
1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

1

Context-Aware Asset Search for Graphic Design
Balazs Kovacs, Peter O’Donovan, Kavita Bala Member , Aaron Hertzmann, Senior Member, IEEE

F

Abstract—Graphic design tools provide powerful controls for expert-level
design creation, but the options can often be overwhelming for novices. This
paper proposes Context-Aware Asset Search tools that take the current state
of the user’s design into account, thereby providing search and selections
that are compatible with the current design and better fit the user’s needs.
In particular, we focus on image search and color selection, two tasks that
are central to design. We learn a model for compatibility of images and
colors within a design, using crowdsourced data. We then use the learned
model to rank image search results or color suggestions during design. We
found counterintuitive behavior using conventional training with pairwise
comparisons for image search, where models with and without compatibility
performed similarly. We describe a data collection procedure that alleviates
this problem. We show that our method outperforms baseline approaches in
quantitative evaluation, and we also evaluate a prototype interactive design
tool.

Index Terms—Graphic design, machine learning, AB testing, image search,
user interfaces, color

1 Introduction
Graphic design tasks are time-consuming and, often, overwhelming
for novices. Recent research has improved the process by using
learned aesthetic prediction models that classify and rank assets by
aesthetic style or quality [1], [2], [3], [4], [5]. These predictors can
then provide better search results, e.g., allowing a user to select
fonts according to style or images according to quality. However,
these methods overlook a crucial factor, namely, the context of the
user’s current project. As a result, suggestion and search interfaces
will show users many possible images or colors that fit their query,
but do not fit with their current design. To date, current interfaces
do not help users mix different types of elements.

This paper considers the problem of pairing elements of
different types within a design. We propose Context-Aware Asset
Search, in which the user interface takes the designer’s current
project into account when providing search results. In particular,
we focus on arguably the most important pairing in many designs:
images and colors. Image search is often an important step in design,
such as selecting “hero images” for webpages and brochures,
or stock photos that illustrate concepts in slide presentations.
Currently, image search interfaces are not influenced by the design,
and, typically, search happens within a separate application. This
means that the user must manually filter out images that do not
match their current design-in-progress, in addition to whatever
other criteria they have. Instead, we include image search within
the design interface itself, and adjust the search results so that
images with compatible colors will be ranked higher. Conversely,

• B. Kovacs and K. Bala were with Cornell University.
• P. O’Donovan and A. Hertzmann were with Adobe Systems, Inc.

Manuscript received XXX; revised XXX.

we propose to revise the color selection tool for the choice of a text-
background color pair to be compatible with the images already
selected. Figure 1 compares conventional design approaches with
our context-aware approach that suggests images and colors that
are compatible with the current user design in progress.

Context-aware asset search introduces several unexpected
challenges. To train our algorithms, we collect crowdsourced data
that evaluates which images pair well with which colors. Past
research on aesthetic and style prediction has been trained for
accuracy on labeled data. Previous labeling has taken the form
of absolute quality ratings or pairwise comparisons. In our initial
experiments, training this way led to poor results and, often, trivial
models. We analyze the reasons for this failure. Based on these
insights, we develop a new training procedure based on asking
crowdworkers to compare sets of retrievals from different scoring
functions. In addition, we develop a new evaluation procedure for
comparing search algorithms. These approaches should be useful
for learning in other pairing tasks in the future.

We perform quantitative evaluations, showing that retrievals
using our context-aware method are superior to methods that ignore
the design context. Furthermore, we implement our context-aware
search in a prototype graphic design tool and collect hundreds
of designs from crowdworkers for 10 different themes, both with
context-aware retrievals enabled and with a conventional baseline.
The results from our context-aware method are preferred 69% of
the time, in addition to being preferred for each individual theme.

As we are first to demonstrate this approach, we make several
assumptions to limit the scope of the problem. In particular, we
focus only on the interaction of an image and a color theme, without
considering multiple design elements or different types of assets
such as fonts, clip art, etc. We also do not consider the role of
layout and positioning in design quality. Preliminary experience
suggests that image-color pairing is the most significant contextual
element, which entailed significant challenges in itself, and we
leave these other factors for future work.

In summary, our contributions are: we introduce context-aware
asset search for graphic design, a new interaction technique for
design suggestions; a model for learning aesthetic compatibility
between images and colors; analysis of problems that arise in
training the model with conventional approaches; a new crowd-
sourced training methodology for image and color retrieval; a new
crowdsourced methodology for comparing retrieval algorithms;
and, a prototype design tool that implements these interaction
techniques.

2 RelatedWork
Search-in-context is a classic topic in HCI and information
retrieval. Web search can be augmented based on the context

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

2

(a) Conventional image search (b) Our context-aware search (c) Conventional color picker (d) Our context-aware suggestions

Fig. 1. Image and Color Search Interfaces, in our prototype design tool. (a) Conventional image search, incorporated into the interface. The results do not
depend on the design; here, the green image search results do not match the purple design. (b) Our proposed method ranks images higher when they are
compatible with the existing colors. (c) A conventional color picker provides all possible colors to the user, including many that are not compatible with the
image. (d) Our color suggestions are designed to complement the current image choices.

of the user’s current document [6], [7]. The Blueprint system
augments programming user interfaces with contextual search tools
for programming tasks [8]. CommunityCommands [9] recommends
commands to a user, based on their current task. Chateau [10]
suggests modifications when sketching 3D models, and Attribit
[11] suggests 3D parts and webpage designs based on a learned
model. We apply contextual search for graphic design, and, unlike
in previous methods, our model learns how the context can improve
search results.

For 2D design, Garces et al. [12] demonstrate a simple form of
in-app search, based only on style similarity for a homogeneous
class of assets, i.e., clip-art. Conventional color picking tools
normally show every possible color, without making suggestions
based on context. Current design applications, such as Canva
and Adobe Photoshop, provide stock image search within the
application, but the search is not affected by the current design
choices. One can include color keywords in image search engines,
but this does not explicitly make styles compatible, and requires
conscious effort on the part of the user.

Our model builds on numerous previous projects in aesthetic
quality and style prediction for graphic design and images. The
earliest work in this area has focused on learning quality and
style attributes for individual elements, including scene type [13],
photographic style and quality [1], [2], [14], font attributes [3],
and geometric objects [11], [15]. These methods can help users
find individual elements that fit their goals, but are not designed
to consider pairings of multiple elements. A related problem is
to identify stylistically similar elements, including images [16],
fonts [3], clip-art [12], and product images [17]. Style similarity is
a useful criterion for search, but is not the same as compatibility,
since contrasting elements often go well together.

A few previous methods specifically focus on compatibility.
Methods for learning color compatibility [4], [18], [19] have
used large databases of rated color schemes, an approach which
requires a suitable dataset. Recent work has learned furniture
compatibility [5], [20] from pairwise comparisons. We show that
the class of approaches in these methods does not generalize to
image search, likely because images are a much larger and more
heterogeneous space than furniture. Several previous methods have
been proposed for fashion pairing recommendation. Yu et al. [21]
suggest pairing clothing for 3D models according to a small set of
categories and color pairings. Several methods [22], [23], [24], [25]
have been proposed for clothing recommendation from fashion
image databases. These methods are tested by conventional retrieval

metrics on hold-out data, which are not available for our problem.
In contrast, our work proposes pairing algorithms for heterogeneous
graphic design elements, namely colors and images. Obrador [26]
suggests searching for images given colors or vice versa based on
hand-coded heuristics, but does not learn the model from data or
describe a user interface, or perform user evaluation. We describe
new training and testing issues for image search, which is an
extremely heterogeneous search space.

Many previous methods also address the relationships of colors
to images. Most relevant are methods for extracting color themes
from images [4], [27], [28]. While extracted color themes may
pair well with images, there are cases where they may not, such
as a lack of contrasting colors in a homogeneous theme. Cohen-
Or et al. [29] harmonizes image colors by matching the color
histogram of an image to hue templates. The hue templates were
invented by Matsuda [30] based on observations from late 1970s
fashion surveys. The templates were first evaluated quantitatively
by O’Donovan et al. [4], who found that, while they were effective
to reduce color spread in images, they did not accurately predict
compatibility. Our method indirectly learns color compatibility
from data and thus is not constrained to predetermined color
templates. Moreover, our context-aware asset search takes the
design context into account and provides suggestions based on the
asset type (image, text, background) and its compatibility to other
assets in the design.

Our retrieval training and evaluation is inspired by conventional
techniques for learning to rank and retrieve search results using
clickthrough data [31] and relevance metrics [32], [33], [34],
[35]. However, obtaining clickthrough or relevance scores is not
presently possible for our problem, and we present a new method
for crowdsourcing search evaluation.

3 User Experience
This paper proposes Context-Aware Asset Search, which closely
integrates image search and color selection with the user’s current
design. In our interface, image search is included within the design
app, as shown in Figure 1 and demonstrated in the accompanying
video. To perform an image search, a user may type a text query
in the app, and search results are shown in the app. The user may
easily preview each image in-place in the document. The image
search results are ranked, in part, according to their compatibility
with the current design, so that clashing results are omitted. As
illustrated in the figure, this yields search results better-suited to
the current design. The user may enable or disable this function

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

3

(a)

(b)

Fig. 2. Conventional workflows for asset search with graphic design. (a) Most
commonly, search and design happen in separate windows, which requires
the user to perform considerable mental context-switching, and makes it hard
to preview how images will look in the design. Search results are not adapted
to the target design. (b) Recently, several design apps have introduced stock
search within the app, but the problem remains of being able to view very few
assets at a time, and search results are not adapted to the task at hand.

with the “Context-Aware Search” checkbox. Likewise, for color
selection, our system recommends color choices that go well with
the currently-selected images.

In the conventional image search workflow, design and search
happen in separate windows (Figure 2(left)). This requires the user
to juggle separate windows and contexts. Previewing how an image
would look in the design entails considerable overhead. Moreover,
many image search results are clearly inappropriate because they
do not fit aesthetically with the rest of the design, typically because
their colors contrast poorly with the current design’s colors. Since
only a fraction of the screen is available for search, it is essential to
make the first few search results as useful as possible. Some recent
apps do include stock search within their interfaces (e.g., Figure
2(right)), but without otherwise integrating search with the current
design task.

Likewise, conventional color pickers require the user to select
from among all possible colors, whereas our approach suggests
colors that fit well with the currently-selected images in the
document.

In summary, context-aware search improves the design process
by (a) providing search results in the same interface as the user’s
task, rather than requiring them to manage separate contexts, (b)
adjusting search results to better match the aesthetics of the current
document, and (c) providing a quick preview of how the asset
would look in the current document. Our tool can be especially
useful for novice and casual designers, who may be overwhelmed
by too many options, many of which are inappropriate. The most
basic way that our tool can be useful is to weed out incompatible
combinations to facilitate the design workflow of these users.

The main technical contribution of our work is to learn to rank
images and colors based on the current design. The next section
describes a scoring model for ranking. The following section then
discusses how this model is trained.

4 Energy Functions for Compatibility

In this section, we describe functions to rank images given a color
scheme, and to rank color schemes given an image.

We define an energy function E(I,C) that takes as input
an image I, and a color scheme C which includes a text color
and a background color: C = (CT ,CB). Then, in a user interface
(Figure 1), which includes a color scheme C0, candidate images
can be ranked according to the values of E(I,C0). Conversely, if
an image I0 has already been selected, candidate color schemes
can be ranked by E(I0,C).

We model the energy of a design by decomposing it into
unary terms (“How good is this image/color scheme by itself?”)
and compatibility terms (“How compatible is this image with this
text-background color combination?”). Specifically,

E(I,C) = Eimg(I)+Ecolor(C)+Ecompat(I,C) (1)

where smaller energies indicate better designs. This decomposition
allows us to separate distinct concerns in the score function without
retraining. For example, in a layout with multiple images, the same
energy could be applied by summing over the terms for each image.

Unary terms. Given an image I and a color scheme C, the score
function converts these to feature vectors xI and xC. The image
feature vector xI includes three components: the dominant colors
of the image, in multiple representations (inspired by [4]); a deep
feature vector from a ResNet-152 model [36], meant to identify
the objects and scene present in the image; the aesthetic score of
the image, predicted by the model of Mai et al. [2]. The image
feature vector is 198-dimensional in total. The color feature vector
xC is generated in the same manner as the features for the dominant
image colors, yielding an 81-dimensional feature vector. Details of
the feature vectors are given in Appendix A.

Given these feature vectors, the unary terms are linear:

Eimg(I) = wT
I xI (2)

Ecolor(c) = wT
CxC (3)

where wI and wC are the weight vectors, to be learned as described
in the next section.

Previous work on aesthetic compatibility has not used explicit
unary terms, perhaps because it has focused on search spaces
where filtering by quality is not necessary. We believe that quality
is a significant factor in image search; conventional image search
is primarily a combination of filtering by the query (e.g., does
the image title contain the search keywords), along with unary
terms preferring more-popular or better-looking images. Indeed,
in our experiments, we find that the aesthetic score feature
gets a significant weight. We show the learned weights in the
Supplemental Material.

Compatibility terms. For the compatibility terms, we use reduced
feature vectors, since the additional features were not useful in
preliminary experiments. The reduced image feature vector xr

I is a
9-dimensional vector containing the three dominant image colors,
represented in Lab space. The reduced color feature vector xr

C is
a 6-dimensional vector of the text and background colors, also in
Lab space.

Previous work has represented compatibility with a squared-
distance in an embedding space, either using the same neural

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

4

embedding for all categories [25], or using separate linear embed-
dings for each category [20]:

ESqEuc(I,C) = ||WIxr
I −WCxr

C||2 (4)

where WI ∈ RD×9,WC ∈ RD×6 are D-dimensional learned embed-
ding matrices, where D = 18 was chosen empirically. However,
this embedding prefers similar colors, even though distinct colors
often pair well. For this reason, we also consider a scaled Euclidean
distance:

EScEuc(I,C) = wT
B(WIxr

I −WCxr
C)

2 (5)

where the term in the parentheses (·)2 is squared elementwise,
and wB is an additional weighting vector. Because this vector
can include negative entries, this compatibility term is capable of
penalizing color schemes that are too similar.

Comparison probabilities. Given an energy function, we can
describe the probability that a rater will rank one design over
another, which will be used for training from comparisons.
Specifically, suppose we are given design d1 and design d2, each
of which comprises the same layouts, changing only the specific
image and/or color choices. We model the probability that a viewer
prefers the first design over the second with a logistic function [37]:

P(d1 > d2) =
1

1+ e−E(d2)+E(d1)
(6)

5 Data Collection and Model Evaluation
In this section, we describe procedures by which we train and
evaluate different energy models. We begin by describing a standard
pairwise data collection approach to collect training data. We then
show how the standard data collection fails, and then describe new
data collection and evaluation procedures to address these issues.

Energy models. We consider two forms of energy models. In a
unary model, the energy includes only the unary terms that score
the elements individually, similar to how current image search
works. In a compatibility model, both unary and compatibility
terms are included.

Design template. We consider only simple designs comprising a
single “hero” image, a foreground color, and a background color
(Figure 3). We experimented with several variants of this simple
design, e.g., our initial experiment followed typical web layouts that
place the text over the image, but this created many confounding
factors, such as whether the text occludes salient image features.
Therefore we did not allow the images to be occluded by text in
our design templates.

Images. Creating a beautiful design requires high-quality images.
We downloaded images from Pixabay (www.pixabay.com), a
website hosting photos of amateur photographers. These images
are both freely-available, and of high enough quality that several
design apps use this dataset as their source, including Adobe
Spark, BeFunky, and Word Swag. We downloaded 358,731 photos
in 20 categories (e.g., “Nature/Landscapes”, “Animals”, etc.).
Full details are provided in the Supplemental Material. We
assigned each image into the train/validation/test set randomly with
probability 0.64/0.16/0.2, respectively. The most consistently high-
quality imagery is on professional stock photography websites,
but these images are not freely-available for research. We also
considered training from Flickr, but decided against this since

Fig. 3. Pairwise data crowdworker task. We ask workers to pick the more
aesthetically compatible design.

Flickr photography is captured with different intent from stock
photography, and thus is not normally used for design applications.

5.1 Pairwise comparisons

We first describe our approach here, which follows the pairwise
comparison methodology used in previous work, e.g., [4]. We then
describe problems with this methodology, and analyze why they
occur. In the next section, we describe additional data collection
procedures that remedy these issues.

For the initial data generation, we generate a collection of
random test pairs, as in Figure 3. To make the comparison easier,
each comparison keeps either the color or images fixed. Since
uniformly sampling colors in HSV produces poor color choices, we
randomly sample colors from the designer-created hue distribution
provided by O’Donovan et al. [4]. Additionally, we always filter out
candidate designs with low text-background contrast (e.g., white
on light-gray) to save on training time. Finally, to ensure complete
data separation between the train/validation/test split, we make sure
that each design contains images from only one split and we only
compare designs which come from the same split.

We use Amazon MTurk (AMT) for all our data collection
and evaluation. Our assumption is that AMT workers are typ-
ically design novices, which is appropriate for our task, since
assistive design interfaces are most useful for helping novices.
We perform quality control [38] by blocking workers that fail
over 25% of the sentinel questions. We choose these sentinels
so that the comparisons are easy to make. These sentinels tested
whether participants understood that they need to pick aesthetically
compatible combinations over just "better looking" photos.

Finally, we ask 5 workers for each comparison and filter out
questions with agreement below 75%. We keep approximately
40% of all comparisons we collected, which is a reasonable
percentage for these subjective and often-ambiguous tasks. See the
supplemental material for more details about our instructions to
workers.

Learning. Given a collection of comparisons, we follow previous
work to train a model by minimizing the negative log-likelihood of
the data given the model, plus regularization:

L(θ) =−∑
i

lnP(di
1 > di

2)+λ ||θ ||22 (7)

where θ is a vector of all model weights (w and W terms).
Although the comparisons may be subjective, this will learn a
model maximally-consistent with typical behavior of the workers.
We perform optimization by gradient descent with momentum, and

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

5

implement our model using the Caffe framework [39]. The regu-
larization weight λ is determined by picking the best performing
model on the validation set.

Active learning. Since the space of possible designs is very big,
we reduce the cost of data collection by uncertainty sampling [40],
a widely used active learning technique. Specifically, in each active
learning batch, we generate 100,000 designs, evaluate them with the
current model and pick the top 5,000 most uncertain comparisons
among them: 2,500 where the colors are fixed, and the other
half where the images are fixed. A design comparison prediction
is uncertain if the predicted probability for choosing the left vs.
the right design is close to 50%. We ultimately collected 55,000
comparisons.

Accuracy metric. To evaluate a model on a test set, we can
measure Accuracy. The Accuracy is defined as the percentage
of holdout comparisons correctly predicted by the model, i.e.,
the number of hold-out comparisons that the model assigns
higher probability to as compared to the option chosen by the
crowdworkers.

5.2 Problems with Pairwise data

Following the procedure in the previous section, we trained two
separate models: the full model in Equation 1, including both
unary and compatibility terms, and a simpler version with unary
terms only. In each case, active learning was used separately for
each model, e.g., the unary term’s dataset was augmented with
uncertainty sampling according to the unary term’s model. A shared
test set was constructed by combining hold-out data from both
models.

When initially conducting this research, we expected that
the compatibility term would play a substantial role, because it
would filter out image and color pairs that clash. Unexpectedly,
the compatibility term had a negligible effect on the results: the
compatibility model was accurate 62±1.5% of the time, versus
60±1.5% for the unary model, a difference which is both small and
also not statistically significant (the 95% confidence intervals were
computed by bootstrap sampling). As we experimented with other
algorithm variants, or even minor variations in the data collection,
the model sometimes learned zero weights for the compatibility
terms, thus omitting them entirely.

This presents a conundrum: why were the compatibility
terms largely inconsequential? This outcome suggests that color
compatibility is irrelevant to how a viewer perceives a design.
But we did not believe this, and there are many other possible
explanations for this outcome. For example, it could be that
our representation was too simple; we attempted replacing linear
elements of the model with simple neural networks, but did not
find a representation that helped.

One clue comes from looking at how we qualitatively evaluate
results. The Accuracy metric in the previous section averages
over, roughly speaking, a uniformly random sample of all possible
comparisons. In contrast, our goal is to learn to retrieve good
images and colors in a user-interface, as in Figure 1. This implies
that Accuracy over all possible comparisons is not the correct
metric, because we only care about the quality of the top retrievals.

It was surprising to us that this difference is important. Many
previous methods for learning style and aesthetics have optimized
pairwise Accuracy and demonstrated good retrievals, e.g., [3], [5],

[11], [12], [20]. Pairwise preferences have also been used for
optimizing search [41]. What is different about our problem?

We believe the explanation is that, on a random design
comparison, the compatibility term is largely irrelevant. There
is enormous variability in image appeal, much more so than for the
compatibility problems considered in previous work [5], [12], [20].
In most cases, a crowdworker comparing two designs is driven
by the appeal of the images and the colors independently. People
would usually rather pick a beautiful image than a compatible
one, if forced to choose, and, unlike the datasets in previous
aesthetics work, images vary dramatically in how appealing they
are. Furthermore, some colors are compatible with most images
(e.g., a white background goes with most images). This would
explain why adding a pairwise term only gives a small boost to
accuracy.

But we are not interested in average performance over
randomly-sampled comparisons. We want to aid designers who are
trying to pick the very best image for their design. This means we
need to develop new ways to gather data for training and evaluation.

Retrieval metrics. These observations are similar to the well-
known difference between Accuracy and retrieval metrics, such
as Precision and Recall. It is well-known that an accurate model
can give bad retrievals [35]. For example, a classifier trained to
recognize whether an image contains an umbrella can get 99%
accuracy by always returning “No”, if 99% of images do not
include umbrellas. However, this classifier would not make for a
good image search engine. Retrieval metrics are defined in terms of
absolute relevance, i.e., which search results or image classifications
are correct. Some work has optimized directly for precision [32],
[35], assuming ground-truth relevance values are provided. The
crucial difference to our case is that there is no meaningful notion
of “relevance” for style-based search. We can only say whether one
retrieval is better than another, averaged over some pool of users
or crowdworkers.

5.3 Rank data

We wish to define a data collection procedure that addresses this
problem. Here we propose the use of rank data, which simulates a
user performing a search and selecting the best results. Specifically,
given the top search results of a retrieval algorithm, which of
these results are the best? All other possible comparisons are
ignored by this metric; this metric ignores results on, for example,
comparisons involving bad images that would never be retrieved.
This approach is similar to training methods sometimes used for
search engines [31], but focused on relative aesthetic quality rather
than relevance. Furthermore, because it is not possible to deploy a
real design tool to a large number of users as part of an academic
research project, a crowdworker setup is required.

Generating this data requires beginning with an initial model
θ ; in our experiments, we begin with a model trained by the active
learning procedure in the previous sections. Prior to generating
data, we also cluster all potential test images into 200 clusters
using k-means applied to their features (Appendix A). Likewise,
the color schemes are clustered into 200 clusters. The clustering
will be used to ensure diversity in queries and results.

To generate a color scheme for an image query, the algorithm
selects a color cluster uniformly at random, and then randomly
selects a color scheme from that cluster. The top 8 image search
results are then generated by the current model, that is, by listing
the images with the lowest energy values for this color scheme. A

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

6

Fig. 4. Rank data crowdworker task, for color search. We ask workers to pick
the 4 most aesthetically compatible completed designs out of 8 retrievals
generated based on a query incomplete design. In this example, we queried
for a text-background color combination. The retrievals chosen by the worker
are highlighted with orange. A similar task is used for image search.

crowdworker is then asked to select the best 4 search results. An
example of the search interface is shown in Figure 4. User votes
are aggregated; every image selected by at least 3 crowdworkers
is designated as selected, and the others are non-selected. These
selections are converted into a set of pairwise comparisons, where
each pair comprises one selected and one non-selected image. For
example, if there are 4 selected, and 4 non-selected images, this is
converted into 16 pairs of selected/non-selected images. Each pair
is used as a pairwise comparison data point, and included in the
optimization objective (Equation 7).

Conversely, the algorithm also generates queries in which a
query image is selected uniformly at random from the image
clusters. To yield diverse color schemes in the results, the top 8
color schemes are constrained to come from the medoids of the
200 clusters. The process for generating pairwise comparisons is
otherwise the same. Finally, we collected rank data for 250 color
and 250 image queries.

We also experimented with running multiple rounds of this
process, i.e., generating Rank Data, retraining, and repeating, but
this did not seem to improve the results.

5.4 AB evaluation

We also need a better quantitative method to compare two different
retrieval algorithms. Previous work has used testing on hold-out
data from crowdworkers. However, as discussed above, quantitative
measurement on the active learning data does not simulate the
retrieval task. Moreover, the rank data is based on the results of a
specific model θ . It gives a way to improve that model, but would
not be useful for evaluating models that retrieve very different
results. Furthermore, we would like to evaluate entire lists of
results, following the recommendations of McNee et al. [42].

In search engines, these comparisons are typically done by
deploying A/B tests, i.e., showing different search results to
different users [43], and computing metrics (such as clickthrough
or purchases) for each conditions. Since deploying a real system is
impractical, we again simulate this with crowdworker evaluation.

Fig. 5. AB evaluation crowdworker task. Workers are shown the top 4
retrievals of two algorithms for a query. They have to choose the group
of designs which they prefer aesthetically.

First, we generate a set of test queries. Then, given two
methods to compare, we generate the top 4 search results from
the two methods, and then ask crowdworkers to determine which
list of results is better (Figure 5). The AB comparison between
the two methods is then the percentage of queries for which
workers preferred one method over the other. We also considered
interleaving search results from the two methods; we did not try
this, in the belief that the AB comparison would yield clean data
in a smaller number of measurements, as well as a more holistic
evaluation of results.

As compared to Accuracy metrics, these metrics have the
disadvantage that new data must be collected for every comparative
evaluation; we cannot simply test on the same hold-out data.
However, just as in A/B testing with real deployments [43], this
seems to be necessary for evaluating subjective retrieval quality.

6 Results
In this section, we present detailed evaluation of our method
using the AB evaluation introduced in the previous section, and
comparisons of designs generated with our interactive design tool
prototype.

6.1 AB evaluation results

AB evaluation allows us to directly compare the retrievals of two
models using judgments made by crowdworkers. We generate 473
test queries which are held fixed for all algorithm comparisons and
all of them are used in each AB evaluation. We ensure that each
query and retrieved image comes from the test set. We performed
24 AB evaluations in total; results are shown in Figures 6 and 7.
The confidence intervals shown in the figures are generated with
the z-test at 95% confidence level (each algorithm pair has at least
1,000 AB comparison votes). We chose these tests to evaluate each
element of our approach, in both modeling and training. We now
discuss evaluation of these elements in detail.

In these experiments, we perform these comparisons on models
trained with pairwise data only (PW), or pairwise plus rank data
(PW + R). We found in preliminary experiments that training
only on rank data (R) gave poor results, and did not include it in
our evaluations. We believe this is the case because R models do

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

7

not learn to filter out bad images and colors, since none of these
pairings are included in the data.

Image search. We consider the value of including context in
image search, which we test by comparing models trained with
compatibility terms, to models trained only with unary terms. In AB
comparisons, the compatibility model is preferred over the unary
model 54.1±2.9% of the time for image search, when trained
with PW + R data. The difference is even larger for PW data:
the compatibility model is preferred 65.6±2.7% of the time. This
indicates that PW training does, in fact, give reasonable results, but
this is only visible when evaluated on an appropriate metric. Still,
we did sometimes get degenerate models when training on PW in
early experiments.

For each type of model, including PW + R data improves the
quality of the model: the compatibility model trained with PW +
R data is preferred 58.7±2.9% of the time over PW training. A
similar outcome is observed for the unary model. (One subtlety
here is that the dataset is slightly larger with rank data than without;
we also gathered additional pairwise data to compensate, retrained
the PW model, and the result does not change.)

These results clearly validate the benefit of both compatibility
terms and rank data for image search.

Color search. For color search, the compatibility model performs
better than the unary model 55±2.9% of the time, when trained
with PW data. However, we found that, in comparisons between
models trained with and without rank data, the difference was
either not statistically significant, or the rank data made the results
worse. Overall, the compatibility model trained without rank data
was our best-performing model. We find that the model without
rank data presents more conservative color suggestions.

We interpret this result by noting that training only on pairwise
comparisons was the method used in many previously-successful
works for design. The principal benefits of rank data are for image
search, which is a much harder problem.

Non-negative compatibility. We also compare models trained
with our compatibility term (Equation 5) to those trained with
conventional non-negative compatibility (Equation 4). The non-
negative model is a special case of our model, so we would expect
ours to perform better, given sufficient quantities of data. We found
this to be the case, but the difference was not statistically significant
when we compared the best model for each case. For color search,
our PW model is preferred 50.7±2.7% over the non-negative (PW
+ R) model, and, for image search, the best compatibility (PW + R)
model ties with the best non-negative (PW) model. Given the slight
improvement of our model, we use it for all other experiments in
this paper.

Discussion. Our compatibility model was preferred over the unary
model by a statistically-significant difference, but one might wonder
why the gap is not larger. The subjectivity of the tasks, particularly
for randomly-generated tests, makes it hard to achieve larger gaps.
Indeed, similar scores can be found in user evaluations from
previous work on learning for graphic design [3], [4], [44]. In
fact, small percentage improvements are usually considered very
significant in online search, our main application area, where a few
percentage points can increase revenue by thousands or millions of
dollars (e.g., Kohavi et al. [43]).

Having performed these quantitative tests, we can then proceed
to more involved evaluations that better test the method by

Color Search Image Search

Fig. 6. AB evaluation results: unary vs. compatibility, PW vs. PW + R. The
figure summarizes all 12 AB evaluation results testing every possible pair
of unary and compatibility models, and PW and PW + R training, for both
image and color search. Each entry is the percentage of tests won by the
method named on the vertical axis over the method named on the horizontal
axis. For example, for Color Search, “Compatibility (PW)” won 55.0% percent
of tests over “Unary (PW)”, with confidence interval of 2.9%. See text for
explanations of the different models and interpretations of the results. The
confidence intervals are generated with the z-test at 95% confidence level
(each algorithm pair has at least 1,000 votes).

Color Search Image Search

Fig. 7. Non-negative (SqEuc) vs. our compatibility (ScEuc) model AB
evaluation results. The compatibility model outperforms the SqEuc model
which uses squared Euclidean distance to represent compatibility in color
search and ties in image search, but the difference is not statistically
significant. See Figure 6 for explanation on how to read the figure.

embedding it into an interactive design study.

6.2 Interactive design study

We created a prototype design tool, as shown in Figure 1 and the
accompanying video. We asked crowdworkers to use this tool to
create new designs. Since our focus is on testing color and image
suggestions, we did not allow workers to change the design layout
or the text attributes. All image search results were provided from
the test set.

Interfaces. We test two versions of the interface: conventional
and context-aware. The conventional interface includes a standard
color picker, and textual image search. The image search filters
results by keyword, and sorts them according to a unary model
only (“Unary (PW + R)”), mimicking standard image search. The
context-aware interface uses the compatibility (PW + R) model
to sort image search results, and also includes color suggestions
based on the compatibility (PW) model. Users are not allowed to
select whether the search is contextual. In addition, we show the
color picker in this variant to allow users to fine-tune the suggested
colors. Color suggestions are made based on the current image
and the other color already in the design. To ensure that our color

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

8

suggestions are diverse, we cluster colors into 200 clusters (as
in rank data collection, but for individual colors) and evaluate
the energy function on the medoids of these clusters to generate
recommendations. As in training, low-contrast color suggestions
are filtered from the search results.

Task. We created 10 design templates, each with a different theme
(e.g., “Travel agency”, “Bakery”, “Bike shop”). The text in each
design template is specific to its theme. All design templates contain
the same generic default image (not related to any of the themes),
and have neutral colors (black, gray and white). See Figure 9(a) for
examples of the design templates.

We asked workers to change the image and colors of these
templates to repurpose designs for a specific theme, and to create
designs which are aesthetically pleasing. They were not given any
information on what was being tested or how the recommendation
engines worked.

Data collection. For each design template, we collected 100 design
submissions: 50 for the context-aware and 50 for the conventional
interface. We manually removed designs in which the worker did
not actively explore background or foreground colors different from
the ones originally provided in the design template, or in which
the image was not related to the theme. After filtering, we had 881
curated designs. See Figure 9 for examples of submitted designs
for both interfaces.

Design evaluation. We generated 200 randomly-sampled compar-
isons between designs for each of the 10 themes. Each comparison
includes two designs for the same theme that were generated with
the two different interfaces. To reduce the noise in submissions, we
collected 5 votes for each comparison, and aggregated the votes
with majority voting.

Over all themes, the context-aware method was chosen in 69%
of the comparisons. Furthermore, we found that the context-aware
method was preferred for all themes individually and the difference
is statistically significant for all themes except the “Bakery” theme.
We suspect that the difference is smaller for the “Bakery” and
“Bike shop” themes, because there is a smaller set of related images
in our dataset compared to other themes, thus there is a smaller
variety of images to reorder with our context-aware image search.
We saw the biggest difference in votes for “Coffee shop” and “Dog
show”, where our method was picked more than 75% of the time.
See Figure 8 for detailed results.

We recorded activity logs of workers’ actions during the design
sessions. We found that, in an average session, a worker interacted
with the color interfaces 30% fewer times with our interface
than with the conventional interface. For more details, see the
Supplemental Material.

7 Conclusion
Image search and selection of other assets play a significant role
in modern design practice. To unify search and design interfaces,
this paper introduces Context-Aware Asset Search, and shows, in
simple but important cases, that it can improve the design process.
We believe that this will be most useful for novice designers, to
weed out the set of searches that they have to sort through, though
it may streamline the process for professional designers as well.

We have focused on the most important pairing in design—
images and colors—to demonstrate the value of this approach.
There are many elements of design not currently handled, to be

Fig. 8. Interactive design study results. We show the mean votes of each
method over 200 randomly sampled design comparisons for each theme
(2,000 design comparisons for all themes). A mean vote value of 1 would
mean that a method won all comparisons for a certain theme. The context-
aware interface outperforms the conventional in all design tasks. The
difference is statistically significant with 95% confidence in all but one case.

addressed in future work. We did some preliminary experiments
on learning for designs with multiple images, also considering
different relative placements of images, but the effects of the
inter-image terms were dwarfed by the image-color terms, which
seem to be far more important. We did not consider compatibility
between other types of elements, such as between fonts and images.
We suspect that these are much more subtle combinations, for
which it is harder to elicit meaningful effects. For more general
designs, it may be necessary to model the higher-order interactions
between multiple elements in a design. This could be done by
decomposing the model into multiple pairwise interactions, and/or
using image-based models as in [45]. Ultimately, we believe that
learning general models for graphic design quality and style could
lead to very powerful user interfaces.

Appendix
We built overcomplete feature vectors, on the assumption that
learning with large enough datasets will allow the method to handle
any redundant or unnecessary features.

Image features. We compute the three dominant colors of the
image, extracted with k-means clustering of the image pixels in
RGB color space. These three colors are converted into features
in a manner inspired by [4]. Specifically, we represent a color in
the Lab color space. We also square each entry of this color space.
Additionally, we include the mean, standard deviation, minimum,
maximum and maximum minus minimum values over the dominant
color for each color dimension in Lab, HSV and RGB color spaces.
Finally, we include the same statistics for the joint probabilities of
the hues of each color pair (three pairs for three dominant colors),
and the hue entropy, based on the joint hue distribution estimated
from aggregated color scheme judgments in [4].

We also use deep features of the image obtained by running
ResNet-152 [36] trained on ImageNet [46] on the image and taking
the features of the layer before the last layer projected down to

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

9

128 dimensions with PCA. This provides a compact semantic
representation of the image. Finally, we use the photo aesthetic
score predicted by the model of [2] as an additional feature. This
yields a 198 dimensional feature vector xI .

Color scheme features. For the text-background color scheme,
we generate the same color features as for the dominant colors of
the images, but additionally we include the colors in HSV, RGB
color spaces and get a 81 dimensional feature vector xC.

Whitening. Since the feature dimensions have a wide range of
scales, we apply a simple whitening transformation on the data
by subtracting the mean and dividing by the standard deviation
separately for each feature dimension. We estimate the means and
standard deviations based on designs in the training set.

Acknowledgments
Thanks to Andy Edmonds for useful feedback. This work was
supported by the National Science Foundation (grant IIS-1617861),
and Adobe.

References
[1] S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertz-

mann, and H. Winnemoeller, “Recognizing image style,” in Proc. British
Machine Vision Conference, 2014.

[2] L. Mai, H. Jin, and F. Liu, “Composition-preserving deep photo aesthetics
assessment,” in Proc. Computer Vision and Pattern Recognition, 2016, pp.
497–506.

[3] P. O’Donovan, J. Lı̄beks, A. Agarwala, and A. Hertzmann, “Exploratory
font selection using crowdsourced attributes,” ACM Trans. on Graphics,
2014.

[4] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Color Compatibility
From Large Datasets,” ACM Trans. on Graphics, vol. 30, no. 4, 2011.

[5] Z. Lun, E. Kalogerakis, and A. Sheffer, “Elements of style: learning
perceptual shape style similarity,” ACM Trans. on Graphics, 2015.

[6] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman,
and E. Ruppin, “Placing search in context: the concept revisited,” ACM
Trans. Info. Sys., vol. 20, no. 1, 2002.

[7] J. Pitkow, H. Schutze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds,
E. Adar, and T. Breuel, “Personalized search,” CACM, 2002.

[8] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: Integrating web search into the development
environment,” in Proc. CHI, 2010.

[9] W. Li, J. Matejka, T. Grossman, J. Konstan, and G. Fitzmaurice, “Design
and evaluation of a command recommendation system for software
applications,” ACM TOCHI, vol. 18, Jun. 2011.

[10] T. Igarashi and J. F. Hughes, “A suggestive interface for 3d drawing,” in
Proc. UIST, 2001, pp. 173–181.

[11] S. Chaudhuri, E. Kalogerakis, S. Giguere, and T. Funkhouser, “Attribit:
Content creation with semantic attributes,” in Proc. UIST, 2013.

[12] E. Garces, A. Agarwala, D. Gutierrez, and A. Hertzmann, “A similarity
measure for illustration style,” ACM Trans. on Graphics (SIGGRAPH),
vol. 33, no. 4, 2014.

[13] D. Parikh and K. Grauman, “Relative attributes,” in Proc. International
Conference on Computer Vision, 2011.

[14] N. Murray, L. Marchesotti, and F. Perronnin, “Ava: A large-scale database
for aesthetic visual analysis,” in Proc. Computer Vision and Pattern
Recognition, 2012.

[15] M. E. Yumer, S. Chaudhuri, J. Hodgins, and L. B. Kara, “Semantic shape
editing using deformation handles,” ACM Trans. Graph, 2015.

[16] C. Fang, H. Jin, J. Yang, and Z. Lin, “Collaborative feature learning from
social media,” in Proc. Computer Vision and Pattern Recognition, 2015.

[17] S. Bell and K. Bala, “Learning visual similarity for product design with
convolutional neural networks,” ACM Trans. Graph., 2015.

[18] S. Lin, D. Ritchie, M. Fisher, and P. Hanrahan, “Probabilistic color-by-
numbers: Suggesting pattern colorizations using factor graphs,” in ACM
Trans. on Graphics (SIGGRAPH), ser. SIGGRAPH ’13, 2013.

[19] A. Jahanian, S. Keshvari, S. Vishwanathan, and J. P. Allebach, “Colors—
messengers of concepts: Visual design mining for learning color seman-
tics,” ACM TOCHI, vol. 24, no. 1, Jan. 2017.

[20] T. Liu, A. Hertzmann, W. Li, and T. Funkhouser, “Style compatibility for
3D furniture models,” ACM Trans. on Graphics (SIGGRAPH), vol. 34,
no. 4, Aug. 2015.

[21] L.-F. Yu, S.-K. Yeung, D. Terzopoulos, and T. F. Chan, “Dressup! outfit
synthesis through automatic optimization,” ACM Trans. on Graphics,
2012.

[22] V. Jagadeesh, R. Piramuthu, A. Bhardwaj, W. Di, and N. Sundaresan,
“Large scale visual recommendations from street fashion images,” in
Proc. KDD, 2014.

[23] S. Liu, J. Feng, Z. Song, T. Zhang, H. Lu, C. Xu, and S. Yan, “Hi, magic
closet, tell me what to wear!” in Proc. MM, 2012.

[24] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-based
recommendations on styles and substitutes,” in Proc. KDD, 2015.

[25] A. Veit, B. Kovacs, S. Bell, J. McAuley, K. Bala, and S. Belongie,
“Learning visual clothing style with heterogeneous dyadic co-occurrences,”
in Proc. International Conference on Computer Vision, Santiago, Chile,
2015.

[26] P. Obrador, “Automatic color scheme picker for document templates
based on image analysis and dual problem,” in Proc. SPIE 6076, Digital
Publishing, 2006.

[27] H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkelstein, “Palette-based
photo recoloring,” ACM Trans. on Graphics (SIGGRAPH), vol. 34, no. 4,
Jul. 2015.

[28] S. Lin and P. Hanrahan, “Modeling how people extract color themes from
images,” in Proc. CHI, 2013.

[29] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu, “Color
harmonization,” ACM Trans. on Graphics, vol. 25, no. 3, pp. 624–630, Jul.
2006. [Online]. Available: http://doi.acm.org/10.1145/1141911.1141933

[30] Y. Matsuda, Color Design. Asakura Shoten, 1995.
[31] T. Joachims, “Optimizing search engines using clickthrough data,” in

ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), 2002, pp. 133–142.

[32] P. Henderson and V. Ferrari, “End-to-end training of object class detectors
for mean average precision,” in Proc. ACCV, 2016.

[33] K. Järvelin and J. Kekäläinen, “Ir evaluation methods for retrieving highly
relevant documents,” in Proc. SIGIR, 2000.

[34] A. Turpin, F. Scholer, S. Mizzaro, and E. Maddalena, “The benefits of
magnitude estimation relevance assessments for information retrieval
evaluation,” in Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser.
SIGIR ’15. New York, NY, USA: ACM, 2015, pp. 565–574. [Online].
Available: http://doi.acm.org/10.1145/2766462.2767760

[35] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector method
for optimizing average precision,” in Proc. SIGIR. ACM, 2007, pp.
271–278.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016.

[37] R. A. Bradley and M. E. Terry, “Rank analysis of incomplete block designs:
I. the method of paired comparisons,” Biometrika, vol. 39, no. 3/4, pp.
324–345, 1952. [Online]. Available: http://www.jstor.org/stable/2334029

[38] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad,
E. Bertino, and S. Dustdar, “Quality control in crowdsourcing systems:
Issues and directions,” IEEE Internet Computing, vol. 17, no. 2, pp. 76–81,
Mar. 2013. [Online]. Available: http://dx.doi.org/10.1109/MIC.2013.20

[39] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[40] D. D. Lewis and W. A. Gale, “A sequential algorithm for
training text classifiers,” in Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, ser. SIGIR ’94. New York, NY, USA:
Springer-Verlag New York, Inc., 1994, pp. 3–12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=188490.188495

[41] B. Cartere, P. N. Bennett, D. M. Chickering, and S. T. Dumais, “Here or
there: Preference judgments for relevance,” in Proc. ECIR, 2008.

[42] S. M. McNee, J. Riedel, and J. A. Konstan, “Being accurate is not enough:
how accuracy metrics have hurt recommender systems,” in Proc. CHI
Extended Abstracts, 2006.

[43] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne, “Con-
trolled experiments on the web: Survey and practical guide,” Data Min
Knowl Disc, 2009.

[44] X. Pang, Y. Cao, R. W. H. Lau, and A. B. Chan, “Directing user attention
via visual flow on web designs,” ACM TOCHI, vol. 35, no. 6, 2016.

[45] Z. Bylinskii, N. W. Kim, P. O’Donovan, S. Alsheikh, S. Madan, H. Pfister,
F. Durand, B. Russell, and A. Hertzmann, “Learning visual importance for
graphic designs and data visualizations,” in Proc. User Interface Software
and Technology. ACM, 2017, pp. 57–69.

http://doi.acm.org/10.1145/1141911.1141933
http://doi.acm.org/10.1145/2766462.2767760
http://www.jstor.org/stable/2334029
http://dx.doi.org/10.1109/MIC.2013.20
http://dl.acm.org/citation.cfm?id=188490.188495

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

10

Bakery Farmer’s market Art exhibition Plant nursery Travel agency Coffee shop

(a)

(b)

(c)

Fig. 9. Examples of submitted designs. For fairness, these results are randomly-sampled from our results, and thus some examples are much better than
others. (a) Design templates that were given to workers as a starting point. They were asked to modify these for a specific theme by choosing a relevant
image and compatible background and text colors. (b) Randomly sampled designs submitted with the conventional interface. (c) Randomly sampled designs
submitted with the context-aware interface. On average the results with our method are better, even though some examples have poor color choices, since
workers have the freedom to use the color picker and ignore our suggestions.

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2842734, IEEE
Transactions on Visualization and Computer Graphics

11

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” Int. J. of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

Balazs Kovacs received his BSc from Budapest
University of Technology and Economics in 2012,
and his MSc in Computer Science from Cornell
University. He is currently a research engineer at
Zoox.

Peter O’Donovan received his BSc in Computer
Science from the University of Saskatchewan in
2005, and PhD from the University of Toronto in
2015. He currently works on graphic design soft-
ware for novices at Adobe Systems.

Kavita Bala is a Professor in the Computer Science
Department and Program of Computer Graphics
at Cornell University. She received her S.M. and
Ph.D. from the Massachusetts Institute of Technol-
ogy (MIT), and her B.Tech. from the Indian Insti-
tute of Technology (IIT, Bombay). She co-founded
GrokStyle, and serves as Chief Scientist (2015–),
and is a faculty Fellow with the Atkinson Center for
a Sustainable Future.

Bala is the Editor-in-Chief of ACM Transactions on
Graphics (TOG). She has also served on the Papers

Advisory Board for SIGGRAPH and SIGGRAPH Asia, and as Associate
Editor for TOG, IEEE Transactions on Visualization and Computer Graphics,
and Computer Graphics Forum. Bala has co-authored the graduate-level
textbook “Advanced Global Illumination". She has chaired SIGGRAPH
Asia 2011, and co-chaired Pacific Graphics (2010) and the Eurographics
Symposium on Rendering (2005).

Aaron Hertzmann is a Principal Scientist at Adobe
and an ACM Distinguished Scientist. He received
a BA in Computer Science and Art/Art History from
Rice University in 1996, and a PhD in Computer
Science from New York University in 2001. He was
a Professor at University of Toronto from 2003 to
2013, and has also worked at Pixar Animation Stu-
dios, University of Washington, Microsoft Research,
Mitsubishi Electric Research Lab, Interval Research
Corporation and NEC Research. He is an Associate
Editor for ACM Transactions on Graphics, and has

served as an Associate Editor for IEEE Transactions on Visualization and
Computer Graphics. His awards include the MIT TR100 (2004), a Sloan
Foundation Fellowship (2006), a Microsoft New Faculty Fellowship (2006),
the CACS/AIC Outstanding Young CS Researcher Award (2010), and the
Steacie Prize for Natural Sciences (2010), as well as several conference best
paper awards.

