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Abstract

We study the problem of estimating the number of defective items in adaptive Group testing
by using a minimum number of queries. We improve the existing algorithm and prove a
lower bound that shows that, for constant estimation, the number of tests in our algorithm
is optimal.

1. Introduction

Let X be a set of items with some defective items I ⊆ X. In Group testing, we test (query) a
subset Q ⊂ X of items. The answer to the query is 1 if Q contains at least one defective item,
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i.e., Q ∩ I 6= Ø, and 0 otherwise. Group testing was originally introduced as a potential
approach to the economical mass blood testing, (Dorfman, 1943). However it has been
proven to be applicable in a variety of problems, including DNA library screening, (Ngo
and Du, 1999), quality control in product testing, (Sobel and Groll, 1959), searching files in
storage systems, (Kautz and Singleton, 1964), sequential screening of experimental variables,
(Li, 1962), efficient contention resolution algorithms for multiple-access communication,
(Kautz and Singleton, 1964; Wolf, 1985), data compression, (Hong and Ladner, 2002), and
computation in the data stream model, (Cormode and Muthukrishnan, 2005). See a brief
history and other applications in (Cicalese, 2013; Du and Hwang, 2000, 2006; Hwang, 1972;
Macula and Popyack, 2004; Ngo and Du, 1999) and references therein.

Estimating the number of defective items |I| up to a multiplicative factor of 1±ε is stud-
ied in (Cheng and Xu, 2014; Damaschke and Muhammad, 2010a,b; Falahatgar et al., 2016;
Ron and Tsur, 2014). Estimating the number of defective items is an important problem
in biological and medical applications (Chen and Swallow, 1990; Swallow, 1985). It is used
for estimating the proportion of organisms capable of transmitting the aster-yellows virus
in a natural population of leafhoppers (Thompson, 1962), estimating the infection rate of
yellow-fever virus in a mosquito population (Walter et al., 1980) and estimating the preva-
lence of a rare disease using grouped samples to preserve individual anonymity (L.Gastwirth
and A.Hammick, 1989).

In the adaptive algorithm, the tests can depend on the answers to the previous ones. In
the non-adaptive algorithm they are independent of the previous ones and; therefore, one
can do all the tests in one parallel step.

In this paper we study the problem of estimating the number of defective items |I| up
to a multiplicative factor of 1± ε with an adaptive Group testing algorithm. We first give
new lower bounds and then give algorithms that improve the results from the literature.
Our lower bounds show that our algorithms are optimal.

1.1. Previous and New Results

Let X be a set of n items with a set of defective items I. Estimating the number of
defective items |I| = d up to a multiplicative factor of 1 ± ε is studied in (Cheng and
Xu, 2014; Damaschke and Muhammad, 2010a,b; Falahatgar et al., 2016; Ron and Tsur,
2014). The best algorithm is the algorithm of Falahatgar et al. (Falahatgar et al., 2016).
Falahatgar et al. gave a randomized algorithm that asks 2 log log d + O((1/ε2) log(1/δ))
queries in expectation and with probability at least 1 − δ returns an estimation of d up
to a multiplicative factor of 1 ± ε. They also prove the lower bound (1 − δ) log log d. We
show that by some modifications of their algorithm one can get the same result with (1 −
δ) log log d+O((1/ε2) log(1/δ)) queries in expectation. We then give the lower bound (1−
δ) log log d + (1/ε) log(1/δ) for the number of queries. This shows that for constant ε, our
algorithm is optimal.

Those randomized algorithms are not Monte Carlo. They may ask log log n queries in
the worst case (but with a small probability). We then study deterministic, randomized
Las Vegas and randomized Monte Carlo algorithms for this problem. For randomized
Monte Carlo algorithms we give the lower bound log log d + (1/ε) log(1/δ) and then give
an algorithm that asks log∗ n+ log log d+O((1/ε2) log(1/δ)) queries in expectation. Here,
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log∗ α = 1 for α ≤ 2 and log∗ n = 1 + log∗ log n. In particular, when d > log log
k· · · log n for

any constant k (or even k = o(log log d)), our algorithm asks log log d + O((1/ε2) log(1/δ))
queries in expectation. This, for constant ε, is optimal.

For deterministic and randomized Las Vegas algorithms we prove the lower bound
d log((1 − ε)n/d) and then give a deterministic algorithm that asks a number of queries
that matches the lower bound.

All the above algorithms run in linear time in n. The following table summarizes our
results.

Adaptive Algorithm Upper Bound Lower Bound

Deterministic d log (1−ε)n
d d log (1−ε)n

d

Randomized Las Vegas d log (1−ε)n
d d log (1−ε)n

d

log∗ n+
Randomized Monte Carlo log log d+O

(
1
ε2

log 1
δ

)
log log d+ Ω

(
1
ε log 1

δ

)
Randomized Monte Carlo (1− δ) log log d+ (1− δ) log log d+
With Expected #Queries O

(
1
ε2

log 1
δ

)
Ω
(

1
ε log 1

δ

)
All the algorithms in this paper are adaptive. That is, the tests can depend on the

answers to the previous ones. For non-adaptive algorithms see the results in (Damaschke
and Muhammad, 2010a,b). For an algorithm that determines exactly the number defective
items see (Cheng, 2011). The best adaptive algorithm for finding the defective items asks
d log(n/d) + O(d) queries (Cheng et al., 2014, 2015; Schlaghoff and Triesch, 2005). This
query complexity meets the information lower bound for any deterministic or randomized
algorithm.

2. Definitions and Preliminary Results

In this section we give some notations, definitions, the type of algorithms that are used in
the literature and some preliminary results.

2.1. Notations and Definitions

Let X = [n] := {1, 2, 3, , . . . , n} be a set of items with some defective items I ⊆ [n]. In
Group testing, we query a subset Q ⊆ X of items and the answer to the query is Q(I) := 1
if Q contains at least one defective item, i.e., Q ∩ I 6= Ø, and Q(I) := 0, otherwise.

Let I ⊆ [n] be the set of defective items. Let OI be an oracle that for a query Q ⊆ [n]
returns Q(I). Let A be an algorithm that has access to the oracle OI . The output of the
algorithm A for an oracle OI is denoted by A(OI). When the algorithm is randomized
then we add the random seed r as an input to A and then the output of the algorithm
is a random variable A(OI , r) in [n]. Let A be a randomized algorithm and r0 be a seed.
We denote by A(r0) the deterministic algorithm that is equivalent to the algorithm A with
the seed r0. We denote by Q(A,OI) (resp., Q(A(r),OI)) the set of queries that A asks
with oracle OI (resp., and a seed r). The algorithms we consider in this paper output
A(OI , r) ∈ [|I|(1 − ε), |I|(1 + ε)] where [a, b] = {dae, dae + 1, · · · , bbc}. Such algorithms
are called algorithms that estimate the number of defective items |I| up to a multiplicative
factor of 1± ε.
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2.2. Type of Algorithms

In this paper we consider four types of algorithms whose running time is polynomial in n.

1. The deterministic algorithm A with an oracle OI , I ⊆ X. The query complexity of a
deterministic algorithm A is the worst case complexity, i.e, max|I|=d |Q(A,OI)|.

2. The randomized Las Vegas algorithm. We say that a randomized algorithm A is a
randomized Las Vegas algorithm that has expected query complexity g(d) if for any
I ⊆ X, algorithm A with an oracle OI asks at most g(|I|) queries in expectation and
with probability 1 outputs an integer in [|I|(1− ε), |I|(1 + ε)].

3. The randomized Monte Carlo algorithm. We say that a randomized algorithm A is a
randomized Monte Carlo algorithm that has query complexity g(d, δ) if for any I ⊆ X,
algorithm A with an oracle OI asks at most g(|I|, δ) queries and with probability at
least 1− δ outputs an integer in [|I|(1− ε), |I|(1 + ε)].

4. The randomized algorithm. We say that a randomized algorithm A is a randomized
algorithm that has expected query complexity g(d, δ) if for any I ⊆ X, algorithm A
asks g(|I|, δ) queries in expectation and with probability at least 1 − δ outputs an
integer in [|I|(1− ε), |I|(1 + ε)].

2.3. Preliminary Results

We now prove a few results that will be used throughout the paper
Let s ∈ ∪∞i=0{0, 1}i be a string over {0, 1} (including the empty string λ ∈ {0, 1}0). We

denote by |s| the length of s, i.e., the integer m such that s ∈ {0, 1}m. Let s1, s2 ∈ ∪∞i=0{0, 1}i
be two strings over {0, 1} of lengths m1 and m2, respectively. We say that s1 is a (proper)
prefix of s2 if m1 < m2 and s1,i = s2,i for all i = 1, . . . ,m1. We denote by s1 · s2 the
concatenation of the two strings s1 and s2.

The following result follows from the fact that the weighted path length of Huffman
code is at least log the number of symbols. We give the proof for completeness.

Lemma 1 Let S = {s1, . . . , sN} be a set of N distinct strings over {0, 1} such that no
string is a prefix of another. Then, over the uniform distribution,

max
s∈S
|s| ≥ E(S) := Es∈S [|s|] ≥ logN.

Proof The proof is in Appendix A.

Lemma 2 Let A be a deterministic adaptive algorithm that asks queries and outputs an
element in [n]. Let I, J ⊆ X. If A(OI) 6= A(OJ) then there is Q0 ∈ Q(A,OI) ∩ Q(A,OJ)
such that Q0(I) 6= Q0(J).

Proof Consider the sequence of queries Q1,1, Q1,2, · · · that A asks with the oracle OI and
the sequence of queries Q2,1, Q2,2, · · · that A asks with the oracle OJ . Since A is determin-
istic, A asks the same queries as long as it gets the same answers to the queries. That is, if
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Q1,i(I) = Q2,i(J) for all i ≤ ` then Q1,`+1 = Q2,`+1. Since A(OI) 6= A(OJ), there must be
a query Q0 := Q1,t = Q2,t for which Q0(I) 6= Q0(J).

Lemma 3 Let A be a deterministic adaptive algorithm that asks queries. Let C ⊆ 2[n] :=
{I|I ⊆ [n]}. If for every two distinct I1 and I2 in C there is a query Q0 ∈ Q(A,OI1) such
that Q0(I1) 6= Q0(I2) then

max
I∈C
|Q(A,OI)| ≥ EI∈C [|Q(A,OI)|] ≥ log |C|.

That is, the worst case query complexity and the average-case query complexity of A is at
least log |C|.

Proof For I ∈ C, consider the sequence of the queries that A with the oracle OI asks and
let s(I) ∈ ∪∞i=0{0, 1}i be the sequence of answers. The worst case query complexity and
average-case query complexity of A are s(C) := maxI∈C |s(I)| and s̄(C) := EI∈C [|s(I)|],
respectively, where |s(I)| is the length of s(I). We now show that for every two distinct I1

and I2 in C, s(I1) 6= s(I2) and s(I1) is not a prefix of s(I2). This implies that {s(I) | I ∈ C}
contains |C| distinct strings such that no string is a prefix of another. Then by Lemma 1,
the result follows. Consider two distinct sets I1, I2 ⊆ [n]. There is a query Q0 ∈ Q(A,OI1)
such that Q0(I1) 6= Q0(I2). Consider the sequence of queries Q1,1, Q1,2, · · · that A asks with
the oracle OI1 and the sequence of queries Q2,1, Q2,2, · · · that A asks with the oracle OI2 .
Since A is deterministic, A asks the same queries as long as it gets the same answers to the
queries. That is, if Q1,i(I1) = Q2,i(I2) for all i ≤ ` then Q1,`+1 = Q2,`+1. Then, either we
get in both sequences to the query Q0 and then Q0(I1) 6= Q0(I2) or some other query Q′

that is asked before Q0 satisfies Q′(I1) 6= Q′(I2). In both cases s(I1) 6= s(I2) and s(I1) is
not a prefix of s(I2).

3. Lower Bounds

In this section we prove some lower bounds for the number of queries that are needed in
order to estimate the number of defective items.

For deterministic algorithms we prove

Theorem 4 Let A be a deterministic adaptive algorithm that estimates the number of
defective items |I| = d up to a multiplicative factor of 1± ε. The query complexity of A is
at least

d log
(1− ε)n

d
−O(d).

In particular, for ε ≤ 1−1/nλ where 0 < λ < 1 is any constant, the problem of estimating
the number of defective items with a deterministic adaptive algorithm is asymptotically
equivalent to finding them.

Proof Consider the sequence of queries that A with an oracle OI asks and let s(I) ∈
∪∞i=1{0, 1}i be the string of answers. Consider the algorithm A with the oracles OI1 and
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OI2 where I1 and I2 are any sets of sizes |I1| = d and |I2| ≥ d′ := (d + 1)(1 + ε)/(1 − ε).
For I1, A outputs an integer D1 where (1 − ε)d ≤ D1 ≤ (1 + ε)d and for I2, A outputs an
integer D2 where d(1 + ε) + (1 + ε) ≤ D2. Therefore, D1 6= D2 and hence s(I1) 6= s(I2).
This shows that if |I1| = d and s(I1) = s(I2) then |I2| ≤ d′ − 1.

Now let I ′ ⊆ X be any set of size d. Let I be the set of all sets I ⊂ X of size d that
have the same sequence of answers, i.e., s(I) = s(I ′). Let J = ∪I∈II. We now prove that
s(J) = s(I ′). Suppose for the contrary that this is not true. Then since I ′ ⊆ J there is
a query Q asked by A where Q(J) = 1 and Q(I ′) = 0. Therefore there is j ∈ J\I ′ such
that Q(j) = 1 and Q(I ′) = 0. Since j ∈ J there must be I ′′ ∈ I such that j ∈ I ′′ and then
Q(I ′′) = 1. This is a contradiction to the fact that s(I ′) = s(I ′′). Therefore s(J) = s(I ′)
and by the above argument we must have |J | ≤ d′ − 1. Since I contains subsets of J of
size d, we have

|I| ≤ L :=

(
d′ − 1

d

)
.

This shows that each string in {s(I) : |I| = d} corresponds to at most L sets of size d.
Therefore {s(I) : |I| = d} contains at least

M :=

(
n
d

)(
d′−1
d

)
distinct strings and since the algorithm is deterministic no string is a prefix of another. By
Lemma 1, the longest string is of length at least

C := logM = log

(
n
d

)(
d′−1
d

) ≥ d log
n

d
− d log

(
1

1− ε

)
−O(d).

Since the length of the longest string is the worst case query complexity of the deterministic
algorithm the result follows.

For randomized Las Vegas algorithms we prove

Theorem 5 Let A be a randomized Las Vegas adaptive algorithm that estimates the num-
ber of defective items |I| = d up to a multiplicative factor of 1 ± ε. The expected query
complexity of A is at least

d log
(1− ε)n

d
−O(d).

In particular, for ε ≤ 1 − 1/nλ where 0 < λ < 1 is any constant, the problem of
estimating the number of defective items with a randomized Las Vegas adaptive algorithm
is asymptotically equivalent to finding them.

Proof Let X(I, r) = |Q(A(r),OI)| be a random variable of the number of queries that A
asks with oracle OI and let g(d) = max|I|=d Er[X(I, r)] be the expected number of queries.
Notice that for a fixed r, A(r) is a deterministic algorithm. Consider Sr = {sr(I) : |I| = d}
where sr(I) is the string of answers of the deterministic algorithm A(r) with an oracle
OI . Suppose Sr = {w1, . . . , wt} and |w1| ≤ |w2| ≤ · · · ≤ |wt|. Consider a partition
W1 ∪W2 ∪ · · · ∪Wt of the set of all sets of size d, where Wi = {I : |I| = d, sr(I) = wi}. As
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in the proof of Theorem 4, there are at least t ≥ M distinct strings in Sr. Also, no string
is a prefix of other string because the algorithm is deterministic. Also, as in the proof of
Theorem 4, for all i,

|Wi| ≤
(
d′ − 1

d

)
.

Then, since |w1| ≤ |w2| ≤ · · · ≤ |wt| and by Lemma 1,

EI [X(I, r)|r] =

∑t
i=1 |Wi| · |wi|(

n
d

)
≥

∑M
i=1

(
d′−1
d

)
· |wi|(

n
d

)
=

∑M
i=1 |wi|
M

≥ logM.

Thus
EI [Er[X(I, r)]] = Er[EI [X(I, r)|r]] ≥ logM.

Therefore, there is I0 such that g(d) ≥ Er[X(I0, r)] ≥ logM .

We now give two lower bounds for randomized Monte Carlo adaptive algorithms.

Theorem 6 Let 0 < ε < 1/2 and min(ελ, 1/2) ≥ δ ≥ 1/(2(n − 1/ε + 1)) where λ < 1 is
any constant. Let A be a randomized Monte Carlo adaptive algorithm that estimates the
number of defective items up to a multiplicative factor of 1 ± ε. Algorithm A must ask at
least

Ω

(
1

ε
log

1

δ

)
queries.

Proof Let A(r) be a randomized Monte Carlo adaptive algorithm that estimates the
number of defective items |I| up to a multiplicative factor of 1 ± ε where r is the random
seed of the algorithm. Then for |I| ∈ {d, d+ 1} where d = max(b1/εc − 2, 1), it determines
exactly |I| with probability at least 1 − δ. Let X(I, r) be a random variable that is equal
to 1 if A(OI , r) 6= |I| and 0 otherwise. Then for any I ⊆ [n], Er[X(I, r)] ≤ δ. Let
m = b1/(2δ)c+ d− 1 ≤ n. Consider any J ⊆ [m], |J | = d. For any such J let

YJ(r) = X(J, r) +
∑

i∈[m]\J

X(J ∪ {i}, r).

Then for every J ⊆ [m] of size d, Er [YJ(r)] ≤ (m − d + 1)δ ≤ 1
2 . Therefore for a random

uniform J ⊆ [m] of size d we have Er[EJ [YJ(r)]] = EJ [Er[YJ(r)]] ≤ 1/2. Thus, there is r0

such that for at least half of the sets J ⊆ [m], of size d, YJ(r0) = 0. Let C be the set of all
J ⊆ [m], of size d, such that YJ(r0) = 0. Then

|C| ≥ 1

2

(
m

d

)
=

1

2

(
b1/(2δ)c+ d− 1

d

)
.
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Consider the deterministic algorithm A(r0). We claim that for every two distinct J1, J2 ∈
C, there is a query Q ∈ Q(A(r0),OJ1) such that Q(J1) 6= Q(J2). If this is true then, by
Lemma 3, the query complexity of A(r0) is at least

log |C| ≥ log
1

2

(
b1/(2δ)c+ d− 1

d

)
≥ d log

1

2dδ
− 1 = Ω

(
1

ε
log

1

δ

)
.

We now prove the claim. Consider two distinct J1, J2 ∈ C. There is w.l.o.g j ∈
J2\J1. Since YJ1(r0) = 0 we have X(J1, r0) = 0 and X(J1 ∪ {j}, r0) = 0 and there-
fore A(OJ1 , r0) = d and A(OJ1∪{j}, r0) = d + 1. Thus, by Lemma 2, there is a query
Q0 ∈ Q(A(r0),OJ1)∩Q(A(r0),OJ1∪{j}) for which Q0(J1) = 0 and Q0(J1∪{j}) = 1. There-
fore Q0({j}) = 1 and then Q0(J1) = 0 and Q0(J2) = 1.

The following is the second lower bound for randomized Monte Carlo adaptive algo-
rithms.

Theorem 7 Let A be a randomized Monte Carlo adaptive algorithm that estimates the
number of defective items |I| = d up to a multiplicative factor of 1/4 with probability at
least 1− δ > 1/2. The query complexity of A is at least

log log d− 1

Proof Let A be a randomized Monte Carlo algorithm that estimates |I| = d up to a
multiplicative factor of 1/4 with probability at least 1−δ. Let X(I, r) be a random variable
where X(I, r) = 0 if A(OI , r) ∈ [(3/4)|I|, (5/4)|I|] and 1 otherwise. Then Er[X(I, r)] ≤ δ.
Now for a random uniform integer 2j ∈ [d] we have Er[Ej [X([2j ], r)]] = Ej [Er[X([2j ], r)]] ≤
δ. Therefore, there is a seed r0 such that Ej [X([2j ], r0)] ≤ δ. This implies that for at
least t := (1− δ)(log d) integers J := {2j1 , . . . , 2jt} ⊆ [d] the deterministic algorithm A(r0)
determines exactly |I| provided that |I| ∈ J . Therefore, as in the above proofs, A(r0) asks
at least

log t = log log d+ log(1− δ) ≥ log log d− 1 (1)

queries.

We now consider randomized algorithms with success probability at least 1 − δ and
g(|I|, δ) expected queries. In (Falahatgar et al., 2016), Falahatgar et al. gave the following
lower bound for g(d, δ). We give another simple proof in the Appendix A for a slightly
weaker lower bound.

Theorem 8 Let A be a randomized adaptive algorithm that estimates the number of de-
fective items |I| = d up to a multiplicative factor of 1/2 with probability at least 1− δ. The
expected number of queries of A is at least

(1− δ) log log d

Similar to the above techniques we prove in the Appendix A
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Theorem 9 Let ελ ≥ δ ≥ 1/(2(n − 1/ε + 1)) where λ < 1 is any constant. Let A
be a randomized adaptive algorithm that estimates the number of defective items up to a
multiplicative factor of 1± ε. The expected number of queries of A is at least

Ω

(
1

ε
log

1

δ

)
.

4. Upper Bounds

In this section we prove some upper bounds.
The following result will be used in this section.

Lemma 10 (Cheng et al., 2014, 2015; Schlaghoff and Triesch, 2005) There is a determin-
istic adaptive algorithm, Find -Defectives, that without knowing d, asks d log(n/d)+O(d)
queries and finds the defective items.

In the next Theorem we give a deterministic algorithm with a query complexity that
matches the lower bound in Theorem 4. The time complexity of this algorithm is O(qn)
where q is the number of queries.

Theorem 11 There is a deterministic adaptive algorithm that estimates the number of
defective items |I| = d up to a multiplicative factor of 1± ε and asks

d log
(1− ε)n

d
+O(d)

queries.

Proof The algorithm divides the set of items X = [n] into N = (1 − ε)n disjoint sets
X1, . . . , XN where each set Xi contains 1/(1− ε) items. It then runs the algorithm Find-
Defectives in Lemma 10 with N items. For each query Q ⊆ [N ] in Find-Defectives, the
algorithm asks the query Q′ = ∪i∈QXi. By Lemma 10, the number of queries is

d log
N

d
+O(d) = d log

(1− ε)n
d

+O(d).

Now since the d defective items can appear in at most d sets Xi and at least (1− ε)d sets,
the output of the algorithm is D that satisfies (1− ε)d ≤ D ≤ d.

We now give a randomized algorithm such that, for any constant ε, its expected number
of queries matches the lower bound in Theorem 8 and 6.

Theorem 12 For any constant c > 1, there is a randomized algorithm that asks

q = (1− δ + δc) log log d+O(
√

log log d) +O

(
1

ε2
log

1

δ

)
expected number of queries and with probability at least 1 − δ estimates the number of
defective items d up to a multiplicative factor of 1± ε.
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Proof We first give an algorithm A that asks

q′(δ) := log log d+O(
√

log log d) +O

(
1

ε2
log

1

δ

)
queries in expectation. We then define the following algorithm B: With probability δ − δc
output 0 and with probability 1−(δ−δc) run algorithm A with success probability of 1−δc.

The expected number of queries that B asks is (1 − δ + δc)q′(δc) = q and the success
probability is 1− δ.

We now give algorithm A. Algorithm A is the same as the algorithm of Falahatgar
et al. (Falahatgar et al., 2016) but with different parameters. Their algorithm runs in 4
stages. In the first stage they give a procedure AFACTOR−d that finds an integer D1 that
with probability at least 1 − δ satisfies d ≤ D1 ≤ 2d2 1

δ2 log 1
δ . Procedure AFACTOR−d for

i = 1, 2, · · · , generates random queries Qi where each j ∈ [n] is in Qi with probability
1−2−1/∆i and is not in Qi with probability 2−1/∆i where ∆i = 22i . It then asks the queries
Qi for i = 1, 2, · · · and halts on the first query Qi0 that gets the answer 0. Then, it outputs
D1 = 2∆i0 log 1

δ .
Our procedure IMPROVEDAFACTOR−d finds an integer D′1 that with probability at

least 1− δ satisfies

d ≤ D′1 ≤ 2

(
2d

δ

)2
2
√

log log 2d
δ

+1

log
1

δ
.

Procedure IMPROVEDAFACTOR−d for i = 1, 2, · · · , generates random queries Q′i where

each j ∈ [n] is in Q′i with probability 1 − 21/∆′i where ∆′i = 22i
2

, asks the queries Q′i and
halts on the first query Q′i0 that gets answer 0. Then, it outputs D′1 = 2∆i0 log 1

δ . The
expected number of queries in IMPROVEDAFACTOR−d is√

log logD′1 = O

(√
log log

d

δ

)
. (2)

The proof of correctness and the query complexity analysis is the same as in (Falahatgar
et al., 2016) and is sketched in the next subsection for completeness.

The second stage of the algorithm by Falahatgar et al. is the procedure AFACTOR−1/δ2 .
The procedure AFACTOR−1/δ2 is a binary search for log d in the logarithmic scale of the
interval [1, D1] - that is, in [0, logD1]. The procedure with probability at least 1− δ returns
D2 such that δ2d ≤ D2 ≤ d/δ2. The expected number of queries is log logD1 = log log d

δ +
O (log log log(1/δ)). The same procedure with the same analysis and proof of correctness
works as well in our algorithm for the interval [0, logD′1]. The procedure AFACTOR−1/δ2 ,
with probability at least 1 − δ, returns D′2 such that δ2d ≤ D′2 ≤ d/δ2. The expected
number of queries is

log logD′1 = log log
d

δ
+O

(√
log log

d

δ

)
. (3)

The third and fourth stage in (Falahatgar et al., 2016) (and here), are two procedures that
with an input D′2, with probability at least 1− δ, estimates the number of defective items
d up to a multiplicative factor of 1± ε with O((1/ε2) log(1/δ)) expected number of queries.

10
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The expected number of queries is the sum of expressions in (2), (3) andO((1/ε2) log(1/δ))
which is equal to q′(δ).

We note here that the best constant in the O(
√

log log d) is 2
√

2 = 2.828 and can be

obtained by the sequence ∆i = 22i
2/2

.

4.1. Analysis of the Algorithm

The following result is immediate. We omitted the proof.

Lemma 13 Let Q∆ be a random query where each j ∈ [n] is in Q∆ with probability
1 − 2−1/∆ and is not in Q∆ with probability 2−1/∆. Let I ⊆ [n] be a set of defective items
of size d. Then for any ∆ we have

Pr[Q∆(I) = 0] = 2−
d
∆

and for ∆ > d,

Pr[Q∆(I) = 1] ≤ d

∆
.

Now, let {∆i}∞i=1 be any sequence of numbers such that, ∆1 ≥ 1 and ∆i+1/∆i ≥ 2. Consider
the algorithm that asks the query Q∆i for i = 1, 2, 3, . . . and stops on the first query Q∆i0

that gets answer 0. Let

D = 2∆i0 log
2

δ
.

Since ∆i−1 ≤ ∆i/2 and by Lemma 13,

Pr[D < d] = Pr

[
∆i0 <

d

2 log(2/δ)

]
≤

∑
i:∆i<d/(2 log(2/δ))

Pr[Q∆i(I) = 0]

=
∑

i:∆i<d/(2 log(2/δ))

2−d/∆i ≤ δ/2.

Let i1 be such that ∆i1−1 ≤ 2d/δ < ∆i1 . Then, by Lemma 13,

Pr

[
D > 2∆i1 log

2

δ

]
= Pr[∆i0 > ∆i1 ]

≤ Pr[Q∆i1
(I) = 1]

≤ d

∆i1

≤ δ/2.

Since, ∆i+1/∆i ≥ 2, we have

Pr[∆i0 > ∆i1+k] ≤
d

∆i1+k
≤ δ

2k+1
,

and therefore the expected number of queries is at most i1 + 2.
This proves

11
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Lemma 14 Let {∆i}∞i=1 be any sequence of numbers such that, ∆1 ≥ 1 and ∆i+1/∆i ≥ 2.
Let i1 be such that ∆i1−1 ≤ 2d/δ < ∆i1. The above algorithm asks at most i1 + 2 queries
in expectation and with probability at least 1 − δ outputs D that satisfies D ≥ d and D ≤
2∆i1 log(2/δ).

Suppose we know some upper bound D∗ on d. Let i2 be such that ∆i2 > D∗. The
algorithm is also a Monte Carlo algorithm that asks at most i2 queries.

Now if we take ∆i = 22i
2

then i1 ≤
√

log log(2d/δ) + 1 and

∆i1 ≤
(

2d

δ

)2
2
√

log log 2d
δ

+1

.

Therefore

d ≤ D ≤ 2

(
2d

δ

)2
2
√

log log 2d
δ

+1

log
2

δ
.

This gives the result in Theorem 12.
The randomized Monte Carlo algorithm is in Appendix B

5. Open Problems

The results in the table in Subsection 1.1 suggest the following open problems:

1. Prove a lower bound Ω((1/ε2) log(1/δ)) or find an randomized algorithm that asks
(1 − δ) log log d + O((1/ε) log(1/δ)) queries in expectation. We note here that the
lower bound obtained by the KL-divergence of an ε-bias coin doesn’t seem to work
for this problem. First, because the answers of the oracle depend on the queries
that is known to the algorithm and second because the algorithms we consider here
are adaptive so the distribution of the answers can somehow be controlled by the
algorithm.

2. Prove the lower bound Ω(d) for number of queries in any randomized Monte Carlo
algorithm when n→∞. A randomized Monte Carlo algorithm that asks O(d log d+
d log(1/δ)) queries follows from (Cheng, 2011).
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6. Appendix A

In this Appendix we give the proof of Lemma 1, Theorem 6 and a simple proof of Theorem 8.
Lemma 1 Let S = {s1, . . . , sN} be a set of N distinct strings over {0, 1} such that no string
is a prefix of another. Then, over the uniform distribution,

max
s∈S
|s| ≥ E(S) := Es∈S [|s|] ≥ logN.

Proof The proof is by induction on N . For N = 1 the set S with the smallest E(S) is
when S = {λ} and E(S) = 0 = logN . For N = 2 the smallest E(S) is when S = {0, 1} and
E(S) = 1 = logN . Therefore, the statement of the lemma is true for N = 1, 2.

Consider a set S of size N > 2. Obviously, λ 6∈ S. Let w ∈ ∪∞i=0{0, 1}i be the longest
string that is a prefix of all the strings in S. For σ ∈ {0, 1}, let Sσ = {u | w · σ · u ∈ S}.
Let Nσ = |Sσ| for σ ∈ {0, 1}. Obviously, N0 +N1 = N and for each σ ∈ {0, 1}, no string in
Sσ is a prefix of another (in Sσ). Also, N0, N1 > 0, because otherwise, either w is not the
longest common prefix of all the strings in S or w ∈ S is a prefix of another string in S.
Let p = N0/N . By the definition of E(S) and the induction hypothesis

E(S) = |w|+ 1 +
N0E(S0) +N1E(S1)

N

≥ 1 +
N0 log(N0) +N1 log(N1)

N
= 1 + log(N) + p log p+ (1− p) log(1− p) ≥ log(N).

Theorem 6 Let ε < 1/2 and min(ελ, 1/2) ≥ δ ≥ 1/(2(n − 1/ε + 1)) where λ < 1 is any
constant. Let A be a randomized adaptive algorithm that estimates the number of defective
items up to a multiplicative factor of 1± ε. Algorithm A must ask at least

Ω

(
1

ε
log

1

δ

)
expected number of queries.
Proof Let A(r) be a randomized algorithm that estimates the number of defective items
up to a multiplicative factor of 1± ε where r is the random seed of the algorithm. Then for
|I| ∈ {d, d+1} where d = b1/εc−2, it determines exactly |I| with probability at least 1− δ.
Let X(I, r) be a random variable that is equal to 1 if A(OI , r) 6= |I| and 0 otherwise. Then
for any I ⊆ [n], Er[X(I, r)] ≤ δ. Let m = bτ/δc+ d− 1 ≤ n where τ > δ is a constant that
will be determined later. Consider any J ⊆ [m], |J | = d. For any such J let

YJ(r) = X(J, r) +
∑

i∈[m]\J

X(J ∪ {i}, r).

Then for every J ⊆ [m] of size d, Er [YJ(r)] ≤ (m − d + 1)δ ≤ τ. Therefore for a random
uniform J ⊆ [m] of size d we have Er[EJ [YJ(r)]] = EJ [Er[YJ(r)]] ≤ τ . Let η > τ be
a constant that will be determined later. By Markov’s inequality, for random r, with
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probability at least 1 − τ/η, for at least 1 − η fraction of the sets J ⊆ [m], of size d,
YJ(r) = 0. Let R be the set of such r. Then Prr[R] ≥ 1− τ/η. Let r0 ∈ R. Let Cr0 be the
set of all J ⊆ [m], of size d, such that YJ(r0) = 0. Then

|Cr0 | ≥ (1− η)

(
m

d

)
= (1− η)

(
bτ/δc+ d− 1

d

)
.

Consider the deterministic algorithm A(r0). As in Theorem 6, for every two distinct
J1, J2 ∈ Cr0 , there is a query Q ∈ Q(A(r0),OJ1) such that Q(J1) 6= Q(J2). Then by
Lemma 3, the average-case query complexity of A(r0) is at least

log |Cr0 | ≥ log(1− η)

(
bτ/δc+ d− 1

d

)
≥ d log

τ

dδ
− log

1

1− η
.

Let Z(OI , r) = |Q(A(r),OI)|. We have shown that for every r ∈ R,

EI∈Cr [Z(OI , r)] ≥ d log
τ

dδ
− log

1

1− η
.

Therefore for every r ∈ R,

EI [Z(OI , r)] ≥ Pr[I ∈ Cr] ·EI [Z(OI , r)|I ∈ Cr]

≥ (1− η)

(
d log

τ

dδ
− log

1

1− η

)
.

Therefore

EIEr[Z(OI , r)] = ErEI [Z(OI , r)]
≥ Pr[r ∈ R] ·Er[EI [Z(OI , r)]|r ∈ R]

≥
(

1− τ

η

)
(1− η)

(
d log

τ

dδ
− log

1

η

)
.

Therefore there is I such that

Er[Z(OI , r)] ≥
(

1− τ

η

)
(1− η)

(
d log

τ

dδ
− log

1

η

)
.

Now for η =
√
τ = 1/16 we get

Er[Z(OI , r)] = Ω

(
1

ε
log

1

δ

)
.

We now give a simple proof of Theorem 8.
Theorem 8 Let A be a randomized adaptive algorithm that estimates d up to multiplicative
factor of 1/4 with probability at least 1− δ. The expected number of queries of A is at least

(1− δ)(log log d− log log log d− 2)
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Proof Let A(r) be an adaptive algorithm that estimates d up to a multiplicative factor
of 1/4 with probability at least 1− δ. Let q(d) be the expected number of queries of A(r).
Define a sequence of sets I1 = [1], I2 = [2], . . . , It = [2t] where 2t ≤ d and 2t+1 > d. Then
t = blog dc. We restrict the inputs of A to be only Ij for some j = 1, . . . , t and force A
to halt if it asks more than q(d)/(1 − δ − η) queries where η > 0 will be determined later.
This new algorithm, denoted by B, is a Monte Carlo algorithm that finds exactly the size
of Ij with probability at least 1 − (δ + (1 − δ − η)) = η and asks at most q(d)/(1 − δ − η)
queries. Therefore by Theorem 3 (see (1)), q(d)/(1− δ− η) ≥ log log d+ log η and therefore
for η = (ln 2)(1− δ)/ log log d we get

q(d) ≥ (1− δ − η)(log log d+ log η)

≥ (1− δ)(log log d− log log log d− 2).

7. Appendix B: A Randomized Monte Carlo Algorithm

In this section we give a randomized Monte Carlo algorithm.
In Lemma 14, if we take the sequence ∆1 = 1 and ∆i = 2∆i−1 then ∆i1 ≤ 22d/δ, the

expected number of queries is log∗(d/δ) and the output D satisfies

d ≤ D ≤ 22d/δ+1 log
2

δ
.

The advantage of this algorithm is that, by Lemma 14, it is also a randomized Monte
Carlo algorithm that asks at most i2 = log∗ n queries. Now we can narrow the range and

keep the worst case query complexity small by choosing the sequences ∆i = 2222i

then

∆i = 222i

then ∆i = 22i
2

and then running the last 3 stages of the algorithm by Falahatgar
et al. (Falahatgar et al., 2016).

The following table gives the parameters in each stage.

∆i = i1 D∗ ∆i1 = D
2 log(2/δ) ≤ i2

2∆i−1 log∗(d/δ) n 22d/δ log∗ n

2222i

log[4] 2d
δ + 1 22d/δ+1 log 2

δ 22(log[3] 2d
δ

)2

log[3] 2d
δ

222i

log[3] 2d
δ + 1 22(log[3] 2d

δ
)2+1 log 2

δ 2(log 2d
δ

)2
2 log[4] 2d

δ

22i
2

√
log[2] 2d

δ + 1 2(log 2d
δ

)2+1 log 2
δ

(
2d
δ

)22
√

log log 2d
δ

+1

log[3] 2d
δ

Here log[k] n = log log[k−1] n and log[1] n = log n.

This gives the following result.
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Theorem 15 There is a randomized Monte Carlo algorithm that asks

log∗ n+ log log d+O(
√

log log d) +O

(
1

ε2
log

1

δ

)
queries in expectation and with probability at least 1 − δ estimates the number of defective
items d up to a multiplicative factor of 1± ε.

Note: The above stages can even start from a much slower function. For example log∗∗ n
that is defined as log∗∗ α = 1 for α ≤ 2 and log∗∗ n = 1 + log∗∗(log∗ n).
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