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Comparative Analysis of Complete
Mammalian Genomes
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Detection of Functional Elements

)

dog
chicken

Fugu

Whole Genome Analysis




Whole Genome Analysis Siepel, Bejerano, Pedersen, et al., Genome Res, 2005



Whole Genome Analysis Siepel, Bejerano, Pedersen, et al., Genome Res, 2005



Whole Genome Analysis



Whole Genome Analysis



Possible Positive Selection
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"Human Accelerated Region 1° (HAR1)
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New Human RNA Structure
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Whole Genome Analysis Data from E. Green & colleagues (Thomas et al., Nature 2003)



Whole Mount in situ Hybridizations
to Zebra Fish Embryos
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Bruce Roe & colleagues
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Introduction to Hidden

Markov Models, Phylogenetic
Models, and Phylo-HMMs




A Markov Model (Chain)

® Suppose Z = (Z), ..., Z1) is a sequence of
cloudy (Zi = 0) or sunny (Z; = |) days

® We could assume days are iid with
probability theta of sun but cloudy and sunny
days occur in runs

® We can capture the correlation between
successive days by assuming a first-order
Markov model:




Three Views
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Process Interpretation

® |et’s add an end state and cap the sequence
with zo = B, z;+| = E, e.g. Z = BOO0OO| 1000E

aoo &11

aB,1
® This is a probabilistic machlne that generates
sequences of any length. It is a stochastic
finite state machine and defines a | grammar.

® We can now simply say: P(z Haz Zit1

P(z) is a probability distrlbutlon over all
sequences (for given alphabet).




A Hidden Markov Model

Let X = (Xi, ..., X1) indicate whether AS bikes
ondayi (Xi= 1) or not (Xi=0)

Suppose AS bikes on day i with probability
thetap = 0.25 if it is cloudy (Zi = 0) and with
probability theta; = 0.75 if it is sunny (Z =1)

Further suppose the Zis are hidden; we see
only X = (X1, ..., X1)

This hidden Markov model is a mixture model
in which the Z;s are correlated

We call Z = (£, ..., Z1) the path




HMM, cont.

® Z is determined by the Markov chain:

ao,0 ai 1

(¢ 01 (¢

ap.1 ao.E

® The joint probability of X and Z is:

P(X7Z) — P(Z)P(X‘Z) — 4B,z H CziyxiGzi,2i 41

where e, .. = P(z;|z;)

® The Xis are conditionally independent given the Z;s

Z1 Ly s
X1 Xo X3




Parameters of the Model

® Transition parameters: as, s, for all
S1,589 € SU {B,E}

® Emission parameters: €5, foralls€ S,z € A

® The transition parameters define conditional
distributions for state s at position i given
state s at position i-|

® The emission parameters define conditional
distributions over observation x given state
s, both at position i

® The observations can be anything!




Key Questions

Given the model (parameter values) and a
sequence X, what is the most likely path!?

7 = argmax_P(x, z)
What is the likelihood of the sequence!?

P(x) =) P(x,z)

What is the posterior probability of Z; given
X

What is the maximum likelihood estimate of
all parameters!?




Graph Interpretation of
Most Likely Path




Graph Interpretation of
Probability of x




Viterbi Algorithm for
Most Likely Path

® | et vij be the weight of the most likely path
for (xi, ..., xi) that ends in state j

® Base case:vog = |,vi=0fori>0
® Recurrence: v;; = €, j mI?JXUi—l,kak,j
® Termination: P(x,z) = MAX VL, kk, B

® Keep back-pointers for traceback, as in
alignment

® See Durbin et al. for algorithm




Example




Example




Why HMMs Are Cool

® Extremely general and flexible models for
sequence modeling

e Efficient tools for parsing sequences

® Also proper probability models: allow
maximum likelihood parameter estimation,
likelihood ratio tests, etc.

® |Inherently modular,accommodating of
complexity

® |n many cases, strike an ideal balance
between simplicity and expressiveness




Some Applications In
Bioinformatics

Model of

verlap models
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Stop codons

Intergene models

Start codons

Krogh, Mian & Haussler, 1994




3’ splice site coding exon 5’ splice site
start codon stop codon

start codon stop codon
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3’ splice site coding exon 5’ splice site

Siepel & Haussler, 2004
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Burge & Karlin, 1997




HMMs Generalize
Motif Models
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Krogh et al., 1994
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Forward Algorithm




Forward Algorithm

Let fi; be the (marginal) probability of (x, ...,

GndZ,—_l f'Lj_P(ajlw' ajZ?Z’L_])
Base case:fog = |,fis=0fori>0

Recurrence: fi; = es, ; Zfz 1,k 0k,

ZfL Ak E

Termination: P(x

9 - ex’baj

i)
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Backward Algorithm
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Backward Algorithm

Let b;j be the (marginal) probability of (xi+1, ...,

givenzi=j. b; ; = P(xj41,...,20]|2: = J)
Base case: byj = a;je for all states |

Recurrence: b;; =) ajrer,,, kbis1k
k

Termination: P(x) = ZGJB,kescl,kbl,k

XL)

23




Forward/Backward
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Real-world Use
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Typical Phylogeny




Recent Vertebrate Phylogeny 27




Questions

® What is the tree?

® What were the ancestral states (genomes,
genes, etc.)?

® When did the divergences occur?

® What is the process!?

® Where are the genes!?

28
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The Data

Orriginally, morphological “characters” such
as number of toes, shape of tooth

Continuous traits

DNA or amino acid sequences™
Gene order or copy number
Gene expression patterns

Networks
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General Approaches

Parsimony: search for tree and ancestral
states requiring the fewest events

Distance matrices: define distance function
on taxa, find tree that best approximates
matrix of pairwise distances

Statistical: define probabilistic model,
perform ML or Bayesian inference

Other approaches: compatibility, quartet
methods, phylogenetic invariants, Hadamard
methodes, ...
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Parsimony for Sequences

® Given a multiple alignment X and a tree T, let
Ur(X) be the minimum number of changes
(substitutions) along the branches of T
required to explain X

® |f Ur(Xj) is the minimum number of changes
for column i of X, then

Ur(X) =Y Ur(X;)
® We seek the best-scoring tree,
T = argmin,Up(X)

® Ancestral sequences reconstructed in passing




Sankoff’s Algorithm

Let xx be the base at node k. Let Sk(a) be
min. no. changes beneath k, given xx = a

Base case (leaf k): /
5 )]0z =a k
K(a) = oo otherwise (X« = a)
Recurrence (ancestor k, children i & j):

Se(a) =min (5,(8) + I(a # b)
+ mgn (Sj(c)+ I(a # c)) i

a

32




Parsimony Example

3

3

4

2
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Problems with
Parsimony

Incapable of dealing with multiple hits.
Especially a problem with long branches

Not a natural framework for addressing the
correlation between “weights” and branch
lengths

Not consistent!

We would like a statistical approach
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Poisson Processes

® | et f(x|t) denote the probability of x events
in an interval of length t

® Suppose f(x|t) obeys the Poisson postulates:

. f(1]t) =Xt +o(t) [A>0, limo(t)/t = 0]

2. ) f(zlt) = o(t)

3. The numbers of events in nonoverlapping
intervals are independent

® Then x has a Poisson distribution:
)\t x — M\t
Flaf) = 2

!
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b

o
It
P(bla,t) = {

Jukes-Cantor Model

Suppose DNA substitutions occur by uB’g‘D?%uB

a Poisson process
P T<G
Some change occurs at rate 4u/3. A new base

is randomly drawn from the four possibilities.

On a branch of length t, the probability of 0
events is: e *u/3

The probability of >I events is: 1 — ¢ ~44¢/3

The probability of b|a is thus:

—4ut/3 i i(l _ 6—4ut/3) _ i(l 4+ 36—4ut/3) b—a
(1 . 6—4ut/3) b ?é a

N

36
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Jukes-Cantor, cont.

(Ds)

Jukes & Cantor, 1969; Felsenstein, 2004
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Kimura’s Model

e " A<> C
Distinguishes between transitions Q
and transversions 51X15
. T<—->ﬁ G
Scaling constraint: o+ 28 =1
S . R 1 Q
This implies: o= ==, /=577 [R: %]

It can be shown that:

.. 1 1 2R —1 1 2
P(transition|t) = 1 3P|~ t|+ 7 XP ——t

+
11 2
9 2P\ TR

These relationships are also invertible

P(transversion|t) =

Kimura, 1980




Some Other (DNA) Models

® Felsenstein, 1981 (F81): Rates proportional to
equilibrium frequencies (7a,7c,Ta, TT)

® Felsenstein, 1984 (F84): Rates proportional to
equilibrium frequencies, transition/
transversion bias

® Hasegawa-Kishino-Yano, 1985 (HKY85):
Similar to F84 but different parameterization

® TN93: Generalizes both F84 & HKY85, allows
for unequal A-G and C-T transition biases




A General Framework

—qA,Cc —4A,G — 4AT qa,c qaA,G qA, T
qc,A —qc,A —qc,G — 4qc,T qc,G qc,t
4G, A qG,c —qG,A — 4G,c — 4G, T qG,T7
qr,A qr,c qr,G —dq1.,A — 41, — 41,G

Subject to: )Y madup =1

40




Time-Reversibility
The process is reversible if, for all a and b,

Taqa,b — Tbqb,a
where 7 is the equilibrium frequency of base x

This is not the same as requiring Q to be
symmetric, but it does impose a kind of
symmetry on the process

At equilibrium, the expected numbers of a-to-
b and b-to-a substitutions will be equal

Reversibility has nice mathematical properties
and in most cases is not strongly contradicted
by real biological data

41
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The REV (GTR) Model

® The most general reversible model is:

( —  ame bmg cmp \

_lama — dmng frr

Qrev = bra drnc —  g7mT
\cma frc gne  — )

® This model has eight free parameters
(accounting for constraints) and a stationary
distribution of ™ = (w4, 7o, Tq, TT)

® |n practice, 7 is often taken to be equal to
the observed relative frequencies and the
other five parameters are estimated by ML
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Others are Special Cases
/— u/3 u/3 u/S\

w3 - u/3 u/3 /1111
Quc = u/3 u/3 —  u/3 ﬂ-_<1’1’1’1>
\u/S u/3 u/3 —)
- pf a f
B /ﬁ — a\ /1111
Qo =, 5 - 3 "‘(Z’Z’Z’Z)
\8 o 8 -
(— TC KRG 7TT\
TA — (ye KRTT

= (TA, TC, TG, TT)

QHKY —




Computing Probabilities

® Suppose discrete Markov process with
transition matrix A

® | et P(k) be the matrix of conditional
probabilities after k steps. That is,

P.s(k) = P(b|a,k). Note P(0) = I

® Recall that P(k) = P(k-1)A, so that P(k) = AX
(because P(bla,k) ZP cla,k —1)acy )

® Therefore:
AP(k) = P(k) — P(k — 1)
—Pk— 1A - P(k—1)
—P(k—1)(A—T)

44




Continuous Analog

® Suppose each step represents a tiny segment
dt of a branch of length t,so k =t/ dt. What
happens as dt approaches 0?

® |t can be shown that P(t) is continuous, and
that a differential equation analogous to the

above arises: ;

SP(t) = P(H)Q
® This equation has solution:
2 3
P(t) =¥ =1+ Qt + Q;Z + Q6t3 + -

Q'
Z

45




Diagonalization

® |n practice, we diagonadlize Q:
Q =UAU"

® Now:

[
M]3
a
>

<
-
5

46




Computing Likelihoods

® Suppose X is a (gapless) alignment of x{!) and
x?), with X as the ith column.

X;
x() = AATCGGTACGA. ..
x® = ATTCAGCACGT. .. y
® The sequences are derived from an
unobserved ancestral sequence y
L () x@
® Assuming independence, X

L

L
P(X’Q7t7ﬂ-) — HP(XI‘QatJ 7T) — Hzp(x§1)7x§2)7yZ‘Qata Tl')
i=1

1=1 y;

® Assuming stationarity,

PV, 2 4i|Q, t, ) = my, Pt |yi, Q) P(2 |ys, Q, 1)

47




Likelihoods, cont.

® Now suppose X is a multiple alignment of

sequences related by a (known) phylogeny
X x(2k-1)
x() = AATCGGTACGA. . . hel
x® = ATTCAGCACGT. . . S

. e
x® = GTTGACTATGA. . . %

x() x(2) x(k)
e P(xi), ..., x{#1) is a product over branches:
2k—2
P xz(.l),...,:cg%_l) =T (2k—1) P xgj)\xfarem(j),t-
() = 1T 2 (1001

® But we need:
PV )= Y P )

7
wgk—f—l) x§2k—1)

.....

48




Recall: Sankoff’s Algorithm

® Let x« be the base at node k. Let Sk(a) be
min. no. changes beneath k, given xx = a

® Base case (leaf k): ) /

S, (a) 0 xr=ua
a) = _
g oo otherwise (Xk = a)

Sk(a) :mbin (5:(b) + w(a — b))

+ mcin (S;(c) +w(a — c)) i

a

49




Felsenstein’s Algorithm

Let P(x®) | x%) = a) be the probability of the
observed bases beneath node k, given x¥) = g

Base case (leaf k): /
1 2t =g¢q k

Pz |z = g) = {

Recurrence (ancestor k, children i & j):

Px®)z®) =a) =) Pz = b)P(bla, t;)
b

Termination:

Pz

.....

0 otherwise (Xk = G)

X ZP(x(i)|m(j) = c)P(cla,tj) |
C (xi=b) (xi=¢)

zF)) = Zﬁap(x(%_—l)‘x(%—l) — q)

50




Estimating Parameters

® We now have an efficient way to compute
the likelihood of a given phylogenetic model,

P(X|T,t, 7, Q)

® |f we fix the tree 7, ML estimation of the
other parameters is a standard nonlinear
optimization problem:
(t,7,Q) = argmax P(X|7,t,7, Q)
t77T7Q
® |t can be solved numerically using well-

known algorithms (e.g., quasi-Newton
methods)

51




Finding the Tree

Unfortunately, finding the tree is still hard.

Like with parsimony, we use heuristic or
branch-and-bound methods to search the
space of trees. Ve compute a likelihood for
each tree and keep the best one.

Unlike with parsimony, we have to solve a
nonlinear optimization problem for each tree!

Divide-and-conquer heuristics can be useful,
because the search space for small trees is
manageable

52




Posterior Probabilities

® What is the posterior distribution of bases at
the root! By Bayes’ rule:

Pz, .. 2|1 = g)1,
Pz .. . xk)

Pz = |2V, ) =

® We have already computed the numerator and
the denominator! (Felsenstein’s algorithm)

® With reversibility, we can root the tree at any
node and compute the posterior distribution

® Possible to compute simultaneously for all
nodes using an “inside/outside” algorithm
resembling the forward/backward algorithm

53




Non-nucleotide Models

® Can define Q in terms of codons, amino
acids, paired nucleotides in RNA structures

® Codon models are especially useful. They
can be parameterized in terms of a
nonsynonymous/synonymous rate ratio w.

® Estimates of this parameter imply negative
selection, positive selection, or neutral
evolution

® |ikelihood ratio tests for positive selection
can be constructed

54




