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Method
Our method has four steps.
(1) Train a standard CNN for the target task.
 We apply our method to a number of datasets such as ILSVRC2012, Places205,
 and CUB-200-2011.  If a trained network is available, we use that as the base
 network.  If not, then we �ne-tune an existing network.

(2) Continue to �ne-tune the classi�er with a mix of modi�ed and unmodi�ed
 images. 
We wish to arrive at a network that can achieve non-trivial performance given
modi�ed images, but has retained much of its original classi�cation performance on
unmodi�ed images.

We tried two types of modi�cation
to produce two types of networks: 
FoveaNets and BubbLeNets.
FoveaNet: Modi�ed images have a
 bubble of unobscured content and
 the rest is heavily blurred.
 (Inspired by [2])
BubbLeNet: Modi�ed images have a
 bubble of unobscured content and the
 rest is completely deleted.
 (Inspired by [1])
Both representations were trainable, so
we favor the BubbLeNet since it is easier
to reason about what content outside
the bubble is leaked.  e.g. Foveal images
can leak shape information.

During training, bubble locations were
sampled at random and mini-batches
contained 50% modi�ed images.

(3) Use supervised objective function + backprop to select one discriminative
 patch per image.
Both FoveaNet
and BubbLeNet
representations
allow us to compute
the partial derivatives of the
bubble center with respect to the modi�ed image output.
This means we can add this pre-processing operation as a layer in our network.
This o�ers an e�cient alternative to densely evaluating bubble positions.

(4) Cluster patches and rank clusters.
Inspired by [3], we build a set of patch clusters as well as a ranking function to help
promote the most important clusters.

We split our validation set of unmodi�ed images into two partitions — S and T.
Corresponding sets S’ and T’ contain their discriminative patch counterparts.

Problem Statement
Given a corpus of categorized photos, we aim to produce a concise visual
representation of what makes each category distinctive.  In turn, we use this
representation in order to make measurements across Internet-scale datasets
to learn about stylistic variations of people and places across space and time.

Why do we desire a concise, visual representation?
A visual representation is useful since it can be presented to humans to give them
insight regarding trends within the dataset.  A concise representation is preferred
to minimize the e�ort the analyst must expend in order to understand the results.

Therefore, we revisited the discriminative patches problem.  We addressed this
problem with two questions in mind:
(1) Convolutional neural networks (CNNs) have internal representations that
 outperform hand-engineered features on many classi�cation tasks.  These
 hand-engineered features form the basis for most prior discriminative patches
 work.  How can we incorporate CNN features cleanly in a discriminative
 patches framework?
(2) Billions of photos are uploaded per day to services such as Facebook and
 Instagram.  It would be useful if we could measure trends relating to elements
 represented by these sets of patches across both space and time.  How should
 we design the representation such that this detection step is inexpensive?
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Validation
How representative are these patch clusters?  i.e. Do a few clusters capture
the discriminative power of the original classi�er?
We applied an algorithm similar to BubbleBank [2] to the Indoor67 dataset.  While
prior work allocates tens of elements to each class, we found that on average one
class could be represented by only two of our clusters.

How well do bubbles localize discriminative parts?
We applied our method to CUB-200, a dataset of birds with part annotations. We
found that our method was much more likely to choose a bubble location near a
part annotation compared to chance.
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Example Indoor67 clusters.  An example with mask is shown for scale.
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Example CUB-200-2011 clusters.  An example with mask is shown for scale.

Applications
We applied our method to two Internet-scale datasets of people (Instagram) and
places (Street View) to discover discriminative visual elements and to measure their
occurrence across space and time.

Street View for spatial analysis
A BubbLeNet trained on city classi�cation revealed
that architectural elements and street markers
play an important role in city classi�cation (Inspired
by [4]).  Here we show that an important visual
element for Boston is siding on homes.  We applied
the detector for this visual element to a much
larger set of photos to build a spatial visualization.

Instagram for spatial analysis
Given cropped detections of people in Instagram photos, we trained a BubbLeNet
to predict whether the photo was taken in NYC or London (60.8% accuracy). Top
ranked clusters include di�erent types of clothing , logos, and fabric patterns.

Instagram for temporal analysis
We also trained a classi�er to predict the month given a photo of a person in NYC.
Certain months were more distinguishable than others.  For example, the top
ranked cluster for March versus April was “sunglasses” and we used this detector
to measure the occurrence of sunglasses over time.  We can corroborate this �nding
using weather data.
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Histogram of distance from mined patch to closest part.
Image coordinates have been normalized to a 1x1 square.

Indoor67 classi�cation performance.

Example patches in a Boston-centric cluster (inset).  Activations
of this cluster spanning Boston.  Red (blue) high (low) activation.

Example patches from the “sunglasses” cluster.

“Sunglasses” activations over time.  Weather data from
wunderground.com.   Sunglasses-Clear r = 0.487.
Sunglasses-Cloudy r = -0.593.

BubbLeNet

(a) Minimize classi�cation loss by moving
bubble center via backprop and SGD.

(b) Save the most discriminative patches
along with some internal CNN representation.
e.g. FC7 of AlexNet.

BubbLeNet

Mini-batches contain
modi�ed and
unmodi�ed
examples.

Fine-tune

Sets S and T

(c) Transfer predicted patch cluster
labels to T and train multi-class SVM (B).
SVM (B) predicts bubble clusters given
regular images.

(d) Apply SVM (B) to S and relabel
examples.  Repeat. S T

(a) Cluster S’ with k-means and train
multi-class SVM (A) on cluster

assignments.  SVM (A) predicts bubble
clusters given bubble images.

(b) Apply SVM (A) on T’.
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Main Idea
Adapt prior method for studying human perception to �nd discriminative regions.

[1] presents a method for determining what makes humans perceive di�erences
between attributes such as gender and facial expression.  We construct analogous
experiments with CNNs and Internet-scale datasets.

Previous experiment

Our adaptation

What regions make humans
perceive this person as “male”?

Ask human subjects
to classify masked images.

Identify discriminative regions
based on successful classi�cations.

What regions make CNNs
perceive this location as “Tokyo”?

Ask CNNs
to classify masked images.

Identify discriminative patches
based on successful classi�cations.

Key Observation: CNNs that perform well on the original classi�cation task tend not
to perform well on the masked image task.  Can we train CNNs to make reasonable
predictions with such a tiny amount of the image visible?


