix X ∈ Bd×n6=0 such that

CP (X) < CD(X). Symetrically, if n ≤ d ≤ n2

4 −
3
2n−1 then there exists a matrix X ∈ Bd×n6=0

such that CD(X) < CP (X).

The above theorem shows, that even if n = O(d2), the primal method can be better
than the dual method – and vice-versa.

Theorem 5 Let X ∈ Bd×n6=0 . If d ≥ n and ‖X‖0 ≥ n2 + 3n, then CP (X) ≤ CD(X). By

symmetry, if n ≥ d and ‖X‖0 ≥ d2 + 3d, then CD(X) ≤ CP (X).

This result says that for binary data, and d ≥ n, the primal method is better than the
dual method even for non-dense data, as long as the the data is “dense enough”. Observe
that as long as d ≥ n2 + 3n, all matrices X ∈ Bd×n6=0 satisfy ‖X‖0 ≥ d ≥ n2 + 3n ≥ n. This
leads to the following corollary.
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Table 1: Details on the datasets used in the experiments

dataset d n density ‖X‖0 CP CD TP /TD
news 1,355,191 19,996 0.03% 9,097,916 3× 107 9× 106 2.0
leukemia 7,129 38 100.00% 270,902 1× 107 2× 109 0.5

Corollary 6 If d ≥ n2 + 3n, then for all X ∈ Bd×n6=0 we have CP (X) ≤ CD(X). By

symmetry, if n ≥ d2 + 3d, then for all X ∈ Bd×n6=0 we have CD(X) ≤ CP (X).

The corollary states that for binary data where the number of features (d) is large
enough in comparison with the number of examples (n), the primal method will be always
better – and vice versa.

7. Experiments

We conducted experiments on both real and synthetic data. The problem we were interested
in is a standard logistic regression with an L2-regularizer, i.e.,

P (w) = 1
n

∑n
j=1 log(1 + exp(−yj〈X:j , w〉)) + λ

2‖w‖
2
2.

In all our experiments we used λ = 1/n and we normalized all the entries of X by the average
column norm. As there is no closed form solution for logistic loss for ∆k

j in Algorithm 2.

Therefore we use a variant of Algorithm 2 where ∆k
j = η(φ′j(〈X:j , w〉) + αkj ) with the step

size η defined as η = minj∈[n](qjλn)/(βvj+λn). This variant has the same convergence rate
guarantees as Algorithm 2 and does not require exact minimization (Qu et al., 2015). We
plot the training error against the number of passes through the data. One pass corresponds
to looking at ‖X‖0 nonzero entries of X, but not necessarily all of them, as we can visit
some of them multiple times.

We showcase the conclusions from the theory on two real datasets and multiple synthetic
datasets. We constructed all the synthetic experiments in a way, that according to the theory
the primal approach should be better. We note, that the same plots could be generated
symmetrically for the dual approach.

7.1. General Data

We look at the matrices which give the worst-case bounds for general matrices (Theorem 3)
and their empirical properties for different choices of d and n. These matrices have highly
non-uniform distribution of the nonzeros and moreover require the entries to have their
magnitudes differ by many orders (see the proof of Theorem 3). We performed 2 experi-
ments, where we showed the potential empirical speedup for the primal method for d = n
and also for d� n (which is highly unfavourable for the primal method). The correspond-
ing figures are Figure 1a and 1b. For a square dataset, we can clearly observe a large
speed-up. For d � n we can observe, that the theory holds and the primal method is still
faster, but because of numerical issues (as mentioned, the magnitutes of the entries differ
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by many orders) and the fact that the optimal value is very close to an ”initial guess” of
the algorithm, the difference in speed is more difficult to observe.
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Figure 1: Testing the worst case for general matrices and real datasets.

7.2. Synthetic Binary Data

We looked at matrices with all entries in {a,−a, 0} for some a 6= 0. We fixed the number
of features to be d = 100 and we varied the number of examples n and the sparsity level
α = ‖X‖0. For each triplet [d, n, α] we produced the worst-case matrix for dual RCD
according to the developed theory (for more details see Theorem 9 in the Appendix). The
results are in Figure 2.
Each row corresponds to one fixed value of n, while each column corresponds to one sparsity
level α given by the proportion of nonzero entries, e.g., nnz ∼ 1% stands for α ∼ 0.01 · nd.
In the experiments we can observe the behaviour described in Theorem 5. While n is
comparable to d, the primal method outperforms the dual method. When the sparsity level
α reaches values of ∼ d2, the dual method outperforms the primal although the matrix
structure is much better suited for the primal method. Also note, that the right column
corresponds to dense matrices, where larger n is the only dominant factor.

7.3. Real Data

We used two real datasets to showcase our theory: news and leukemia2. The news dataset
in Figure 1c is a nice example of our theory in practice. As shown in Table 1 we have
d� n, but the dual method is empirically faster than the primal one. The reason is simple:
the news dataset uses a bag of words representation of news articles. If we look at the
distribution of features (words), there are many words which appear just very rarely and
there are words commonly used in many articles. The features have therefore a very skewed
distribution of their nonzero entries. On the other hand, the examples have close to a

2. both datasets are available from https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 2: Worst-case experiments with various dimensions and sparsity levels for d = 100

uniform distribution, as the number of distinct words in an article usually does not take on
extreme values. As shown in the theory (proof of Theorem 9), this distribution of nonzero
entries highly favors the dual approach.
The leukemia dataset in Figure 1d is a fully dense dataset and d � n. Therefore, as our
theoretical analysis shows, the primal approach should be better. The ratio between the
runtimes is not very large, as the constant ‖X‖0 is of similar order as the additional term in
the computation of the true runtime (recall (12), (13)). The empirical speedup in Figures 1c
and Figures 1d matches the theoretical predictions in the last column of Table 1.

8. Conclusions and Extensions

We have shown that the question whether RCD should be applied to the primal or the dual
problem depends on the structure of the training dataset. For dense data, this simply boils
down to whether we have more data or parameters, which is intuitively appealing. We have
shown, both theoretically, and through experiments with synthetic and real datasets, that
contrary to what seems to be a popular belief, primal RCD can outperform dual RCD even
if n� d and vice-versa. If a user is willing to invest one pass over the data, we recommend
to compare the quantities TP and TD (or CP and CD) to figure out which approach has
faster convergence according to the theory.

In order to focus on the main message, we have chosen to present our results for sim-
ple (as opposed to “accelerated”) variants of RCD. However, our results can be naturally
extended to accelerated variants of RCD, such as APPROX (Fercoq and Richtárik, 2015),
ASDCA (Shalev-Shwartz and Zhang, 2013a), APCG (Lin et al., 2014), ALPHA (Qu and
Richtárik, 2016a) and SPDC (Zhang and Xiao, 2015).
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APPENDIX

Random data

Assume now that the entries of X are chosen in an i.i.d. manner from some distribution
with mean µ and variance σ2. While this is not a realistic scenario, it will help us build
intuition about what we can expect the quantities CP (X) and CD(X) to look like. A simple
calculation reveals that E[CP (X)] = dnσ2 + dn2µ2, and E[CD(X)] = dnσ2 + nd2µ2. Hence,
E[CP (X)] ≤ E[CD(X)] precisely when n ≤ d, which means that the primal method is better
when n < d and the dual method is better when n > d.

Proof of Theorem 1

We say that P ∈ C1(M), if

P (w + h) ≤ P (w) + 〈∇P (w), h〉+
1

2
h>Mh, ∀w, h ∈ Rd.

For three vectors a, b, c ∈ Rn we define 〈a, b〉c :=
∑d

i=1 aibici and ‖a‖2c := 〈a, a〉c =∑d
i=1 cia

2
i . Also, let for ∅ 6= S ⊆ [d] and h ∈ Rd, we write hS :=

∑
i∈S hiei, where ei

is the i-th coordinate vector (i.e., standard basis vector) in Rd.
We will need the following two lemmas.

Lemma 7 The primal objective P satisfies P ∈ C1(M), where M = λI + β
nXX>.

Proof

P (w + h)
(1)
=

1

n

n∑
i=1

φi(〈X:i, w〉+ 〈X:i, h〉) +
λ

2
‖w + h‖2

(2)

≤ 1

n

n∑
i=1

[
φi(〈X:i, w〉) + φ′i(〈X:i, w〉) · 〈X:i, h〉+

β

2
〈X:i, h〉2

]
+
λ

2
‖w‖2 + λ〈w, h〉+

λ

2
‖h‖2

=
1

n

n∑
i=1

φi(〈X:i, w〉) +
λ

2
‖w‖2 +

〈
1

n

n∑
i=1

φ′i(〈X:i, w〉)X:i + λw , h

〉

+
1

2
h>

(
β

n

n∑
i=1

X:i(X:i)
> + λI

)
h

= P (w) + 〈∇P (w), h〉+
1

2
h>Mh.

Lemma 8 If P ∈ C1(M) and u′ ∈ Rd is such that P ◦M � Diag(p ◦ u′), then

E[P (w + h[ŜP ])] ≤ P (w) + 〈∇P (w), h〉p +
1

2
‖h‖2p◦u′ .
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Proof See (Qu and Richtárik, 2016b), Section 3.

We can now proceed to the proof of Theorem 1.
First, note that

P ◦M = λDiag(p) +
β

n
(P ◦XX>) � λDiag(p) +

β

n
Diag(p ◦ u)

with u defined as in (5). We now separately establish the two complexity results; (i) for
primal RCD and (ii) for dual RCD.

(i) The proof is a consequence of the proof of the main theorem of (Richtárik and Takáč,
2015). Assumption 1 from (Richtárik and Takáč, 2015) holds with wi := λ+ β

nui (Lemma 7
& Lemma 8) and Assumption 2 from (Richtárik and Takáč, 2015) holds with standard
Euclidean norm and γ := λ. We follow the proof all the way to the bound

E[P (wk)− P (w∗)] ≤ (1− µ)k(P (w0)− P (w∗))

which holds for µ defined by

µ :=
λ

maxi
nλ+βui
npi

by direct substitution of the quantities. The result follows by standard arguments. Note
that CP = P (w0)− P (w∗).

(ii) The proof is a direct consequence of the proof of the main theorem of (Qu et al.,
2015), using the fact that P (wk) − P (w∗) ≤ P (wk) − D(αk), as the weak duality holds.
Note that CD = P (w0)−D(α0).

Proof of Theorem 2

The proofs for Algorithm 1 and Algorithm 2 are analogous, and hence we will establish
the result for Algorithm 1 only. For brevity, denote si = βui + λn. We aim to solve the
optimization problem:

p∗ ← arg min
p∈Rd

+ :
∑

i pi=1

TP
(12)
=

(
max
i∈[d]

si
piλn

)
·

d∑
i=1

pi‖Xi:‖0. (17)

First observe, that the problem is homogeneous in p, i.e., if p is optimal, also cp will be
optimal for c > 0, as the solution will be the same. Using this argument, we can remove
the constraint

∑
i pi = 1. Also, we can remove the multiplicative factor 1/(λn) from the

denominator as it does not change the arg min. Hence we get the simpler problem

p∗ ← arg min
p∈Rd

+

[(
max
i∈[d]

si
pi

)
·

d∑
i=1

pi‖Xi:‖0

]
. (18)

Now choose optimal p and assume that there exist j, k such that sj/pj < sk/pk. By
a small decrease in pj , we will still have sj/pj ≤ sk/pk, and hence the term maxi si/pi
stays unchanged. However, the term

∑
i pi‖Xi:‖0 decreased. This means that the optimal

sampling must satisfy si/pi = const for all i. However, this is precisely the importance
sampling.
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Proof of Theorem 3

By assumption, all rows and columns of X are nonzero. Therefore, 1 ≤ ‖Xi:‖0 ≤ n and
1 ≤ ‖X:j‖0 ≤ d, and the bounds on CP and CD follow by applying this to the quantities in
(16) respectively. The bounds for the ratio follow immediately by combining the previous
bounds. It remains to establish tightness. For a, b, c ∈ R, let X(a, b, c) ∈ Rd×n be the
matrix defined as follows:

Xij(a, b, c) =


a i 6= 1 ∧ j = 1

b i = 1 ∧ j 6= 1

c i = 1 ∧ j = 1

0 otherwise.

Notice that X(a, b, c) does not have any zero rows nor columns as long as a, b, c are nonzero.
Since CP (X(a, b, c)) = (d− 1)a2 + n(n− 1)b2 + nc2 and CD(X(a, b, c)) = d(d− 1)a2 + (n−
1)b2 + dc2, one readily sees that

lim
b→0
c→0

CP (X(a, b, c))

CD(X(a, b, c))
=

1

d
and lim

a→0
c→0

CP (X(a, b, c))

CD(X(a, b, c))
= n.
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Further theory on binary data

First observe that for X ∈ Bd×n, the expressions in (16) can be also written in the form
CP (X) =

∑d
i=1 ‖Xi:‖20 and CD(X) =

∑n
j=1 ‖X:j‖20.

For positive integers a, b we write āb := b
⌊
a
b

⌋
(i.e., a rounded down to the closest multiple

of b). Further, we write
R(α, d, n) := U(α, d, n)/L(α, n),

where
L(α, n) := 1

n(ᾱ2
n + (α− ᾱn)(2ᾱn + n))

and
U(α, d, n) := (n+ 1)(α− d)n−1 + d− 1 + [α− d+ 1− (α− d)n−1]2.

The following is a refinement of Theorem 3 for binary matrices of fixed cardinality α.

Theorem 9 For all X ∈ Bd×n6=0 with α = ‖X‖0 we have the bounds 1/R(α, n, d) ≤
CP (X)/CD(X) ≤ R(α, d, n). Moreover, these bounds are tight.

The proof can be found in the next part. We note, that the gap in the results of Theorem 4
and Theorem 5 arises from using the bounds a − b ≤ āb := bbab c ≤ a, which can get very
loose. A tighter bounds can be achieved, but as they have mostly theoretical purpose, we
do not feel they are needed. The bounds well convey the main message of the paper as they
are.

Proof of Theorem 9

We first need a lemma.

Lemma 10 Let α be an integer satisfying max{d, n} ≤ α ≤ dn and let L and U be the
functions defined in Section 6.2. We have the following identities:

L(α, n) = min
X∈Bd×n

6=0

{CD(X) : ‖X‖0 = α} (19)

L(α, d) = min
X∈Bd×n

6=0

{CP (X) : ‖X‖0 = α} (20)

U(α, n, d) = max
X∈Bd×n

6=0

{CD(X) : ‖X‖0 = α} (21)

U(α, d, n) = max
X∈Bd×n

6=0

{CP (X) : ‖X‖0 = α}. (22)

Proof Let X ∈ Bd×n6=0 be an arbitrary matrix and let ω = (ω1, . . . , ωn), where ωj := ‖X:j‖0.

Let α = ‖X‖0 =
∑

j ωj . Observe that CD(X) =
∑n

j=1 ‖X:j‖20 = ‖ω‖22.

(i) We shall first establish (19). Assume that the exist two columns j, k of X, such that
ωj + 2 ≤ ωk, i.e., their difference in the number of nonzeros is at least 2. Because
ωk > ωj , there has to exist a row which has a nonzero entry in the k-th column and
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a zero entry in the j-th column. Let X′ be the matrix obtained from X by switching
these two entries. Note that CP (X) = CP (X′). However, we have

CD(X)− CD(X′) = ω2
j + ω2

k − (ωj + 1)2 − (ωk − 1)2 = 2ωk − 2ωj − 2 > 0.

It follows that while there exist two such columns, the minimum is not achieved. So,
we only need to consider matrices X for which there exists integer a such that ωj = a
or ωj = a+ 1 for every j. Let b = |{j : ωj = a}|.
We can now without loss of generality assume that 0 ≤ b ≤ n− 1. Indeed, we can do
this is because the choices b = 0 and b = n lead to the same matrices, and hence by
focusing on b = 0 we have not removed any matrices from consideration. With simple
calculations we get

α = ba+ (n− b)(a+ 1) = n(a+ 1)− b.

Note that α+ b is a multiple of n. It follows that b = n−α+ ᾱn and a = ᾱn/n. Up to
the ordering of the columns (which does not affect CD(X)) we have just one candidate
X, therefore it has to be the minimizer of CD. Finally, we can easily calculate the
minimum as

n∑
j=1

ω2
j = ba2 + (n− b)(a+ 1)2 = (n− α+ ᾱn)

( ᾱn
n

)2

+ (α− ᾱn)
( ᾱn
n

+ 1
)2

=
1

n

(
ᾱ2
n + (α− ᾱn)(2ᾱn + n)

)
= L(α, n).

(ii) Claim (20) follows from part (19) via symmetry: CP (X) = CD(X>) and ‖X‖0 =
‖X>‖0.

(iii) We now establish claim (21). Assume that there exist a pair of columns j, k such that
1 < ωj ≤ ωk < d. Let X′ be the matrix obtained from X by zeroing out an entry in
the j-th column and putting a nonzero inside the k-th column. Then

CD(X′)− CD(X) = (ωj − 1)2 + (ωk + 1)2 − ω2
j − ω2

k = 2ωk − 2ωj + 2 > 0.

It follows that while there exist such a pair of columns, the maximum is not achieved.
This condition leaves us with matrices X where at most one column j has ωj not equal
to 1 or d.

Formally, let a = |{j : ωj = d}|. Then we have n − a − 1 columns with 1 nonzero
and 1 column with b nonzeros, where 1 ≤ b < d. This is correct, as b = d is the same
as b = 1 and a being one more. We can compute a and b from the equation

(n− a− 1) · 1 + 1 · b+ a · d = α

b+ a(d− 1) = α− n+ 1

as the only solution to the division with remainder of α − n + 1 by d − 1, with the
difference that b ∈ {1, . . . , d− 1} instead of the standard {0, . . . , d− 2}. We get

a =

⌊
a− n
d− 1

⌋
and b = α− n+ 1− (α− n)d−1.
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The maximum can now be easily computed as follows:

n∑
j=1

ω2
j = (n− a− 1) + b2 + ad2

= n−
⌊
a− n
d− 1

⌋
− 1 +

(
α− n+ 1− (α− n)d−1

)2
+

⌊
a− n
d− 1

⌋
d2

= U(α, n, d).

(iv) Again, claim (22) follows from (21) via symmetry.

We can now proceed to the proof of the theorem.
The quantity is the ratio between the maximal value of CP and the minimal value of

CD, we have to show that there exists a matrix X such that this is achieved. Assume we
have a matrix X which has the maximal CP . In the proof of Lemma 10 we showed, that by
switching entries in X we can get the minimal value of CD without changing CP . Therefore
we can achieve maximal CP and minimal CD at the same time. Analogically for the other
case.
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Proof of Theorem 4

Let us estabilish the proof for the first case – the second will follow by symetricity. The main
idea of the proof is to choose α such that the best possible case for the primal method is going
to be better than the worst possible case for the dual method, i.e., L(α, d) < U(α, n, d).
First, we get some bounds on L and U based on the trivial bounds a− b ≤ āb := bbab c ≤ a
for positive integers a, b. First, the bound on L:

L(α, d) =
1

d

[
ᾱ2
d + (α− ᾱd)(2ᾱd + d)

]
≤ 1

d

[
α2 + (α− (α− d))(2α+ d)

]
=

1

d

[
α2 + 2αd+ d2

]
Second, the bound on U :

U(α, n, d) = (d+ 1)(α− n)d−1 + n− 1 +
[
α− n+ 1− (α− n)d−1

]2

≥ (d+ 1)(α− n− d+ 1) + n− 1 + [α− n+ 1− α+ n]2

= dα− dn− d2 + α+ 1.

Therefore, it is sufficient to show

α2 + 2αd+ d2 < d2α− d2n− d3 + dα+ d,

We will show that this holds for α = d(d−1)
2 . Observe, that d(d− 1) is even and therefore α

is an integer. From the definition of Bd×n6=0 we know, that n + d − 1 ≤ α ≤ nd has to hold.
To verify this, we use the conditions from the assumptions:

n+ d− 1 ≤
(
d2

4
− 3

2
d− 1

)
+ d− 1 =

d(d− 1)

2
− d2

4
− 2 <

d(d− 1)

2
= α

and the other inequality

α =
d(d− 1)

2
< d2 ≤ nd.

Using the above defined α we can proceed to prove the claim:

α2 + 2αd+ d2 =
d4

4
+
d3

2
+
d2

4

<
d4

4
+
d3

2
+ d2 + d

=
d4

2
− d3 + d− d2

(
d2

2
− 3

2
d− 1

)
≤ d4

2
− d3 + d− d2n

= d2α− d2n− d3 + dα+ d,

which finishes the proof.
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Proof of Theorem 5

As shown in the main text, the theorem follows from the following lemma. Hence, we only
need to prove the lemma.

Lemma 11 If d ≥ n and α ≥ n2 + 3n, then R(α, d, n) ≤ 1. If n ≥ d and α ≥ d2 + 3d,
then R(α, n, d) ≤ 1.

Proof We focus on the first part, the second follows in an analogous way. Using the two
assumptions, we have α(n2 + 3n) +n3 ≤ α2 + dn2. By adding n2 +n to the right hand side
and after reshuffling, we obtain the inequality

n
[
(n+ 1)(α− d) + d− 1 + n2

]
≤ (α− n)2.

For positive integers a, b, we have the trivial estimates a−b ≤ āb := bbab c ≤ a. We use them
to bound four expressions:

(α− d) ≥ (α− d)n−1

n2 ≥ (α− d+ 1− (α− d)n−1)2

ᾱ2
n ≥ (α− n)2

(α− ᾱn)(2ᾱn + n) ≥ 0

Using these bounds one-by-one we get the result

n
[
(n+ 1)(α− d) + d− 1 + n2

]
≤ (α− n)2

n
[
(n+ 1)(α− d)n−1 + d− 1 + n2

]
≤ (α− n)2

n
[
(n+ 1)(α− d)n−1 + d− 1 + (α− d+ 1− (α− d)n−1)2

]
≤ (α− n)2

n
[
(n+ 1)(α− d)n−1 + d− 1 + (α− d+ 1− (α− d)n−1)2

]
≤ ᾱ2

n

n
[
(n+ 1)(α− d)n−1 + d− 1 + (α− d+ 1− (α− d)n−1)2

]
≤ ᾱ2

n + (α− ᾱn)(2ᾱn + n)

R(α, d, n) ≤ 1

A Figure Showcasing Corollary 6

The behaviour explained in the text followed after Corollary 6 can be observed in Figure 3.
For large enough d, all the values R(α, d, n) are below 1, and therefore the primal method
is always better than the dual in this regime.
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Figure 3: The value R(α, d, n) plotted for n = 103, n ≤ d ≤ n2 and max{d, n} ≤ α ≤ nd.
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