
Supplementary Material for “Change-Aware Sampling and Contrastive
Learning for Satellite Images”

1. Overview
In this supplementary material, we present more details

and extensive results that we could not fit in the main paper.
In Sec. 2 we provide the additional implementation details
for all the models that we use. We compare our geograph-
ical sampling with SeCo in Sec. 3. In Sec. 4 and Sec. 5
we present more qualitative and quantitative results respec-
tively.

2. Implementation Details
In this section we look at the model architecture and

training details of the models we use for linear probing and
finetuning with our representations.

2.1. Landcover Classification

As stated in the main paper for landcover classification,
we add a linear layer to the pre-trained backbone. The back-
bone is either frozen for linear evaluation or is finetuned.
For EuroSat we perform the optimization by minimizing the
cross-entropy loss over 10 classes. Since BigEarthNet is a
multi-label classification problem we use multi-label soft
margin loss. We use an Adam optimizer with default hyper-
parameters for both linear evaluation and finetuning. For
linear evaluation, we use a learning rate of 10−3, whereas
we use a smaller learning rate of 10−5 for finetuning. We
train the classifier for 100 epochs and reduce the learning
rate by a factor of 10 at epochs 60 and 80. Following SeCo,
we use a batch size of 32 for EuroSat and a batch size of
1024 for BigEarthNet.

2.2. Change Detection

Our model architecture follows past works [2, 4], using
a U-Net [5] architecture. The pre-trained ResNet back-
bones are used as the encoder for the U-Net. The U-Net
decoder uses the absolute feature differences at different
resolutions. The decoder follows the architecture of the U-
Net decoder [5]. The upsampling layer of the U-net uses
the encoded feature maps at multiple resolutions to obtain
a feature map at the highest resolution. This feature map is
then passed through a 1× 1 convolution layer with 1 output
channel to obtain the logit map for changes.

We use a binary cross-entropy loss, to learn change vs
no change per-pixel. Similar to SeCo, we train the decoder
for 100 epochs and report results on the validation set. Since
the images in the OSCD dataset have variable sizes, we also
split them into non-overlapping patches of 96 × 96 pixels.
We use a batch size of 32 with an Adam optimizer with a
weight decay of 1e-4. The initial learning rate is set to 10−3

and is decreased exponentially with a multiplicative factor
of 0.95 at each epoch. All these settings are unchanged from
SeCo for fairness.

2.3. Semantic Segmentation

The architecture for semantic segmentation is similar to
change detection. We use a U-Net with our pre-trained
ResNet as the encoder. The decoder takes the feature maps
as input instead of absolute values of feature differences.
This final feature map is also passed through a 1× 1 convo-
lution layer with 7 output channels to obtain the logit map
for the 7 semantic classes of Dynamic EarhNet.

Since the dataset is highly imbalanced we use Dice
Loss [6] for training instead of cross-entropy. Our model
is trained for 20 epochs. For both finetuning and frozen
backbone, the learning rate is set to 10−3, and reduced by
a factor of 10 at epochs 12 and 16. We use 1024 × 1024
images in their original resolution with a batch size of 12.
For training, we use random rotations, flipping, and bright-
ness as augmentations. For fairness, all baselines are trained
with the same training settings.

2.4. Change Event Retrieval

The change event retrieval model is trained on temporal
slices of temporal change events. The training procedure
follows [3]. ⟨V1···l, C1···l−1⟩ is a change event, where V1···l
are a sequence of l images and C1···l−1 are a sequence of
l − 1 change masks between successive pairs. The change
event representation learning method learns by contrasting
individual slices, i.e. ⟨Vt, Vt+1, Ct⟩. More specifically we
use SimCLR on instances of ⟨Vt, Vt+1, Ct⟩. The features of
a temporal slice are obtained by passing the pair of images
Vt, Vt+1 through a siamese ResNet backbone. The feature
maps are concatenated in channel dimensions and averaged
across the spatial dimensions using the downscaled change
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Figure 1. Distribution of locations sampled by our geographical
sampling. We sample from a diverse set of regions near urban
areas around the world.

mask Ct. During inference we need a feature representa-
tion for whole events (⟨V1···l, C1···l−1⟩) and not just tempo-
ral slices. This feature is obtained by averaging features of
temporal slices weighted with the fraction of change at each
time

∑
Ct.

We use a temperature of τ = 0.07 and a stochastic gra-
dient descent optimizer with a learning rate of 10−3, for
training the network, with a batch size of 256.

3. Geographical Sampling
Fig. 1 shows the locations sampled across the world. The

samples are diverse across all 6 continents. Some populous
regions such as regions in Southeast Asia cannot be sampled
due to high cloud density in these regions.

Fig. 2 compares locations sampled in a coastal region
(United Arab Emirates) by our method and SeCo. For
coastal cities, SeCo samples many locations in the ocean.
Other samples are very far from urban areas. Our method
prevents sampling from oceans and focuses in the vicinity
of urban areas.

Fig. 3 shows examples of satellite images from oceans
when SeCo samples far away from cities. These images are
not very informative.

4. Qualitative Results
During the training process, CACo automatically es-

timates locations where there is a significant long-term
change (Sec. 3.4 in the main paper). Fig. 4 shows long-
term image pairs with a high value of estimated change.
These pairs show major real-world changes. For example,
for pairs in the first, fourth, and fifth rows we see new con-
structions. In the second row, we can see changes in the
water level. In the third row, we can see changes in land use
patterns. These pairs are used as negative examples dur-
ing contrastive learning of our features, and they act as hard
negative examples.

Figure 2. Comparison of sampling strategies of SeCo vs Ours near
a coastal region. Many SeCo samples fall in the ocean and many
other samples are very far from urban areas. Our method prevents
both these sampling issues.

Figure 3. Less informative samples from SeCo geographical sam-
pling. By investigating a small random subset of the SeCo dataset,
we estimate that 22% of the sampled locations are uninformative.

Fig. 5 shows image pairs with a low value of change
estimate. No major difference can be seen between the
pairs other than slight season changes. For example, regions
look more or less greener after the interval. Our contrastive
learning framework learns to be invariant to such changes.

5. Quantitative Results

Functional Map of the World. We present a few more
results that we could not include in the main paper. We eval-
uate our method on the scene recognition task on Functional
Map of the World (FMoW) [1]. The dataset contains satel-
lite views of images at multiple times for 62 different scenes
such as parks, airports, shipyards, etc. Since the dataset, is
at a different resolution we downscale images to match with
the resolution of Sentinel-2 imagery. Additionally, since the
dataset is originally designed for a different task of object
detection using multitemporal images, we only use a single
image for each scene.

We add a linear layer to the pre-trained backbone. Sim-
ilar to EuroSat Evaluation we perform the optimization by
minimizing the cross-entropy loss over 62 classes. We use



Data Pre-training ResNet-18 ResNet-50
top-1 top-5 top-1 top-5

-
Random init. 16.04 36.36 13.39 31.85
ImageNet. 32.41 61.22 37.31 65.03

100k
MoCo v2 34.33 63.17 38.27 67.25
SeCo 34.57 63.12 38.32 66.68

CACo (ours) 36.00 64.72 39.90 68.59

1m
SeCo 38.84 67.35 43.64 71.89

CACo (ours) 39.13 68.06 44.12 72.52

Table 1. Performance of our representation on the Functional Map
of the World (FMoW) scene recognition task with linear probing,
in top-1 and top-5 Accuracy. Our method provides a more accurate
classification, with different backbones.

Backbone Data Pre-training Fine-tuning

ResNet-18

-
Random init. 80.08
ImageNet. 92.08

100k
MoCo v2 94.94
SeCo 96.71

CACo (ours) 97.02

1m
SeCo 97.25

CACo (ours) 97.47

ResNet-50

-
Random init. 79.20
ImageNet 93.41

100k
SeCo 96.56
CACo (ours) 97.17

1m
SeCo 97.34

CACo (ours) 97.77

Table 2. Performance of our method on the EuroSat landcover
classification task when we finetune the whole network.

an Adam optimizer with default hyperparameters with a
learning rate of 10−3. We train the classifier for 100 epochs
and reduce the learning rate by a factor of 10 at epochs 60
and 80. We use a batch size of 32 for training.

Tab. 1 shows the top-1 and top-5 classification accuracy
of various pre-trained backbones on the FMoW dataset. Our
method results in better features that are better suited for
scene recognition.

EuroSat finetuning. Tab. 2 shows the performance of
our method on EuroSat classification when we perform fine-
tuning instead of linear classification. Even in the case of
fine-tuning we see gains, albeit small. This shows that not
only does our method learn a good representation, but it can
also be used as a better initialization for transfer learning.
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Figure 4. Examples of locations with a very high value of change
estimate (> 2). These pairs show images at time t1 and t2 that are
at least 4 years apart. Big changes can be seen between the pairs
due to a change in land use or new constructions.

Figure 5. Examples of locations with a very low value of change
estimate (close to 1). These pairs show images at time t1 and
t2 that are at least 4 years apart. Only seasonal change can be
observed between each pair.


	. Overview
	. Implementation Details
	. Landcover Classification
	. Change Detection
	. Semantic Segmentation
	. Change Event Retrieval

	. Geographical Sampling
	. Qualitative Results
	. Quantitative Results

