

Change-Aware Sampling and Contrastive Learning for CVDR **Cornell Bowers C·IS** College of Computing Satellite Images and Information Science Bharath Hariharan Utkarsh Mall Kavita Bala **Cornell University**

Problem

Many existing remote-sensing vision problems require large amount of supervision.

Self-supervised learning can alleviate this problem. However, off-the-shelf approaches do not fully utilize the *potential* of the information available in spatio-temporal satellite images.

Goal: Can we leverage *spatio-temporal structure* unique to satellite images in self-supervised learning?

Contributions

We present a novel **self-supervised** approach for contrastive learning on satellite images, leveraging three properties unique to them.

Locations may change after a long time.

• Long-term temporal Information: We propose a new loss using long-term temporal information in satellite images.

• <u>Change Awareness</u>: We present a novel approach to estimate changes that can be used to encourage invariance.

Many locations are repetitive and contain low information.

• <u>Geographical Sampling</u>: We use an *improved geographical* sampling that provides more informative data for representation learning.

Method

Contrastive Loss and SeCo[1]

Contrastive learning can be used to learn a representation. Seasonal Contrast (SeCo):

- Positive pairs are pulled closer.
- Negative pairs are pushed apart.

$$\mathcal{L} = -\log \frac{\exp(f(I_q) \cdot f(I_{k^+})/\tau)}{\sum_{I_k \in \mathcal{I}_{k^-} + \{I_{k^+}\}} \exp(f(I_q) \cdot f(I_k)/\tau)}$$

Long-term temporal contrast

We additionally use images with long time differences as negatives during contrastive learning. $\mathcal{I}_{k^-} = \{I_{l_i}^{t_2 + \dot{\Delta}_k} : k \in \{1, 2\}\} \cup \{I_{l_h}^{t_j + \Delta_k} : h \neq i, j \in \{1, 2\}, k \in \{1, 2\}\}$

Change Awareness

We only use images with long time differences as negatives if locations have changed significantly.

We simultaneously estimate changes and learn representation via-bootstrapping.

Histogram of change estimate with the threshold. 0.6 1.2 1.4

- Short-term temporal pairs are positives.
- Other locations are negatives.
- Location 1
- Location 2

Change estimate at an intermediate step k: $\mathbf{r}_{l_i}^k = (1 - \beta) R_{l_i}^k + \beta \mathbf{r}_{l_i}^{k-1} \quad R_{l_i}^k = \frac{||f_k(I_{l_i}^{t_1 + \Delta_1}) - f_k(I_{l_i}^{t_2 + \Delta_1})|}{||f_k(I_i^{t_1 + \Delta_1}) - f_k(I_i^{t_1 + \Delta_2})|}$

<u>Geographical Sampling</u>

• Gaussian sampling around urban areas. • Reject samples falling into oceans to avoid repetitive images.

	EuroSat (Acc.)		BigEarthNet (mAP)		OSCD (F1)	Dynamic EarthNet (mIoU)
Pre-training (100k)	ResNet-18	Resnet-50	ResNet-18	Resnet-50	ResNet-18	Resnet-18
Random Init.	64.21	55.32	45.95	45.22	28.91	41.53
ImageNet	86.16	89.08	66.40	71.37	35.30	43.75
Moco v2	87.22	89.75	67.20	72.88	38.21	47.97
GSSL	87.74	90.19	67.36	72.86	44.06	46.77
SeCo	90.05	93.12	67.43	73.42	46.84	46.83
CACo	93.08	94.48	69.43	73.63	50.29	50.20

All our contributions lead to improved performance.

Pre-training (100k)	EuroSat (Acc.)	DynamicEarthNet (mloU)
SeCo	90.05	46.83
+ geographical sampling	91.42	47.24
+ Longer temporal contrast	92.56	49.68
+ Change Awareness (Ours)	93.08	50.20

Our method generalizes to other Self-supervised frameworks such as SimCLR

Pre-training (100k)	EuroSat (Acc.)	OSCD (F1)	
SeCo	87.98	44.05	
CACo	90.83	47.50	

Takeaways

Spatio-temporal satellite images have numerous unique properties that can be leveraged to improve self-supervised learning.

All these properties lead to a better representation that is useful for many downstream remote sensing tasks.

Results

Our method performs better at various downstream tasks such as land-cover classification, semantic segmentation, and change detection.

Our <u>ratio estimate</u> is better at understanding changes.

Pre-training (100k)	EuroSat (Acc.)				
Long-term distance	91.17				
R = Ratio (long-term/short term)	91.98				
Expo. Moving Average (R)	93.08				
Evennelse of noire with					

Examples of pairs with: Little changes Big changes

References

[1] Mañas et. al., Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data. ICCV, 2021

Acknowledgment

This work was funded by NSF (1900783, 2144117, and 2212084) and IARPA (2021 - 20111000006).