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Abstract

We propose a new method for turning an Internet-scale
corpus of categorized images into a small set of human-
interpretable discriminative visual elements using powerful
tools based on deep learning. A key challenge with deep
learning methods is generating human interpretable mod-
els. To address this, we propose a new technique that uses
bubble images—images where most of the content has been
obscured—to identify spatially localized, discriminative con-
tent in each image. By modifying the model training pro-
cedure to use both the source imagery and these bubble
images, we can arrive at final models which retain much of
the original classification performance, but are much more
amenable to identifying interpretable visual elements. We
apply our algorithm to a wide variety of datasets, includ-
ing two new Internet-scale datasets of people and places,
and show applications to visual mining and discovery. Our
method is simple, scalable, and produces visual elements
that are highly representative compared to prior work.

1. Introduction
The rapid growth of online imagery and the emergence of

powerful machine learning techniques have led to exciting
developments in computer vision. While many of these
developments have been in visual recognition, these same
trends also enable new approaches to visual discovery. By
visual discovery, we mean a form of visual data mining—
identifying patterns or correlations in visual data that can be
used to propose or validate hypotheses about the world.

Towards this goal, a few recent papers have explored
visual discovery in particular domains. We are especially
inspired by the work of Doersch et al. [6] where visual
elements (i.e., patches) that give cities such as Paris their
distinctive look are automatically mined from a corpus of
Street View photos. This task is an application of a broader
set of methods for mining imagery for distinctive visual ele-
ments [18, 5, 11, 1]. Our work also seeks to discover visual
elements in the form of patches. However, while most prior
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Figure 1. Foveated imaging. Our method analyzes the contribu-
tion of localized content in images by modifying the data shown to
a CNN during training and at test time. Given an input image (top
left), we apply an alpha mask (center) to produce two representa-
tions: a foveal image (top right) and a bubble image (bottom right).
While a bubble image preserves a small amount of spatialized con-
tent, a foveal image includes a blurred, grayscale background to
provide additional context.

work uses hand-crafted features such as HoG, we seek to
harness the power of convolutional neural networks (CNNs)
for visual discovery. We believe the time is ripe for study-
ing this problem—just as text analysis can reveal trends on
social networking sites like Twitter, visual discovery driven
by powerful image understanding methods could enable the
automatic identification of visual trends in fashion, design,
art, and many other areas.

CNNs have shown astonishingly good performance for
visual recognition [12, 7]. However, in order to be useful
for visual discovery, we need to be able to extract insight
about what a CNN has learned, and communicate these
insights to humans. Extracting such insights at scale by
analyzing learned networks has proved challenging, because
CNNs tend to be very opaque. For instance, a given learned
unit (neuron) deep in a network can depend on almost all
of the input pixels in a highly non-linear way, making it
very difficult to associate features in the network with visual
elements that are meaningful to humans.

In contrast, rather than trying to interpret a network after
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the fact, our key contribution is a new type of training pro-
cess that forces the network to learn much more localized,
interpretable properties of the input imagery. Namely, we in-
tentionally restrict how much of the image the network gets
to see at training and test time. Inspired by the BubbleBank
work of Deng et al. [4], the network is only allowed to look
at a small portion of the image in high resolution, via a foveal
image, where the rest of the image is blurred out, or a bubble
image, where the rest of the image is blank, as illustrated
in Figure 1. However, the network can optimize the spatial
position of the bubble in order to maximize classification
confidence. In this manner, our approach efficiently learns
both network weights as well as the most salient parts of
each training image. We then cluster these salient image
regions to derive a set of visual elements for a given dataset.

Our new approach to finding discriminative visual ele-
ments has several key attributes: it is a simple modification
of existing CNNs methods, and it scales to large amounts
of data, which is critical for many applications. We show
a wide range of results on existing datasets, as well as two
new large-scale datasets of people and places. We also per-
form quantitative comparisons of the descriptive power of
our visual elements at classification tasks, showing they
outperform state-of-the-art algorithms. Finally, we show
applications of our method to visual discovery in analyzing
people over space and time.

2. Background and Related Work
Our work is in the vein of discriminative patch mining

methods [18, 5, 11, 14]. Such methods typically take in a
corpus of images and try to identify clusters of “mid-level
patches” where each cluster represents an element that ap-
pears often in a single category, and rarely in other categories.
Each cluster represents a representative, identifiable visual
element that is discriminative for a class. These clusters
can then be used for recognition tasks, or can reveal inter-
esting aspects of the visual world [6]. By examining these
clusters, we can get a sense of what visual elements distin-
guish one category from another. For human interpretability,
it is also important that each cluster internally be visually
homogeneous, i.e., that is has an identifiable theme.
Low-level vs. deep-learned features. Prior discriminative
patch methods often build mid-level representations on top
of low-level features (e.g., HoG) [18, 5, 11]. However, recent
methods that learn features straight from pixels (e.g. CNNs)
have enjoyed great success on recognition problems [12, 7].
Can we also use CNNs to learn distinctive visual elements?
Raw CNN features (without fine-tuning) have been shown
to have useful properties for this task [14]. On the one hand,
the representative power of CNNs suggest that they can learn
visual elements that are more subtle and with greater invari-
ance to image appearance compared to low-level features.
But on the other hand, standard CNN architectures, such as

AlexNet [12], are opaque—their features and inner work-
ings are such that can be very challenging for humans to
understand and interpret.

Understanding deep networks. Most prior network visual-
ization methods have sought ways to analyze and visualize
existing networks. Given enough visual inputs, one can com-
pute and examine distributions over neural activations (i.e.,
the scalar outputs of individual units of the network). For
example, a particular neuron may learn a human face. An-
other may respond to text. By measuring which neurons are
highly correlated with certain types of inputs, we can gain a
low-level understanding of the organization taking place [7].

However, other recent results show that reasoning about
the semantics of individual high-level units can be mislead-
ing, because linear combinations of units are just as mean-
ingful as individual units [21]. Further, evidence suggests
that neurons undergo co-adaptation in order to robustly and
compactly encode concepts [26]. Indeed, our own experi-
ence has shown that it is challenging to reliably identify
human-recognizable concepts from the activations of indi-
vidual neurons. Units at the end of a large network often
have very large receptive fields—i.e., regions of input pixels
that pool together through the network to effect that unit—
perhaps even the entire input image. Many useful visual
elements are highly localized (e.g., the beak shape of a par-
ticular bird species), and it can be challenging to discern how
these local features are represented in the network.

An alternative to direct analysis of network activations
is to present controlled image stimuli to the network, and
measure the difference in classification performance. For
instance, one can slide an occluder (e.g., a gray box) over the
input image and see where the performance decreases the
most. These regions are identified as salient for a given cate-
gory [27, 29]. However, these subtractive methods present
CNNs with a new kind of image that they have never seen,
and there are no guarantees on how the network will perform.
We find that it is much better to fine-tune networks using
these kinds of modified images as training data. Further, for
many types of scenes (e.g., a bookstore full of bookshelves),
any occluder location may yield similar classification per-
formance; an additive method like ours is more suitable for
identifying the most salient regions.

Our work is also related to the scenes and objects work of
Zhou et al. [29], which uses a subtractive method to analyze
saliency of scenes, and shows that objects emerge as key
element of the learned representation. Our goal is a general
technique that we apply to a range of datasets.

Unlike these prior methods, we change the way we train
the network itself to make the results more interpretable.
Our method is in some sense the inverse of the occlusion
methods—we obscure or hide all of the image except for
a limited region (a “bubble”), and train the network to rec-
ognize these obscured images resulting in a new network



that we call a BubbLeNet. This idea is inspired by work in
psychology on using bubbles for human studies, e.g., deter-
mining which parts of a human face are most important for
gender and expression recognition in people [9]. This idea
has been used in the vision community to use humans to iden-
tify discriminative elements in fine-grained categories [4]. In
our case, we flip this around—rather than learn what humans
see, we use bubbles to encourage the network to automati-
cally learn localized, human-interpretable visual elements.

Visual attention. Our work is also related to work on
saliency and visual attention. Recent work has used deep
learning to attend to salient regions of an image [22, 15], and
applied this to applications such as object recognition [2]
and automatic caption generation [25]. Our bubble model
also uses a form of visual attention to capture more local
properties of scenes, but in a much simpler way that can be
implemented by modifying the training data.

3. Method

Our method has two main parts: (1) patch discovery,
where we train a CNN that can localize discriminative visual
content and (2) patch clustering, where we aggregate the
discovered visual elements in a way suited for visualization
and for detecting visual elements in new images.

3.1. Patch Discovery

The main contribution of our method is a simple mod-
ification to the images shown to the classifier during both
training and test time. This modification intentionally re-
stricts the amount of information presented to the classifier
in a spatially-localized way. In particular, the classifier is
shown a blank background with a single “bubble” of exposed
image, as shown in Figure 1 (bottom right). By making this
modification, we can analyze the relative performance of
the classifier as we move the focal location of this bubble.
Effectively, this modification allows us to generate a saliency
map, by forcing the network to fixate on regions of the image
at a time. Once we have a saliency map, discovering discrim-
inative elements is much easier since we can use that map as
a distribution for sampling candidate visual elements.

Figure 1 illustrates this data modification. Given an input
image (which we call a “normal” image), we generate an
alpha mask with a single Gaussian blob (centered, for now,
on a random location). Similar to [9], we use this mask
to create a bubble image containing only a single colored
patch. By modifying a normal image to create several bubble
images with different focal locations, we can examine the
CNN’s prediction scores to determine which parts of the
image provide the most evidence for the true class label.

We found that in practice if you take a CNN that has been
trained on normal images for a particular task and then test
it with bubble images, it will perform no better than random

guessing. We found that the network can work much better
if it is fine-tuned on both normal and bubble images.

An alternative to a bubble image is a foveal image which
sits somewhere inbetween a normal image and a bubble im-
age. A foveal image is created by first generating a Gaussian-
blurred, gray-scale version of the normal image. This blurred
image is then composited with the normal image using the
same alpha mask used to generate the bubble image (Fig-
ure 1, top right). The result is an image which is very similar
to the images used in the user study of [4]. Foveal images
preserve some contextual information beyond the bubble
which potentially makes training easier. However, when we
do patch discovery using foveal images directly, the results
tend to be misleading since the silhouettes of objects can
still be discerned even if the focal point is placed far away.
After this FoveaNet has converged, these foveal images can
be replaced with bubble images and fine-tuned once again to
produce a BubbLeNet.

To recap, starting from a CNN trained on ILSVRC12 [17],
we use a three stage fine-tuning regimen to train a network
better suited for spatially localized predictions:

AlexNet/GoogLeNet: Fine-tune the network on 100%
normal images.

FoveaNet: Fine-tune the AlexNet/GoogLeNet on 50%
normal images and 50% foveal images.

BubbLeNet: Fine-tune the FoveaNet on 50% normal
images and 50% bubble images.
We found that in practice, it is sufficient to sample focal
locations uniformly at random when generating the foveal
and bubble images for training. Hence, generating this extra
type of training data is very fast.

Now that we have a CNN trained on bubble images, we
can use it to discover salient patches. A naive approach to ex-
ploring the saliency of a normal image is to generate a large
number of bubble images and pass each through the CNN,
recording the score for the true class label. However, this
is prohibitively expensive. Fortunately, our choice of alpha
mask makes local optimization of focal location quite easy.
We can easily compute the gradient of the bubble image
with respect to the Gaussian blob’s center, and use stochas-
tic gradient descent with the back-propagation algorithm to
compute the gradient with respect to the bubble location,
moving the bubble along that gradient until we reach a local
optimum. In the setting where we wish to mine for discrim-
inative patches, we know the class label for the image, so
we can minimize cross entropy between the true label and
the prediction distribution. In the setting where we wish to
predict the class label for a test image given only one bubble
to view at a time, we minimize the entropy of the prediction
distribution. We present a more rigorous justification of our
algorithm in Section 5.

This optimization has many local minima, so we sample
128 initial bubble locations per image at random and run



SGD for 10 iterations to optimize the position of each bubble
according to the gradient of the loss function. The bubble
with the minimum loss at the end is selected as the most
discriminative bubble for that image.

3.2. Patch Clustering

Having discovered discriminative patches in each photo,
we now cluster them to produce better visualizations and to
build detectors for finding these patches in new photos.

We apply our BubbLeNet to a validation set of photos
and find bubble locations that maximize the correct class
label. We then take the top scoring bubble per photo. Each
photo in our validation set now has a normal image and
a bubble image as well as corresponding feature vectors
extracted from the penultimate layer of our CNN (e.g., fc7
for AlexNet) for both normal and bubble images. We split
this set of CNN features into two groups. We denote the
these sets Snormal and Tnormal, and the associated bubble
image feature sets Sbubble and Tbubble. Our algorithm then
(1) clusters the bubble images into groups of similar bubbles,
and (2) builds a classifier for each such cluster that predicts
whether a normal image contains that visual element.

This algorithm is based on [18]. We begin by running
k-means clustering on the elements of Sbubble and use the
cluster assignments as labels to train a linear multiclass SVM
on Sbubble. The resulting SVM is applied to the holdout set
Tbubble. The class prediction for each element in Tbubble is
used as its new label and we train a linear multiclass SVM on
Tbubble. This second SVM is applied to the new holdout set
Sbubble. These predictions are propagated from the elements
of Sbubble to their corresponding elements of Snormal and
a third linear multiclass SVM is trained. This produces an
SVM that can take a normal image and predict whether a
patch class is contained within.

Unless we have prior knowledge of the number of clusters
for a given dataset, we opt to over-provision the clusters, then
rank them to determine which ones to keep. Like [18], we
build a ranking function based on two measures of cluster
quality. The first is entropy: we want a cluster to cover a
small number of classes, i.e., have low entropy. The second
is confidence: we want the scores of the top activations in the
cluster to be high. Therefore, for each cluster we compute
entropy minus λ times the sum of the top N SVM scores.
We used N = 5, λ = 0.01 in our experiments. We apply
this function to each cluster and rank them accordingly.

The results of this algorithm are a ranked set of bubble
image clusters and a detector for each cluster. Because the
bubbles in each image have a small footprint, we can also
extract a patch from each bubble image as a square region
containing the bubble. These can be used for visualization.
Figure 4 shows examples of some of these clusters for a
variety of datasets (see supplemental for more).

Discussion. Our patch discovery and clustering algorithm

Figure 2. StreetViewCities dataset. Several tiles shown from var-
ious cities. The number of images per city varies from 102,192
(Venice) to 964,703 (Tokyo). Each 360◦ spherical panorama has
been cropped to produce 7 tiles. Can you guess each city?2

Figure 3. InstagramPeople dataset. Several examples of cropped
people from the InstagramPeople dataset. Networks were trained
on crops shown resized to network input dimensions.

has several key features worth noting. It learns a network
that can jointly classify both normal and bubble images. This
property is very useful for building classifiers that predict
the presence of a visual element from a normal image. In
addition, because the network can model spatial location, the
patch clusters we discover not only can encode appearance
information, but also spatial distributions (e.g., if a feature
usually appears towards the bottom of an image).

4. Datasets
We evaluate on a range of existing datasets, plus two

large, new datasets: StreetViewCities and InstagramPeople.
Existing datasets. Our method is designed to highlight
discriminatively informative content between classes in a
dataset, so large-scale, fine-grained datasets are ideal. CUB-
200-2011 [23] is a standard bird dataset for fine-grained
classification. We crop the images with a padded bounding
box and we do not use the part annotations. Food-101 [3]
is a fine-grained food classification set. Indoor67 [16] and
Places205 [30] are datasets of scene images. Places205 is
much larger, while Indoor67 has been used in much prior
work. Finally, we apply our method to ILSVRC12 [17].
StreetViewCities. To mine visual elements from cities, in
the spirit of [6] (but on a much larger scale), we built a
very large-scale database of Street View images of 44 cities.
Google Street View photos were acquired by randomly sam-
pling pre-defined regions of the world. First we randomly
sampled a city from a short list of populous cities, and then
sampled a geodetic coordinate uniformly at random from that
city’s bounding box. If Street View found a panorama within
50 meters of our query, we retained the preprocessed tiles.
Figure 2 highlights tiles from several cities. Each tile was



then resized to 256x256. We performed additional filtering
for the experiments in this paper. The dataset was subsam-
pled such that no two panoramas are within 30 meters of
each other to produce 15.4 million photos. Next, the dataset
was further subsampled to provide balanced classes. Finally,
a 99-1 training-test split was made with the constraint that
all tiles from a single panorama were placed entirely in the
same part of the split. This final training set contains about
4.5 million photos. (See supplemental for a full list of cities.)

InstagramPeople. We are also interested in exploring ele-
ments, such as fashion, that distinguish people in different
cities, or at different times, from one another. To that end,
we built a dataset of Instagram photos taken in cities around
the world, along with people detections in each photo. To
build this dataset, we created a list of populous cities and for
each city queried the Instagram API for public photos taken
within 5km of the city center. We remove exact duplicates,
and then each photo is then passed through a deformable
part model detector [8] trained on images of people. This
people detector has a low false positive rate, but we further
cleaned it using MTurk (see supplemental for details).

To provide precise face localization and to filter out pho-
tos where a person is facing away from the camera, we ran
all of our people detections through the faceplusplus.com
face detection API. Each image additionally contains time,
place, and weather annotations. Figure 3 shows several ex-
ample detections used in this dataset. Each detection has
been pose normalized such that that face appears in the same
location and at the same scale.

InstagramPeople can be used in many different ways. We
show results in Table 1 for classifying people in NYC during
summer vs. winter, labeled InstagramSeasons. The
full size of the dataset is 16.2 million people and each image
contains on average 2.36 people.

5. Experiments
We now evaluate our mining algorithm from Section 3.

In particular, we validate that our three stage fine-tuning
protocol makes training a network to recognize entire images
from isolated bubbles feasible, that we can mine for the best
regions in a dataset automatically, and that those regions are
in fact discriminative both qualitatively and quantitatively.

5.1. Raw Classification Performance

We first evaluate the performance of each stage of our
classifier on different types of input for each dataset—for
instance, testing how well a network trained only on normal
images performs on bubble images. These classification
numbers are in Table 1 (using two base network architec-
tures, AlexNet and GoogLeNet [20]). All of the accuracies

2Top row: Vancouver, Tel-Aviv, Hong Kong, Amsterdam, Singapore.
Bottom row: San Francisco, Tokyo, Taipei, Barcelona, Seoul.

AlexNet/GoogLeNet FoveaNet BubbLeNet
Normal Foveal+Normal Bubble+Normal
Foveal Foveal Foveal Foveal Bubble

Dataset Architecture Normal Random Best Normal Random Best Best
CUB-200-2011 AlexNet 0.673∗ 0.018 0.053 0.561 0.263 0.319 0.481
CUB-200-2011 GoogLeNet 0.810† 0.035 0.147 0.737 0.403 0.459 0.655
Food-101 AlexNet 0.689∗ 0.034 0.058 0.646 0.341 0.392 0.391
Food-101 GoogLeNet 0.764† 0.042 0.081 0.782 0.451 0.594 0.561
ILSVRC2012 AlexNet 0.574‡ 0.009 0.270 0.445 0.210 0.275 0.277
ILSVRC2012 GoogLeNet 0.688§ 0.021 0.072 0.435 0.149 0.214 0.235
MIT Indoor67 AlexNet 0.714¶ 0.033 0.033 0.688 0.382 0.444 0.450
MIT Indoor67 GoogLeNet 0.714† 0.043 0.067 0.702 0.398 0.533 0.584
MIT Places205 AlexNet 0.506‖ 0.017 0.025 0.472 0.272 0.312 0.256
MIT Places205 GoogLeNet 0.504† 0.035 0.025 0.495 0.275 0.346 0.311
StreetViewCities AlexNet 0.692∗ 0.027 0.021 0.678 0.272 0.326 0.300
StreetViewCities GoogLeNet 0.690† 0.037 0.036 0.708 0.328 0.397 0.400
InstagramSeasons AlexNet 0.716∗ 0.500 0.530 0.721 0.596 0.585 0.618
InstagramSeasons GoogLeNet 0.716† 0.510 0.495 0.703 0.634 0.634 0.659

Table 1. Raw classification performance. A synopsis of classifier
performance for different types of input (normal, foveal, and bub-
ble) and each stage of fine-tuning. Foveal random indicates that at
test time, a single, randomly-sampled focal location is used to pro-
cess the input that the classifier sees. Foveal best and bubble best
indicate that the network is allowed to search for the focal location
that produces the lowest entropy prediction distribution. ∗Fine-
tuned from [10] reference CaffeNet. †Fine-tuned from [10] refer-
ence GoogLeNet. ‡Original [10] reference CaffeNet. §Original
[10] reference GoogLeNet. ¶Fine-tuned from [30] Hybrid-CNN.
‖Original [30] Places205-CNN.

for normal images in AlexNet/GoogLeNet are competitive
with state-of-the-art results.3 For all datasets, results were
computed on the test set, with the exception of ILSVRC12
which was computed on the validation set. This table high-
lights several interesting properties of our bubble training
method:
Normal networks don’t do well on foveal images. If a
AlexNet/GoogLeNet (normal-image-trained) classifier is
given a foveal image, it will nearly randomly guess, even if
the focal location is optimized to produce more confident
predictions (column “foveal best”). This motivates the use
of fine-tuning to adapt the network to a configuration that
can predict both normal and foveal/bubble images.
Foveal images can be classified with a FoveaNet. The
FoveaNet numbers show that it is indeed possible to pro-
duce a network that has non-trivial performance on im-
ages with such restricted content. Many of our datasets
have FoveaNets that can perform almost half as well as a
AlexNet/GoogLeNet applied to the full normal images (an
exception being ILSVRC12).4 In addition, by optimizing
the focal location to minimize prediction entropy (“foveal
best”), foveal performance for each FoveaNet improves sig-
nificantly, indicating that this “saliency landscape” is some-
thing that we can explore using SGD and backprop to drive

3 In terms of Indoor67 and Food-101, our networks exceed prior pub-
lished methods [14] [3]. Baseline networks from which we fine-tuned
were provided by [10] and [30]. Therefore, we replicate their reported
performance on ILSVRC12 and Places205. We do fall slightly short for
CUB-200-2011, but it does come very close to the best reported result of
68.29% [28] (no parts oracle-ft setting).

4Datasets such as Indoor67, Places205, and Food-101 are constructed
in such a way that looking at any random location in the photo will often
give some clue as to the correct class label. However, datasets such as
StreetViewCities often have sections such as the sky that are common
across all classes.

http://www.faceplusplus.com
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Figure 4. Extracted patch clusters. Patches extracted from clus-
ters with low entropy. We show one example in the lower left of
each cluster with a mask indicating the size of the Gaussian bubble
used during discovery. The majority class label is shown below
each cluster.

the focal location.

Bubble images can be classified with a BubbLeNet. Bub-
bLeNet shows the performance of the classifier used to mine
patches after the entire background has been removed. This
is the classifier we use for our other evaluations. The per-
formance of classifying optimized bubble images is signifi-
cantly above chance. This shows that we can indeed classify
images based on finding single discriminative bubbles. Inter-
estingly, in some cases bubble image performance exceeds
that of the foveal images (e.g., for CUB-200-2011). Adding
foveal images also sometimes boosts classification perfor-
mance for normal images (e.g., Food-101 with GoogLeNet).

5.2. Qualitative Results

In order to get a visual sense of what kinds of elements
our algorithm discovers, we ran our patch discovery and
clustering algorithm to generate visual elements for each
dataset. Figure 4 shows a few patches from five clusters of
each dataset. For CUB-200-2011, often the best place to
look was the birds’ heads. However, for some species such
as the Geococcyx it is better to look at the body.

For some ILSVRC12 classes it is difficult to actually see

the object anywhere in the image. For one such class (hockey
puck), our patch selection method does highlight, however,
that it is important to look near the ice by the players, rather
than elsewhere, such as the players’ helmets. Some classes,
such as the winecellar in Indoor67, have multiple important
components. Figure 4 shows one component highlighting
racks of bottled wine, and another component highlighting
wine barrels. Most of these high-scoring patch classes are
easily identifiable as a particular element. Like Doersch et
al. [6], we find metal railings in Paris as a distinctive element,
as well as interesting types of features in other cities (e.g.,
motorbikes in Jakarta).

5.3. Discriminability

While our main goal is to extract a human interpretable
representation of categories, we also wish to evaluate our
method quantitatively—how good of a representation of the
data does our method produce? To facilitate comparison
with prior work [18, 5, 14, 13, 24, 19, 3] we evaluate using
Indoor67. There are often two goals at hand. One is to show
that the patch mining method itself produces a set of mid-
level features that are well-suited for learning a classifier.
However, our baseline CNN produced by fine-tuning outper-
forms all prior work. Perhaps more interesting is how well
the mid-level representation acts as a method of compres-
sion. For instance, how well can we encode the 67 classes in
Indoor67 with as few visual elements as possible?

Figure 5 shows the trade-off between representation size
and discriminability for a range of methods, including our
own (red line). To create an image encoding with our method,
we use a method inspired by the BubbleBank algorithm [4]:
we take the top K scoring bubble clusters produced by our
algorithm, and, for a given input image run each of the
classifiers for these clusters on the input image. These K
classifier outputs are then stacked into a vector, and a new
SVM is learned for categorizing based on this representation.
Compared to bag-of-words methods, our approach detects
each visual element once on the entire image, and also takes
into account any spatial information encoded in the classifier.

Figure 5 (top) plots the performance of our method as a
function of number of patches per class, and similarly plots
the results of other published methods on this dataset. The
results of running PCA or random projections on the penul-
timate CNN vectors are plotted for comparison (note that
these representations are not sparse). As the figure shows,
our method requires only a couple of patches per scene class
to exceed the performance of the 20-50 patches per class
used in prior work (the closest competitor is the MDPM al-
gorithm, which also uses deep learning [14]). This suggests
that (a) scenes in Indoor67 can often be classified accurately
with only a couple canonical elements per scene, and (b)
the invariances baked into the CNN are what make the good
performance possible. Despite these invariances, we find



Figure 5. Indoor67 evaluation. Top: Our patch selection method
allows us to select a very small set of semantic elements as a repre-
sentation, yet still retain good classification performance. Bottom:
We validate two alternate BubbleBank design choices. (1) We take
the BubbleBank feature vector (a) or PCA applied to the penulti-
mate layer of the CNN (b) and perserve the top N features of each
descriptor while setting the remaining to zero. For example, N = 1
would produce a feature vector with exactly 1 non-zero located
in the position of the component with largest magnitude. (2) We
use only the top N ranked bubble features given by (a) a random
ranking or (b) our ranking.

that the visual elements are still understandable. Please see
the supplemental material for a more comprehensive set of
patches shown in Figure 4.

Figure 5 (bottom) shows the effect of (1) sparsifying
BubbleBank feature vectors rather than using PCA on the
penultimate CNN layer and (2) using our ranking to se-
lect which clusters are to be included in the BubbleBank
feature vector to build more concise representations. (1)
shows that only a few non-zeros in this vector are needed for
good classification suggesting the representations are much
sparser compared to dimensionality-reduced vectors from
PCA and (2) shows that incorporating clusters according to
our ranking leads to better classifiers than selecting clusters
at random.

5.4. Localization

We perform two experiments to evaluate the localization
power of our method. In the first experiment, we measure
how closely the most discriminative part per photo in the
CUB-200-2011 dataset matches to a part annotation. If a
element is close to a part, that suggests we are correctly
localizing near an object of interest. We measure this by
normalizing image coordinates to [0, 1] × [0, 1] and com-
puting the Euclidean distance between the centroid of the
optimal bubble and its nearest visible part. We compare
this to random guessing. The histogram in Figure 7 shows

Figure 6. Occlusion analysis. Given a AlexNet/GoogLeNet clas-
sifier, we analyze how much the classification score is impacted
by occluding parts at random and as guided by our discriminative
bubbles.

Figure 7. Part localization. Normalized distance to closed part
for the bubble location that maximizes correct class label on CUB-
200-2011. Our bubble method chooses locations closer to part
annotations more often than random guessing.

that the distributions of element-to-part distances clearly dif-
fer where random guessing has a median of 0.140 and our
method has a median of 0.091.

The second experiment measures the performance of the
original AlexNet/GoogLeNet classifiers applied to unaltered
images and to images that have had a grey occluder box
inserted as in [27]. Bubble images can be seen as a additive
method; the occluder box is a subtractive method. In this
experiment, we select one location for this occluder per
image based on the most discriminative part detected by
our bubble method. Figure 6 compares the performance of
several AlexNet/GoogLeNet classifiers on bubble-guided
occluders and random occluders. The performance drops
significantly, and much more if the occluder is guided by our
bubble method than by random guessing, suggesting we are
locating salient features.

5.5. Exploring Visual Data

The ultimate goal of our method is as a tool for visual
discovery. To conclude, we use our technique to explore
visual elements of our datasets across time and space.
How do people change over a year? There are many inter-
esting questions about the appearance of people over time,
relating to fashion, weather, and so on. As a simple experi-
ment, we took photos of people from NYC from our Insta-
gramPeople dataset and learned a bubble image classifier
that predicts the month when the photo was taken. Rather
than train an n-way classifier, we opted to train a shared
CNN to produce an intermediate representation on which
a large set of one-versus-one logistic regressors could be
trained; the entire network was fine-tuned end-to-end. The
results are shown in Figure 8 as a matrix of one-to-one test



accuracies. Some observations: adjacent months are hard to
differentiate, and there are clusters of months corresponding
to similar seasons (summer and winter). Furthermore, by
examining the off-diagonal, we find that the classifier can
differentiate between summer and winter.

However, two adjacent months—March and April—are
much more distinguishable than other pairs. What has the
network learned? We ran our algorithm on the task of NYC
March vs. April. It was clear from the extracted patches
(shown in the supplemental material) that clothing had be-
come lighter, but the top-ranked cluster was sunglasses. By
running our detector for this cluster on the 2014 March+April
portion of our dataset, we recorded a sunglasses score (per-
cent photos with thresholded score) for each photo. We also
collected weather condition reports from wunderground.com
and categorized them: clear, cloudy, and precipitation. We
found a strong correlation between the occurrence of sun-
glasses and the weather condition. Namely, the Pearson’s
r of the “sunglasses” signal to the “clear weather” signal is
0.487 and of the “sunglasses” signal to the “cloudy weather”
signal is -0.593 (see Figure 8). This illustrates an end-to-end
use of our algorithm to explore trends in a dataset.
How do people change over space? Style varies across
space as well as time. Can we discover variations in personal
fashion between different locales? To explore this ques-
tion, we ran our method to classify the NYC and London
subsets of InstagramPeople. Figure 9 shows several
top-ranked clusters of patches. Accuracy is 60.8%. Sports
caps, and stripes and certain text on shirts are more discrimi-
native for NYC, while collared and textured shirts and dark,
shiny jackets are more discriminative for London. More
visualizations can be found on our project website.5 Some
clusters are specialized for color, some hair, and others cloth-
ing. However, despite high purity, some clusters remain
difficult to interpret suggesting more is required to guarantee
interpretability than enforcing spatial compactness alone.
Limitations. These initial experiments required that we use
some intuition to figure out what signals might be correlated.
An automated discovery system might be able to search
through a diverse body of data to find correlations. We also
present additional qualitative results in the supplemental
material highlighting spatial trends in StreetView photos
for which we do not have a way to automatically validate.
Finally, the high invariance of the CNN features can still
cause some clusters to be too invariant and appear noisy.

6. Conclusion
We presented a simple, scalable, new method for discov-

ering visual elements in large datasets that directly builds on
CNNs via a new form of modified training data. We believe
that such techniques can start to open the door to new kinds

5www.cs.cornell.edu/projects/bubblenet/

Figure 8. Finding temporal correlations. Top: NYC one-versus-
one month classification accuracies. Bottom: We found sunglasses
to be a discriminative element that makes April in NYC visually
distinct from March and correlated them to weather reports.

London

NYC

Figure 9. NYC vs. London patches. We used our method to find
what makes people in NYC visually distinct from London. We
show clusters correlated with NYC (top) and London (bottom).

of visual discovery. In the future, it would be intriguing to
build on our preliminary work to explore fashion, design,
art, and other visual arenas to identify differences across
populations, as well as trends and influences. There are also
a number of other interesting areas for future work. One key
problem is that humans still have to interpret the clusters—
this one represents hats, another represents a certain pattern,
etc. Doing this kind of labeling automatically—perhaps us-
ing text or other cues found on the web, would further enable
automatic interpretation of discovered elements.
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