
SPARSITY, VARIANCE AND CURVATURE IN MULTI-ARMED BANDITS

Sparsity, variance and curvature in multi-armed bandits
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Abstract
In (online) learning theory the concepts of sparsity, variance and curvature are well-understood and
are routinely used to obtain refined regret and generalization bounds. In this paper we further our
understanding of these concepts in the more challenging limited feedback scenario. We consider the
adversarial multi-armed bandit and linear bandit settings and solve several open problems pertain-
ing to the existence of algorithms with favorable regret bounds under the following assumptions: (i)
sparsity of the individual losses, (ii) small variation of the loss sequence, and (iii) curvature of the
action set. Specifically we show that (i) for s-sparse losses one can obtain Õ(

√
sT )-regret (solving

an open problem by Kwon and Perchet), (ii) for loss sequences with variation bounded by Q one
can obtain Õ(

√
Q)-regret (solving an open problem by Kale and Hazan), and (iii) for linear bandit

on an `np ball one can obtain Õ(
√
nT )-regret for p ∈ [1, 2] and one has Ω̃(n

√
T )-regret for p > 2

(solving an open problem by Bubeck, Cesa-Bianchi and Kakade). A key new insight to obtain these
results is to use regularizers satisfying more refined conditions than general self-concordance.

1. Introduction
In this paper we resolve several open problems in multi-armed bandit theory. Let us first recall the
general setting of bandit linear optimization on a compact set K ⊂ Rn (the classical multi-armed
bandit problem corresponds to K = {e1, . . . , en}, the canonical basis in Rn). It can be described
as the following sequential game: at each time step t = 1, . . . , T , a player selects an action at ∈ K,
and simultaneously an adversary selects a linear loss function `t : K → [−1, 1]. The player’s
feedback is its suffered loss, `t(at). Equivalently we will view the loss function `t as a vector in the
polar bodyK◦ := {h : ∀x ∈ K, |h ·x| ≤ 1}, and thus we write `t(x) = `t ·x. The player has access
to external randomness, and can select her action at based on the historyHt = (as, `s(as))s<t. The
player’s perfomance at the end of the game is measured through the pseudo-regret (the expectation
is with respect to the randomness in her strategy) :

RT = E
T∑
t=1

`t(at)−min
x∈K

E
T∑
t=1

`t(x), (1)

which compares her cumulative loss to the smallest cumulative loss she could have obtained had
she known the sequence of loss functions. We refer to Bubeck and Cesa-Bianchi (2012) for the
history of this problem, and we simply mention that the minimax rate for the regret is known to be
Θ̃(n
√
T ) without further assumptions on K, and for the special case where K = {e1, . . . , en} (i.e.,

the multi-armed bandit problem) it is Θ(
√
nT ).
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We consider three basic open problems in bandit theory (description below), each one part of
a more general trend in learning theory/online learning, namely (i) exploiting sparsity, (ii) faster
learning for “easy data”, and (iii) interplay between curvature and learning1. In fact these problems
are possibly the easiest at the intersection of bandit theory and topics (i), (ii), (iii). Thus, given the
flurry of activity on these topics and on bandit theory in recent years, we believe that they epitomize
the difficulty of adapting full information tools to limited feedback scenarios. In particular we hope
that the tools we develop to resolve these problems will find broader applicability.

Sparse multi-armed bandit, Kwon and Perchet (2016). Consider the multi-armed bandit prob-
lem with the additional assumption that at each time step t ∈ [T ] the loss vector `t ∈ [−1, 1]n

only has s non-zero entries. Trivially the best regret one can hope for in this setting is Ω(
√
sT ).

Kwon and Perchet ask whether there is a strategy with regret matching this lower bound (possibly
up to logarithmic factors). Surprisingly the state of the art for this problem is the standardO(

√
nT )

bound, or in other words prior to this present work it was not known whether sparsity of the losses
can be exploited in a bandit setting2.

Small variation bound for multi-armed bandit, Hazan and Kale (2009). Consider again the
multi-armed bandit problem with the additional assumption that the loss sequence (`1, . . . , `T ) ∈
([−1, 1]n)T has a small variation Q :=

∑T
t=1 ‖`t −

1
T

∑T
s=1 `s‖22 (note that Q ≤ nT ). The COLT

2011 open problem by Hazan and Kale ask whether there exists a strategy with regret Õ(
√
Q)

(Hazan and Kale (2011)). The current state of the art remains Hazan and Kale (2009) which gives
a strategy with regret Õ(n2

√
Q). We also note that Gerchinovitz and Lattimore (2016) showed that

for any fixed Q > log(T ) one cannot obtain a regret smaller than Ω(
√
Q) for all sequences with

variation Q.

Linear bandit on `np balls, Bubeck et al. (2012). Consider the linear bandit problem on K =
{x ∈ Rn : ‖x‖p ≤ 1}. The general minimax rate show that for any p ≥ 1 there exists a strategy
with regret Õ(n

√
T ), and furthermore this is optimal for p = ∞. It is easy to see that for p = 1

the problem can be reduced to the classical multi-armed bandit (in dimension 2n) and thus there
exists a strategy with regret Õ(

√
nT ). In Bubeck et al. (2012) it is shown that the latter regret can

also be achieved for p = 2. No other result is known for this problem, and a natural conjecture3

would be that Õ(
√
nT ) is achievable for any p ∈ [1, 2], and that the minimax regret then degrades

“smoothly” for p > 2 until Ω̃(n
√
T ) for p =∞.

We resolve all the above problems, constructing strategies with respective regret bounds Õ(
√
sT ),

Õ(
√
Q), and Õ(

√
nT ) for p ∈ [1, 2]. Furthermore we show that in fact for p > 2 the minimax re-

gret (for large T ) is Θ̃(n
√
T ). We also introduce the following more constrained version of bandit

linear optimization, which we call starved bandit. In this model the player only observes feedback
if she plays at from a fixed distribution µ ∈ ∆(K), where µ is chosen by the player at the begin-
ning of the game. Thus the player is “information starved”. One can motivate such a setting in
various ways, think for instance of applications where logging information on users is discouraged
for privacy reasons. It is easy to see that one must have regret Ω(T 2/3) for the starved multi-armed
bandit game, and that the same lower bound also applies to starved linear bandit on `np unit ball
with p = 1. Perhaps surprisingly we show that

√
T -type regret is achievable for the starved bandit

1. Note that the terms sparsity and curvature in the paper’s title apply respectively to the losses and the action set. They
could also apply respectively to the action set and to the losses, see e.g. Langford et al. (2009) and Hazan and Levy
(2014). We do not consider these (very different) settings here.

2. We note however that for non-negative losses (which should intuitively be a much easier case than say sparse non-
positive losses, a.k.a. sparse gains), Kwon and Perchet already answered positively the question, see Section 3.1.

3. This conjecture was mentioned in talks related to Bubeck et al. (2012).
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for any p ∈ (1, 2] and not achievable for any p > 2.

A key feature of our work that enables these improved regret bounds is that we avoid resorting
to “global” smoothness of the regularizers. Slightly more precisely, as we will recall shortly, an im-
portant step in the analysis of FTRL (Follow The Regularized Leader) is to show that the regularizer
is well-conditioned. Since the groundbreaking work Abernethy et al. (2008) it has been realized
that self-concordance (Nesterov and Nemirovski (1994)) exactly gives such a good conditioning
for all directions. In this paper we use more refined properties of the regularizers, by noticing that
one only needs the well-conditioning in directions (and magnitudes) attainable with loss estimators.

Next we describe more formally our main results.

1.1 Main results
The brief algorithms’ description given in the theorem statements below use standard bandit theory
terminology which is recalled in Section 2. Note also that in this paper we assume that the param-
eters of the game (such as the time horizon T , or the variation of the loss sequence) are known.
Standard methodology (such as the doubling trick, or more sophisticated variants of it) can be used
to circumvent this issue.

We start with a theorem resolving the sparse bandit open problem by Kwon and Perchet (notice
that if ‖`t‖0 ≤ s and ‖`t‖∞ ≤ 1 then

∑T
t=1 ‖`t‖22 ≤ sT ).

Theorem 1 There exists a multi-armed bandit strategy such that for any loss sequence satisfying
∑T
t=1 ‖`t‖22 ≤

L (and `t ∈ [−1, 1]n) one has
RT ≤ 10

√
L log(n) + 20n log(T ) .

In fact this can be achieved with the FTRL strategy (with standard unbiased loss estimator) with the

regularizer Φ(x) =
∑n
i=1 x(i) log x(i) − γ

∑n
i=1 log x(i), learning rate η = min

(
1
5

√
log(T )
L , 1

15n

)
, and

soft-exploration parameter γ = 2η.

The difficulty in achieving a result such as Theorem 1 is that standard multi-armed bandit
algorithms explore too much. In fact as was noted in Hazan and Kale (2011) for the variation
bound open problem (the same observation holds for the sparse bound open problem): “We note
that EXP3 itself has Ω(

√
T ) regret, since it mixes with the uniform distribution every iteration to

enable sufficient exploration. Hence, the desired algorithm should be a little different from EXP3,
incorporating just enough exploration proportional to the variation in the data.” Our new idea to
achieve this is to introduce soft exploration, by adding to the regularizer a little bit of the log-barrier
for the positive orthant. This new hybrid regularizer and its analysis is one of our key contribution.
We give detailed intuition for it in Section 3.2. It also allows to solve the variation bound open
problem:

Theorem 2 There exists a multi-armed bandit strategy and a numerical constant C > 0 such that for any
loss sequence satisfying

∑T
t=1 ‖`t −

1
T

∑T
s=1 `s‖22 ≤ Q (and `t ∈ [−1, 1]n) one has

RT ≤ C
√
Q log(n) + Cn log2(T ) .

In fact this can be achieved by combining the Hazan-Kale reservoir sampling idea with the strategy of
Theorem 1

Next we give our main theorems for linear bandit on `np balls. Notice that the polar of the `np
ball is the `nq ball with q = p/(p− 1).
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Theorem 3 Let p ∈ (1, 2]. There exists a linear bandit algorithm playing on the unit ball of `np such that

RT ≤ 2
6
p−1

√
nT log(T ) .

Our lower bound construction for `np balls with p > 2 uses Gaussian losses which satisfy the
constraint ‖`t‖qq ≤ 1 only in expectation. Note that from standard Gaussian concentration the same
bound (up to a logarithmic factor) then holds with high probability. We work with Gaussian losses
mostly for clarity of exposition, and at the expense of technical complications one could use losses
which satisfy the bound ‖`t‖qq ≤ 1 almost surely. We also note that the lower bound is only valid
in the large T regime, which is necessary since there exist intermediate regimes of (T, n) where a
better regret than n

√
T is achievable.

Theorem 4 Let p > 2 and T ≥ nmax(2, p−1
p−2 ). There exists a numerical constant C > 0 such that for any

linear bandit algorithm playing on the unit ball of `np , there exists (`t)t∈[T ], i.i.d. Gaussian random variables
in Rn such that

E‖`t‖qq ≤ 1 , (2)

and
ERT ≥ Cn

√
T .

We recall the starved bandit setting introduced above. At the beginning of the game the player
chooses an exploration distribution µ ∈ ∆(K). At any time t the player can choose to play at
at random, either from µ or from an adaptive distribution pt (where pt depends on the observed
feedback so far). The loss of the player is `t(at). The feedback is either (i) nothing if at was
played from pt, or (ii) the standard bandit feedback `t(at) if at was played from µ. For sake
of simplicity we assume that if K contains the (signed) canonical basis then µ is uniform on the
(signed) canonical basis.

We observe that Theorem 3 holds true for the starved linear bandit framework too (indeed the
strategy we give to prove Theorem 3 is a starved bandit strategy). Our main additional result for
this setting is to show that for any p not covered by Theorem 3 one cannot achieve

√
T -type regret:

Theorem 5 For any strategy for the starved multi-armed bandit there exists a loss sequence such that RT ≥
1
20n

1/3T 2/3. The same lower bound holds for the starved linear bandit on the `n1 ball. Furthemore for any
p > 2 there exists a constant C > 0 such that for any starved linear bandit algorithm playing on the unit ball
of `np , there exists (`t)t∈[T ], i.i.d. Gaussian random variables in Rn satisfying (2) and such that

ERT ≥ Cn
q

2+q T
2

2+q .

1.2 Notation
We use the following (standard) notation: ∆(K) for the set of probability measures supported
on K, ∆ = {x ∈ Rn+ :

∑n
i=1 x(i) = 1} for the simplex, ‖x‖p = (

∑n
i=1 |x(i)|p)1/p for the

`np norm, Φ∗(θ) = supx∈Rn θ · x − Φ(x) for the Fenchel dual of Φ : Rn → R, DΦ(x, y) =

Φ(x)−Φ(y)−∇Φ(y)·(y−x) for the Bregman divergence associated to Φ, ‖h‖x =
√
∇2Φ(x)[h, h]

for the local norm induced by Φ at x, ‖h‖x,∗ =
√

(∇2Φ(x))−1[h, h] for the dual local norm, �
for the Hadamard product (i.e., entrywise product of vectors), and � for the positive semi-definite
ordering on matrices.

2. Bandit theory reminders
We give a few brief reminders of multi-armed bandit and linear bandit theory.
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2.1 Full information strategies

In this section we assume that K is a convex body in Rn. We fix a learning rate η > 0 and a
mirror map Φ : Rn → R, that is a strictly convex and differentiable map with ∇Φ(Rn) = Rn
and diverging gradient as one approaches the boundary of its domain. The following theorem is a
standard result on the mirror descent strategy for online linear optimization (with full information),
see e.g., [Theorem 5.5, Bubeck and Cesa-Bianchi (2012)].

Theorem 6 Let `1, . . . , `T ∈ Rn be a fixed sequence of loss vectors and let x1, . . . , xT ∈ K be defined by:
x1 = argminx∈K Φ(x) and

xt+1 = argmin
x∈K

DΦ(x,∇Φ∗(∇Φ(xt)− η`t)). (3)

Then one has for any x ∈ K,

T∑
t=1

`t · (xt − x) ≤ Φ(x)− Φ(x1)

η
+

1

η

T∑
t=1

DΦ∗

(
∇Φ(xt)− η`t,∇Φ(xt)

)
. (4)

Futhermore assuming that the following implication holds true for any yt ∈ Rn,

∇Φ(yt) ∈ [∇Φ(xt),∇Φ(xt)− η`t]⇒ ∇2Φ(yt) � c∇2Φ(xt) (5)

one obtains
T∑
t=1

`t · (xt − x) ≤ Φ(x)− Φ(x1)

η
+

η

2c

T∑
t=1

‖`t‖2xt,∗ . (6)

We will also use the lazy variant of mirror descent, also known as FTRL (Follow The Regular-
ized Leader), and its corresponding “primal only” analysis. In particular while for mirror descent
one has to check that Φ is “well-conditioned” on a “dual segment” (equation (5)) we will see below
that for FTRL one needs to check the well-conditioning on a “primal segment” (equation (9)). Note
also that mirror descent and FTRL give the same update equation when Φ is a barrier for K (see
e.g., Bubeck (2015)), which is often the case in bandit scenario.

Theorem 7 Let `1, . . . , `T ∈ Rn be a fixed sequence of loss vectors and let x1, . . . , xT ∈ K be defined by:

xt = argmin
x∈K

η

t−1∑
s=1

`s · x+ Φ(x). (7)

Then one has for any x ∈ K,

T∑
t=1

`t · (xt − x) ≤ Φ(x)− Φ(x1)

η
+

T∑
t=1

`t · (xt − xt+1) . (8)

Futhermore assuming that the following implication holds true for any yt ∈ Rn,

yt ∈ [xt, xt+1]⇒ ∇2Φ(yt) � c∇2Φ(xt) (9)

then one has that (6) holds true with the term η
2c replaced by 2η

c .

Proof The proof of (8) is a classical one-line induction (sometimes referred to as the Be-The-
Leader lemma). We turn to (6) and note that it suffices to show that ‖xt − xt+1‖xt ≤

2η
c ‖`t‖xt,∗.
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Observe that, using a Taylor expansion, for some yt ∈ [xt, xt+1] one has, with the notation
Φt(x) := η

∑t
s=1 `s · x+ Φ(x) (thus xt+1 ∈ argmin Φt and xt ∈ argmin Φt − η`t),

1

2
‖xt − xt+1‖2yt = Φt(xt)− Φt(xt+1)−∇Φt(xt+1) · (xt − xt+1) ≤ Φt(xt)− Φt(xt+1)

≤ η`t · (xt − xt+1) .

Using that ∇2Φ(yt) � c∇2Φ(xt) one also has ‖xt − xt+1‖2xt ≤
1
c‖xt − xt+1‖2yt and thus

‖xt − xt+1‖2xt ≤
2η

c
`t · (xt − xt+1) ≤ 2η

c
‖`t‖xt,∗‖xt − xt+1‖xt ,

which concludes the proof.

2.2 Bandit strategies

In addition to choosing a regularizer, a bandit strategy also rely on a sampling scheme, that is
a map p : conv(K) → ∆(K) such that EX∼p(x)X = x. One then runs FTRL (or mirror
descent), with the (unobserved) true losses `t replaced by estimators ˜̀t (constructed based on
the observed feedback). Moreover instead of playing the point xt recommended by FTRL, i.e.,
xt = argminx∈conv(K)

∑t−1
s=1

˜̀
s · x+ Φ(x), one plays at random at ∼ p(xt) (where the sampling

is done independently of the past given xt). The key point is that if the loss estimator is unbiased,
i.e., Eat∼p(xt) ˜̀t = `t, then one has for any x ∈ K,

E
T∑
t=1

`t · (at − x) = E
T∑
t=1

˜̀
t · (xt − x) ,

and thus one can use Theorem 6 or Theorem 7 to bound the regret. In particular assuming that one
can prove the well-conditioning condition (5) or (9), the key quantity to control is the “variance” of
the loss estimator appearing in (6), namely E ‖˜̀t‖2xt,∗.

To illustrate the above discussion let us briefly recall the classical multi-armed bandit set-
ting (i.e., K = {e1, . . . , en}) with nonnegative losses. We use mirror descent with Φ(x) =∑n
i=1 x(i) log x(i), the sampling scheme p : ∆ → ∆(e1, . . . en) is simply the identity map (in

the sense that Pa∼p(x)(a = ei) = x(i)), and the unbiased loss estimator is

˜̀
t(i) =

`t(i)

xt(i)
1{at = ei} .

The key is to observe that since ˜̀t has nonegative entries, one has that (5) is satisfied with
c = 1, and thus (6) gives

RT ≤
log(n)

η
+
η

2

∑
t∈[T ],i∈[n]

E ‖˜̀t‖2xt,∗ .
The last thing to observe is that, since ‖h‖2x =

∑n
i=1

h(i)2

x(i) , one has

E ‖˜̀t‖2xt,∗ = E
n∑
i=1

xt(i)˜̀t(i)2 = E
n∑
i=1

xt(i)
`t(i)

2

xt(i)
1{at = ei} = ‖`t‖22 .
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Thus with an appropriate choice of η one gets

RT ≤

√√√√ log(n)

2

T∑
t=1

‖`t‖22 . (10)

As a side note we observe that using the polynomial INF regularizer of Audibert and Bubeck (2009)
(see Section 3.2 for a brief reminder on the INF regularizer), for any primal dual pair p, q ≥ 1, one

obtains an algorithm with a regret bound scaling in q
q−1

√
n1/q

∑T
t=1 ‖`t‖22p.

3. Sparsity and variation bounds for multi-armed bandit

We start first by describing some basic obstacles to obtain a sparsity type bound in Section 3.1.
Then in Section 3.2 we give some intuition for our new “hybrid regularizer”,

∑n
i=1 x(i) log(x(i))−

γ
∑n
i=1 log(x(i)), that is the weighted combination of the negentropy and the logarithmic barrier

for the positive orthant4. The extra logarithmic barrier term can be understood as a soft way to
encourage exploration (to the contrary of the usual forced exploration). Finally in Section 3.3
we prove Theorem 1 (this section is self-contained and does not require reading the two previous
subsections).

3.1 Basic obstacles

The basic issue is that (10) only holds for nonnegative losses5. The reason nonnegativity was
needed is that the well-conditioned assumption for the negentropy Φ, equation (5), crucially re-
lies on the fact that (note that ∇Φ = log,∇2Φ = diag(1/x)) for log(y) = log(x) − ` with
` ≥ 0 one has 1/y ≥ 1/x. A standard fix to maintain the latter inequality approximately true for
general losses is to ensure that the magnitude of the (estimated) loss is controlled. Indeed (5) is
satisfied for some constant c provided that almost surely ‖η˜̀t‖∞ ≤ log(1/c). This almost sure
control can be achieved by adding forced exploration, as was done in the original adversarial multi-
armed bandit paper Auer et al. (2002), that is the sampling scheme is now (1 − nγ)xt + γ1, or
in words explore uniformly at random with probability nγ and otherwise play from xt. Indeed in
this case ‖η˜̀t‖∞ ≤ η/γ, and thus the well-conditioned assumption (5) is satisfied when γ ' η.
However the added regret (with respect to i∗ ∈ [n]) suffered by the extra exploration is exactly
γ
∑
i,t(`t(i)− `t(i∗)). This latter term destroys the scaling with sparsity (for example if `t = −ei∗

then this term is of order γ(n − 1)T ' ηnT ). More prosaically, the uniform exploration might
make us miss out on a nγ fraction of the “gains” of the best arm, which could be far too much. We
also observe that the recently proposed implicit exploration by Kocák et al. (2014) (see also Neu
(2015)) suffers from the exact same issue.

We also note that, without going into any technical details, the case of arbitrary losses seem
harder than the case of nonnegative losses. Indeed the former contains the case of nonpositive
losses, or equivalently nonnegative gains. Sparse nonnegative losses mean that most arms are
performing well and only a handful are to be avoided. On the other hand sparse nonnegative gains
mean that most arms are bad, and only a handful are performing well. Intuitively, finding this small
set of good arms hiding in a sea of bad arms is harder than avoiding a small set of bad arms in a sea
of good arms.

4. The logarithmic barrier was recently used as a regularizer for bandits in Foster et al. (2016) to obtain first order regret
bounds. We note however that the behavior of our hybrid regularizer is fundamentally different from using only the
log-barrier term.

5. Notice that one cannot simply shift the losses as this could potentially suppress sparsity.

7
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3.2 Intuition for the hybrid regularizer
The intuition is divided in two parts: (i) the fact that the added regret for γ > 0 is controlled, and
(ii) that the well-conditioning still holds.

For the first part we start with a slightly different point of view on extra (forced) exploration.
It is easy to check that adding extra exploration exactly corresponds to taking the regularizer to be
a “negatively shifted negentropy”:

∑n
i=1(x(i)− γ) log(x(i)− γ). For such a regularizer the range

Φ(x) − Φ(x1) is controlled only for x’s such that mini∈[n] x(i) > γ. In the worst case the gap
between the regret with respect to such x’s, and with respect to an arbitrary x can be as large as
nγT , and since the well-conditioned assumption requires γ ' η this leads us to the extra term ηnT .
On the other hand for the hybrid barrier one can compare to x’s with mini∈[n] x(i) = 1/poly(T ),
only at the expense of a term of the form γn log(T )

η . Thus provided that the well-conditioning
assumption remains true for γ ' η (this is the key part to verify) the hybrid regularizer could lead
to a bound of the form (10) up to to an extra additive term of order n log(T ).

For the well-conditioning intuition we first recall the INF parametrization of a regularizer (Au-
dibert et al. (2014)): For ψ : R → R, let Φ be defined by ∇Φ∗(x) := (ψ(xi))i∈[n]. The negen-
tropy regularizer exactly corresponds to ψ(s) = exp(s) while adding forced extra exploration with
probability nγ can be achieved by taking ψ(s) = exp(s) + γ. The hybrid regularizer essentially
corresponds to taking ψ(s) to be the exponential function when ψ(s) ≥ γ, and otherwise to be
roughly like γ log γ

s . In particular we see that the well-conditioning is satisfied for γ ' η when
the played arm has probability greater than γ (since in this case everything behaves essentially as
with forced exploration), and on the other hand when the played arm has probability smaller γ, its
probability x is of the form 1/L and the updated probability is 1/(L + 1/x) ' x, and thus the
well-conditioning also holds in this case.

3.3 Proof of Theorem 1
Observe that the hybrid regularizer Φ is lower bounded by the negentropy in the sense that∇2Φ(x) �
diag(1/x(i)). Thus the standard argument of Section 2.2 shows that

E ‖˜̀t‖2xt,∗ ≤ ‖`t‖22 .
In particular, using Theorem 7, it only remains to check (9). The next lemma is the key justification
for our new regularizer.

Lemma 8 Let Φ be the hybrid regularizer, η > 0, L ∈ Rn, ξ ∈ R, L′ := L+ ξe1,

x := argmin
y∈∆

ηL · y + Φ(y) and x′ := argmin
y∈∆

ηL′ · y + Φ(y) .

Assuming that |ξ| ≤ C/x(1) for some C > 0 and that γ ≥ ηC, one has for any i ∈ [n], and any u ∈ (0, 1),

max

(
x′(i)

x(i)
,
x(i)

x′(i)

)
≤ max

(
exp

(
1

γ
ηC − 1

)
,

1

1− γ − u
exp(γn/u)

)
.

For example with C = 1, u = 1/2, γ = 2η, and η ≤ 1
15n one obtains

max

(
x′(i)

x(i)
,
x(i)

x′(i)

)
≤ 3,

which means in particular (notice that ∇2Φ(x) = diag(1/x(i) + γ/x(i)2)) that for any yt ∈
[xt, xt+1] one has

∇2Φ(xt) � 9∇2Φ(yt) ,

8
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which finishes the proof of Theorem 1 up to straightforward calculations.
Proof First note that the KKT conditions for x and x′ show that there exist λ, λ′ ∈ R such that

ηL+∇Φ(x) = λ1, ηL′ +∇Φ(x′) = λ′1 . (11)

Also note that ∇2Φ(x) is diagonal with positive entries.

Step 1: We show that λ′ and x′(i) for i 6= 1 are increasing with ξ, while x′(1) is decreasing with
ξ. By differentiating (11) one gets

dλ′

dξ
1 = ηe1 +∇2Φ(x)

dx′

dξ
. (12)

By multiplying the above equation with (∇2Φ(x))−1 and summing over the coordinates (recall that∑n
i=1

dx′(i)
dξ = 0) one obtains dλ′

dξ > 0. In particular using this in (12) one obtains for any i 6= 1,
dx′(i)
dξ > 0, and thus dx′(1)

dξ < 0.

Step 2: We now show that the first coordinate has a small multiplicative change. Substracting the
two identities in (11) one obtains, since∇Φ(x) = (1 + log x(i)− γ/x(i))i∈[n],

λ′ − λ+ log
x(1)

x′(1)
+ γ

(
1

x′(1)
− 1

x(1)

)
= ηξ . (13)

Observe that that by Step 1 all the terms on the lhs have the same sign and thus

|λ′ − λ|+
∣∣∣∣log

x(1)

x′(1)

∣∣∣∣+ γ

∣∣∣∣ 1

x′(1)
− 1

x(1)

∣∣∣∣ = η|ξ| . (14)

In particular we have∣∣∣∣ 1

x′(1)
− 1

x(1)

∣∣∣∣ ≤ ηC/γ

x(1)
⇔ x(1)

x′(1)
∈ [1− ηC/γ, 1 + ηC/γ] .

Also note that that for any s ∈ (0, 1), max
(

1 + s, 1
1−s

)
≤ exp

(
1

1
s−1

)
.

Step 3: Assuming that x(1) ≥ γ − ηC we show that all the other coordinates also have a small
multiplicative change (the case x(1) < γ − ηC is dealt with in the next step). Substracting the two
identities in (11) one obtains for any i 6= 1,

log
x(i)

x′(i)
+ γ

(
1

x′(i)
− 1

x(i)

)
= λ− λ′ . (15)

In particular since the two terms on the left hand side in (15) have the same sign one has∣∣∣∣log
x(i)

x′(i)

∣∣∣∣+ γ

∣∣∣∣ 1

x′(i)
− 1

x(i)

∣∣∣∣ = |λ− λ′| . (16)

Next we also observe that thanks to (14):

|λ− λ′| ≤ η|ξ| ≤ ηC

x(1)
.

In particular together with (16) we proved that if x(1) ≥ γ − ηC then one has∣∣∣∣log
x(i)

x′(i)

∣∣∣∣ ≤ 1
γ
ηC − 1

.

9
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Step 4: Finally we show that if x(1) ≤ γ − ηC one also has that all the other coordinates have a
small multiplicative change. Let I := {i 6= 1 s.t. min(x(i), x′(i)) ≥ u/n} (notice that, by Step 1,
the minimum is attained uniformly either at x or x′). Then thanks to (16) one has for any i ∈ I ,∣∣∣∣log

x(i)

x′(i)

∣∣∣∣ ≥ |λ− λ′| − γn/u ,
and thus

1 ≥
∑
i∈I

min(x(i), x′(i)) exp(|λ− λ′| − γn/u) .

Observe that if min(x(i), x′(i)) = x(i) for some i ∈ I then one has∑
i∈I

min(x(i), x′(i)) =
∑
i∈I

x(i) ≥ 1− (γ − ηC)− u ,

while if min(x(i), x′(i)) = x′(i) for some i ∈ I then one has (thanks to Step 2)∑
i∈I

min(x(i), x′(i)) =
∑
i∈I

x′(i) ≥ 1− γ − ηC
1− ηC

γ

− u = 1− γ − u .

Thus we have
1 ≥ (1− γ − u) exp(|λ− λ′| − γn/u) ,

which concludes the proof (recall that by (16) one has for any i 6= 1,
∣∣∣log x(i)

x′(i)

∣∣∣ ≤ |λ− λ′|).
3.4 Variation bound for multi-armed bandit

We only give a brief sketch of proof of Theorem 2, as it is essentially a straightforward combination
of the proof of Theorem 1 together with the arguments of Hazan and Kale (2009). In particular we
ignore explicit numerical constants with the notation O.

First note that it is easy to see from (8) that the following bound holds for full information
FTRL under the well-conditioning assumption (9): for any sequence m1, . . . ,mT ∈ Rn and with
mT+1 = 0 one has

T∑
t=1

`t · (xt − x) ≤ Φ(x)− Φ(x1)

η
+

2η

c

T∑
t=1

‖`t −mt‖2xt,∗ +

T+1∑
t=1

‖mt −mt−1‖2 . (17)

The strategy of Hazan and Kale is to use a small portion of “exploration” rounds to estimate µt =
1
t

∑t
s=1 `s by some µ̃t and then use it to center the loss estimator (for the non-“exploration” rounds)

by setting for any i ∈ [n]:

˜̀
t(i) =

(`t − µ̃t)(i)
xt(i)

1{at = ei}+ µ̃t(i) .

More precisely by doing an exploration round with probability kn/t at round t (the so-called “reser-
voir sampling”, here k > 0 is a parameter of the algorithm) one can obtain an estimator µ̃t such
that E µ̃t = µt and Var(µ̃t) ≤ Q

kt . Moreover the added regret from those rounds is O(kn log(T )).
Thus using the bound (17) with mt = µt it only remains to bound the terms η

∑T
t=1 ‖˜̀t − µt‖2xt,∗

10
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and
∑T+1
t=1 ‖µt − µt−1‖2. The latter term is easily controlled by O(

√
n log(Q)), see Lemma 12 in

Hazan and Kale (2009). On the other hand for the former term one gets

E ‖˜̀t − µt‖2xt,∗ ≤ 2E ‖˜̀t − µ̃t‖2xt,∗ + 2E ‖µ̃t − µt‖2xt,∗ = 2E‖`t − µt‖22 + 2Var(µ̃t) ,

and thus ηE
∑T
t=1 ‖˜̀t − µt‖2xt,∗ = O(ηQ(1 + log(T )/k)), which easily concludes the proof up to

straigthforward computations.
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Appendix A. Regular and starved linear bandits on `np balls

In this appendix we prove the results related to linear bandits on `np balls. Recall that q = p/(p−1).

A.1 Proof of Theorem 3
Let p ∈ (1, 2]. We first describe a new strategy to play on `np balls based on a non-self-concordant
barrier (when p 6= 2). Let d(x) = 1 − ‖x‖pp, and Φ(x) = − log d(x) (notice that for p 6= 2 the
Hessian of Φ blows up at 0, and thus Φ cannot be self-concordant). We play FTRL with regu-
larizer Φ and with sampling scheme given by: with probability max(d(x), γ) play uniformly in
{e1,−e1, . . . , en,−en}, and otherwise play x/‖x‖p. Note that this not unbiased, but rather “γ-
biased”, which adds a γT term to the regret. The estimator is defined by ˜̀t = n `t·x̃t

1−‖xt‖p,γ) x̃t if

played uniformly in {e1,−e1, . . . , en,−en}, and ˜̀t = 0 otherwise.

While Φ is not self-concordant, the next lemma shows that one still has some form of well-
conditioning (though not (5)) that will turn out to be sufficient to control the regret.

Lemma 9 Let x, ` ∈ Rn such that ‖x‖p < 1, ‖`‖0 = 1 and ‖`‖2 ≤ 1. Let y ∈ Rn such that ∇Φ(y) ∈
[∇Φ(x),∇Φ(x) + `]. Then one has for p ∈ [1, 2],

‖`‖2y,∗ ≤
2

3
p−1 d(x)

p(p− 1)

n∑
i=1

(|x(i)|2−p + |`(i)|
2−p
p−1 )`(i)2 .

Before moving to the proof of Lemma 9 we show how to use it to control the variance of the
loss estimator. The proof of Theorem 3 is then straightforward from (4) and Lemma 10.

Lemma 10 The above strategy satisfies for any yt ∈ Rn such that ∇Φ(yt) ∈ [∇Φ(xt),∇Φ(x)− η˜̀t]
Eat‖˜̀t‖2yt,∗ ≤ 2

4
p−1

p− 1
n .

Proof Note that ‖η˜̀t‖2 ≤ nη/γ. Thus by Lemma 9 we have, provided that γ ≥ nη,

‖˜̀t‖2yt,∗ ≤ 2
3
p−1 d(xt)

p(p− 1)
E

n∑
i=1

(|xt(i)|2−p + |η˜̀t(i)| 2−pp−1 )˜̀t(i)2 .

We now bound separately the two terms. For the first one we have (note that 1−‖x‖p ≥ 1
p (1−‖x‖pp)

and thus d(xt) ≤ pmax(1− ‖xt‖p, γ))

d(xt)Eat
n∑
i=1

|xt(i)|2−p ˜̀t(i)2 ≤ pn
n∑
i=1

|xt(i)|2−p`t(i)2 ≤ pn ,

where the second inequality follows from Holder’s inequality with 2
q + 2−p

p = 1. Now we bound
the second term (note that 2−p

p−1 + 2 = q)

d(xt)Eat
n∑
i=1

|η˜̀t(i)| 2−pp−1 ˜̀
t(i)

2 ≤ pn
n∑
i=1

|`t(i)ηn/γ|
2−p
p−1 `t(i)

2 ≤ pn
n∑
i=1

`t(i)
q ≤ pn ,

12
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which concludes the proof.

We give now a few preliminary results before proving Lemma 9.

Lemma 11 One has for any x ∈ Rn such that ‖x‖p < 1,

∇2Φ∗(∇Φ(x)) � d(x)

p(p− 1)
diag(|x|2−p) .

Proof Straightforward derivations show that

∇Φ(x) =
p · sign(x)� |x|p−1

1− ‖x‖pp
, (18)

∇2Φ(x) =
p(p− 1)diag(|x|p−2)

1− ‖x‖pp
+
p2
(
sign(x)� |x|p−1

)⊗2

(1− ‖x‖pp)2

� p(p− 1)diag(|x|p−2)

1− ‖x‖pp
,

which directly implies the lemma.

Lemma 12 Let v ∈ Rn and ` ∈ Rn such that ‖`‖0 = 1 and ‖`‖2 ≤ 1. Denote x = ∇Φ∗(v) and
y = ∇Φ∗(v + `). Then one has

d(y) ≤ 4d(x) , (19)

|y(i)| ≤ 2
3
p−1 |x(i)|+ |2`(i)|

1
p−1 . (20)

Proof Observe that by definition (recall (18)) one has

|x(i)| =
(
|v(i)|d(x)

p

) 1
p−1

, |y(i)| =
(
|v(i) + `(i)|d(y)

p

) 1
p−1

.

In particular we immediately see that (19) implies (20) by the triangle inequality (also d(y) ≤ 1
and p ≥ 1) as follows:

|y(i)| =
(
|v(i) + `(i)|d(y)

p

) 1
p−1

≤
(

2 max(|v(i)|, |`(i)|)d(y)

p

) 1
p−1

≤ max

((
2d(y)

d(x)

) 1
p−1

|x(i)|, |2`(i)|
1
p−1

)
≤ 8

1
p−1 |x(i)|+ |2`(i)|

1
p−1 .

We now move to the proof of (19). We first note that (19) is trivially true for d(x) ≥ 1/4 and
thus without loss of generality one can assume ‖x‖pp ≥ 3/4. Crucially we now consider two cases,
depending on whether the non-zero coordinate of ` is a “light” or “heavy” coordinate in x. Let us
assume `(1) 6= 0. If x(1) ≤ (1/2)1/p (i.e., “light”) then

∑
i≥2 |x(i)|p ≥ 1/4 and thus

‖y‖pp ≥
∑
i≥2

|y(i)|p =
∑
i≥2

|x(i)|p
(
d(y)

d(x)

) p
p−1

≥ 1

4

(
d(y)

d(x)

) p
p−1

,

13



BUBECK, COHEN, AND LI

which implies d(y) ≤ 4d(x) (since ‖y‖p ≤ 1). On the other hand if x(1) ≥ (1/2)1/p (i.e., “heavy”)
then one has

|v(1)| = p

d(x)
|x(1)|p−1 ≥ 2 ,

and thus |v(1) + `(1)| ≥ 1
2 |v(1)| (since |`(1)| ≤ 1) which implies

1 ≥ |y(1)| ≥ |x(1)|
(
d(y)

2d(x)

) 1
p−1

≥
(
d(y)

4d(x)

) 1
p−1

.

Finally we have:
Proof [of Lemma 9] Using successively Lemma 11, (19), (20), and the fact that p ∈ [1, 2], one has

‖`‖2y,∗ ≤
d(y)

p(p− 1)

n∑
i=1

|y(i)|2−p`(i)2 ≤ 4d(x)

p(p− 1)

n∑
i=1

|y(i)|2−p`(i)2

≤ 4d(x)

p(p− 1)

n∑
i=1

(2
3
p−1 |x(i)|+ |2`(i)|

1
p−1 )2−p`(i)2

≤ 2
3
p−1 d(x)

p(p− 1)

n∑
i=1

(|x(i)|2−p + |`(i)|
2−p
p−1 )`(i)2 .

A.2 Proof of Theorem 4
For sake of clarity we write K = {(x, y) ∈ R × Rn : |x|p + ‖y‖pp ≤ 1} and the losses as `t =

(wt, zt) ∈ R×Rn. Let ε > 0 to be such that εq = C/
√
T for some small enough universal constant

C ∈ (0, 1) (in particular since T > n2 one has εqn < 1). We now define i.i.d. Gaussian losses as
follows. For ξ ∈ {−1, 1}n let `ξt = (wt, z

ξ
t ) where wt ∼ N (−1, 1) and zξt ∼ N (εξ, 1

n2/q In). We
show that

EξE`ξtRT = Ω(n
√
T ) ,

which clearly concludes the proof (notice since T > n2 one has E‖`t‖qq = O(1) and thus by rescal-
ing by a constant one can also get (2)).

The key idea of the proof is to distinguish between “exploration rounds” and “exploitation
rounds”, depending on whether the played action (xt, yt) ∈ K satisfies xt ≤ 1/4 or xt ≥ 1/4.
Exploration rounds suffer constant regret because the optimal action (x∗, y∗) has x∗ close to 1. On
the other hand exploitation rounds give little information about ξ because of the constant variance
induced by the x component. Furthermore low-regret exploitation rounds should actually have the
x component close to 1 which means that even less information about ξ is gathered. We make this
tradeoff more precise below, but first in Lemma 13 we formalize the fact that identifying ξ matters
for low-regret and in Lemma 14 we formalize the previous sentence.

Let us define (x̄, ȳ) = 1
T

∑T
t=1 E[(xt, yt)] and (x∗, y∗) = argmin(x,y)∈K x + εξ · y. In

particular one has

E`ξt
RT
T
≥ −(x̄− x) + εξ · (ȳ − y∗) . (21)

We say a coordinate i ∈ [n] is wrong if ȳ(i)ξ(i) ≥ 0.

14
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Lemma 13 Let s be the number of wrong coordinates, then E`ξtRT ≥ ε
qsT/4.

Proof Let us assume that the first s coordinates are wrong. A straightforward calculation shows
that −x∗ + εξ · y∗ = −(1 + εqn)1/q , and thus by (21) it suffices to show that

−x̄+ ε

n∑
i=s+1

ȳ(i)ξ(i) ≥ εqs/4− (1 + εqn)1/q .

Since ‖(x̄, ȳ(s+ 1), · · · , ȳ(n))‖p ≤ 1, by Holder’s inequality we know that

x̄− ε
n∑

i=s+1

ȳ(i)ξ(i) ≤ (1 + εq(n− s))1/q .

This concludes the proof since (1 + εq(n− s))1/q ≤ (1 + εqn)1/q − 1
2q ε

qs.

Lemma 14 x̄ ≤ 1− 4εqn⇒ E`ξtRT ≥ ε
qnT .

Proof It suffices to show that−x̄+ εξ · ȳ ≥ εqn− (1 + εqn)1/q (see beginning of previous proof).
Observe that

−x̄+ εξ · ȳ ≥ −|x̄| − ε‖ξ‖q‖ȳ‖p ≥ −|x̄| − (1− |x̄|p)1/pεn1/q .

Observe that x 7→ x+ (1− xp)1/pεn1/q is a nondecreasing function for x ∈ [0, 1− εqn] since

1

p
εn1/q(1− (1− εqn)p)1/p−1 ≤ εn1/q(εqn)1/p−1 = 1 .

Therefore we have

−x̄+ εξ · ȳ ≥ −(1− 4εqn)− (1− (1− 4εqn)p)1/pεn1/q ,

and thus the proof is concluded by 1 + (1− (1− 4εqn)p)1/p(εqn)1/q ≤ (1 + εqn)1/q + 3εqn.

Observe now that the observed feedback at round t is exactly

fξt := xtwt + yt · zξt ∼ N (xt + εyt · ξ, σ2
t ), where σ2

t = x2
t + ‖yt‖22/n2/q .

DenoteLξ for the law of the observed feedback up to time T , i.e., the law of (fξ1 , . . . , f
ξ
T ). Standard

calculations show that for ξ and ξ′ differing only in coordinate i ∈ [n] one has

TV(L(ξ),L(ξ′)) ≤

√√√√ T∑
t=1

E`ξt
ε2yt(i)2

σ2
t

.

Another standard calculation show that the above inequality implies

Eξ,`ξt
1

T

T∑
t=1

n∑
i=1

1{yt(i)ξ(i) < 0} ≥ n

2
−

√√√√n

T∑
t=1

Eξ,`ξt
ε2‖yt‖22
σ2
t

.
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Note that the left hand side in the above inequality is exactly the average (over time) number of
wrongly guessed coordinates for ξ, which we know controls the regret thanks to Lemma 13. In
particular it only remains to show that

T∑
t=1

Eξ,`ξt
ε2‖yt‖22
σ2
t

≤ cn , (22)

for some universal constant c < 1/2.

Note that one always has σ2
t ≥ ‖yt‖22/n2/q and furthermore xt ≥ 1/4 ⇒ σ2

t ≥ 1/24. Recall
also that ‖yt‖2 ≤ n1/2−1/p‖yt‖p ≤ n1/2−1/p(1− |xt|p)1/p. Thus

E
T∑
t=1

ε2‖yt‖22
σ2
t

≤ n2/qε2E
T∑
t=1

1{xt ≤ 1/4}+ 24ε2n1−2/p
∑

t:xt≥1/4

E(1− |xt|p)2/p . (23)

Observe that one clearly has ERT = Ω(E
∑T
t=1 1{xt ≤ 1/4}) and thus without loss of generality

we can assume E
∑T
t=1 1{xt ≤ 1/4} = O(n

√
T ), which means that the first term on the right

hand side in (23) is smaller than n1+2/qε2
√
T = C2/qn1+2/qT 1/2−1/q . This is smaller than n for

T ≥ n
2

1−q/2 and C small enough. For the second term we use that

∑
t:xt≥1/4

E(1− |xt|p)2/p ≤ p2
T∑
t=1

E(1− |xt|)2/p

≤ p2T

(
E

(
1− 1

T

T∑
t=1

|xt|

))2/p

,

and because of Lemma 14 one can assume 1
T E[

∑T
t=1 |xt|] ≥ 1−4εqnwhich means that the second

term in (23) is smaller than ε2n1−2/pT (εqn)2/p = ε2qnT = C2n. This concludes the proof of
(22), and thus also concludes the proof of Theorem 4.

A.3 Proof of Theorem 5

We only give a brief proof sketch. The starved multi-armed bandit lower bound is standard and can
be written succintly as follows. Consider random losses, where say action 1’s loss is a Bernoulli of
parameter 1/2 plus or minus ε, action 2 is a Bernoulli of parameter 1/2, and all the other actions
always give a loss of 1. Denote by E the expected number of exploration rounds, i.e. rounds where
the player plays from µ. It is a standard calculation that if E/n ≤ c/ε2 for some sufficiently small
constant c, then the regret is at least εT . On the other hand the regret is always larger than n−2

n E/2.
Thus by setting ε2 = cn/E we have a regret lower bounded by (up to constant), with a such that
a = (1− a) 1

2 (i.e., a = 1/3):

max

(
E,
( n
E

)1/2

T

)
≥ naT 1−a .

Essentially the same argument applies to the `n1 ball, we omit the details. We now turn to the case
of `np balls with p > 2.

We see from (22) (observe that in the starved setting the sum over all t ∈ [T ] in this equation
is replaced by the sum over rounds t where one plays from µ) that if n2/qε2E ≤ cn for some
sufficiently small constant c, then the regret is at least εqnT (per Lemma 13). Moreover the regret
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is also always larger than E. Thus by setting ε2 = cn1−2/q/E (i.e., εqn = C(n/E)q/2) we have a
regret lower bounded by (up to a constant), with a such that a = (1− a)q/2,

max

(
E,
( n
E

)q/2
T

)
≥ naT 1−a ,

which concludes the proof.
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