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Comparative Analysis of Complete
Mammalian Genomes
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Detection of Functional Elements
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Conservation Track

Siepel, Bejerano, Pedersen, et al., Genome Res, 2005
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Conservation Track: GAL1

Siepel, Bejerano, Pedersen, et al., Genome Res, 2005
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Possible Positive Selection

Chondrosarcoma associated gene 1 isoform a
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“Human Accelerated Region 1” (HAR1)

Pollard, Salama, et al., Nature, 2006
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Pollard, Salama, et al., Nature, 2006
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Exon Predictions

Data from E. Green & colleagues (Thomas et al., Nature 2003)
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Whole Mount in situ Hybridizations
to Zebra Fish Embryos

Bruce Roe & colleagues
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Phylo-HMM Used by PhastCons

Siepel, Bejerano, Pedersen, et al., Genome Res, 2005



Introduction to Hidden 
Markov Models, Phylogenetic 

Models, and Phylo-HMMs



A Markov Model (Chain)
• Suppose Z = (Z1, ..., ZL) is a sequence of 

cloudy (Zi = 0) or sunny (Zi = 1) days

• We could assume days are iid with 
probability theta of sun but cloudy and sunny 
days occur in runs

• We can capture the correlation between 
successive days by assuming a first-order 
Markov model:

instead of complete independence: 
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P (Z1, . . . , ZL) = P (Z1) · · ·P (ZL)

P (Z1, . . . , ZL) = P (Z1)P (Z2|Z1)P (Z3|Z2) · · ·P (ZL|ZL−1)



Three Views
1.  

   where

2.  

3.  
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· · ·

P (z) = P (z1)
L∏

i=2

azi−1,zi

ac,d = P (zi = d|zi−1 = c)

Z1 Z2 ZL

az1,z2
az2,z3

azL−1,zL

a0,1

a1,1

a1,0

a0,0

0 1B
P (z1 = 0)

P (z1 = 1)



Process Interpretation
• Let’s add an end state and cap the sequence 

with z0 = B, zL+1 = E, e.g. z = B000011000E

• This is a probabilistic machine that generates 
sequences of any length.  It is a stochastic 
finite state machine and defines a grammar.

• We can now simply say:

P(z) is a probability distribution over all 
sequences (for given alphabet).
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a1,1a0,0

aB,1 a0,E

a0,1

a1,00 1B E
aB,0 a1,E

P (z) =
L∏

i=0

azi,zi+1



A Hidden Markov Model
• Let X = (X1, ..., XL) indicate whether AS bikes 

on day i (Xi = 1) or not (Xi = 0)

• Suppose AS bikes on day i with probability 
theta0 = 0.25 if it is cloudy (Zi = 0) and with 
probability theta1 = 0.75 if it is sunny (Zi =1)

• Further suppose the Zis are hidden; we see 
only X = (X1, ..., XL)

• This hidden Markov model is a mixture model 
in which the Zis are correlated 

• We call Z = (Z1, ..., ZL) the path
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HMM, cont.
• Z is determined by the Markov chain:

• The joint probability of X and Z is:

where

• The Xis are conditionally independent given the Zis
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ezi,xi
= P (xi|zi)

P (x, z) = P (z)P (x|z) = aB,z1

L∏

i=1

ezi,xi
azi,zi+1

· · ·

Z1 Z2 ZLZ3

X1 X2 X3 XL

a1,1a0,0

aB,1 a0,E

a0,1

a1,00 1B E
aB,0 a1,E



Parameters of the Model
• Transition parameters:           for all

• Emission parameters:         for all          ,

• The transition parameters define conditional 
distributions for state s2 at position i given 
state s1 at position i-1

• The emission parameters define conditional 
distributions over observation x given state 
s, both at position i

• The observations can be anything!
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s1, s2 ∈ S ∪ {B, E}
as1,s2

es,x s ∈ S x ∈ A



Key Questions
• Given the model (parameter values) and a 

sequence X, what is the most likely path?

• What is the likelihood of the sequence?

• What is the posterior probability of Zi given 
X

• What is the maximum likelihood estimate of 
all parameters?

8

ẑ = argmax
z
P (x, z)

P (x) =
∑

z

P (x, z)



Graph Interpretation of 
Most Likely Path
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Graph Interpretation of 
Probability of x
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Viterbi Algorithm for 
Most Likely Path

• Let vi,j be the weight of the most likely path 
for (x1, ..., xi) that ends in state j

• Base case: v0,B = 1, vi,B = 0 for i > 0

• Recurrence:

• Termination: 

• Keep back-pointers for traceback, as in 
alignment

• See Durbin et al. for algorithm
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vi,j = exi,j max

k
vi−1,kak,j

P (x, ẑ) = max
k

vL,kak,E



Example
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? ? ? ? ? ? ? ? ? ? ? ?

0 1 0 0 1 1 0 1 0 0 1 0X =

Z =

a1,1a0,0

aB,1 a0,E

a0,1

a1,0
0 1B E

aB,0 a1,E
P (xi = 1|zi = 0) = 0.25

P (xi = 1|zi = 1) = 0.75
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Example

0 0 0 0 1 1 1 1 0 0 0 0

0 1 0 0 1 1 0 1 0 0 1 0X =

Z =

a1,1a0,0

aB,1 a0,E

a0,1

a1,0
0 1B E

aB,0 a1,E
P (xi = 1|zi = 0) = 0.25

P (xi = 1|zi = 1) = 0.75



Why HMMs Are Cool
• Extremely general and flexible models for 

sequence modeling

• Efficient tools for parsing sequences 

• Also proper probability models: allow 
maximum likelihood parameter estimation, 
likelihood ratio tests, etc.

• Inherently modular, accommodating of 
complexity

• In many cases, strike an ideal balance 
between simplicity and expressiveness
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Some Applications In 
Bioinformatics
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Nucleic Acids Research, 1994, Vol. 22, No. 22 4773

but this is very unlikely in practice.) Merely comparing the gene
indices of the two opposite predictions is ineffective because a
very short spurious prediction often has a very low gene index.

One simple rule that works almost as well as is simply to always
suppress the shorter of the two.

0
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Gene index

8.85 0.9 0.95 1 1.05 1.1
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Figure 2. Distribution of gene index for 920 genes in the training set (lower dark
histogram). Any genes with a length not divisable by 3 or with unusual start codons
(not ATG, GTG and TTG) or stop codons (not TAA, TAG, and TGA) are not
counted. The inset shows the cumulative distribution, i.e. the fraction of genes
with a gene index below a certain value; the vertical line denotes the average
gene index. For comparison the larger histogram shows the gene index for orfs
(open reading frames) in the training data. The following criteria were used for
selecting orfs: 1) they do not have the same stop codon as a labeled gene, 2)
the length is more than 100 base pairs, 3) if several orfs had the same stop codon,
only the one with the lowest gene index was included.

RESULTS

The performances of the simple parser (Figure 1) and parser with
the more complex intergenic region model (Figure 3) were
evaluated by counting the number of whole genes correctly
predicted before and after post-processing in both the training
and test sets (Table 3). Parser mistakes on gene fragments at the
ends of contigs that were less than 100 bases long were not
counted, because such short end fragments generally contain too
little information for reliable recognition. The table does not
include a number of cases we discarded during testing. These
are 19 genes which had either a stop or start codon different from
the standard ones, a stop codon in the reading frame of the gene
or genes with many unknown bases. Also 17 predictions
subsequently identified as tRNA genes were disregarded. In order
to make a fair comparison the simple parser was augmented with
the two overlap models. Thus, the only difference between the
simple and the more complex parsers is the model of the
intergenic region.
The importance of modelling the intergenic region can be seen

by comparing the results from the complex and simple parsers
both with and without post-processing. In all cases, the rate of
false negatives ('Not found') is approximately 5-6%, i.e., the
two parsers discover roughly the same number of genes.
However, the complex parser has a better accuracy; more of the
discovered genes are perfect or almost perfect. Thus, better
modeling of sequence elements prior to the start of a gene ensures
selection of the correct start of the gene in situations with many
possible start codons.
The surprisingly good performance of the simple parser in

terms of identifying labelled genes is accomplished at the cost
of a much greater number of (possible) false positives (about 50%
more than the actual number of genes, which is around 1000
for the training set and 250 for the test set). However, post-

Stop codons Intergene models

Figure 3. HMM architecture for a parser for E. coli DNA with a complex intergenic model. The gene model above the central state that contains the 61 triplet
models is identical to the gene model of the simple parser shown in Figure 1. The detailed structure of the long intergenic model is shown in Figure 4.

Krogh, Mian & Haussler, 1994
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(For simplicity, transitions to an “end” state are omitted
here.) The likelihood of a phylo-HMM is the sum over all
paths, P (X|θ) =

P
φ P (φ,X|θ), which can be computed

with the forward algorithm, and the maximum-likelihood
path is φ̂ = arg maxφ P (φ,X|θ), which can computed with
the Viterbi algorithm. Each phylogenetic model itself con-
sists of several components, including a substitution rate
matrix, a tree topology, a set of branch lengths, and a
background distribution for nucleotides, which together de-
scribe the “mode” of evolution at a given site (the branching
history of the species, the rate of substitution along each
branch, the “pattern” of substitution, etc.). Details can be
found in recent reviews of HMMs [10], phylogenetic models
[22, 41], and phylo-HMMs [35, 34].

For a phylo-HMM to be applied to exon prediction, some
strategy is required for associating its states with biologi-
cal features of interest. In this paper, we use a very simple
strategy, involving a one-to-one mapping between states and
“labels” for individual sites. Let a feature be a biological en-
tity that spans one or more sites in an alignment, such as an
exon or splice site. (Features are assumed to be consistent
across aligned sequences; see Discussion.) Two kinds of fea-
tures are considered here: “variable-length” features (e.g.,
exons) and “signal” features (e.g., splice sites), which typi-
cally mark the boundaries of variable-length features. Each
feature is associated with a set of labels, such that a label-
ing of sites defines a set of features, and a set of features
defines a labeling of sites. Because labels and states are
associated one-to-one, a phylo-HMM can easily be trained
with a labeled alignment (with labels derived from sequence
annotations), and a predicted state sequence (path) defines
a predicted labeling, which in turn defines a set of predicted
features. Our base model consists of variable-length fea-
tures for exons and noncoding regions, and signal features
for start codons, stop codons, 5′ splice sites, and 3′ splice
sites (Figure 2). The simple strategy used here has obvious
drawbacks (e.g., it erroneously implies a geometric distribu-
tion for exon lengths), but we consider it a reasonable place
to start, given the many other sources of complexity in our
models.

2.2 Context-dependent phylogenetic models
HMM-based gene finders often have states whose emission

probabilities are conditioned on previous observations, so
that differences can be considered in the relative frequencies
of nucleotide tuples in regions of different biological function.
Phylo-HMMs can be adapted to use such “high-order” states
as well, in a way that allows not only the frequencies, but
also the substitution patterns, of tuples of adjacent bases to
be considered [35, 36].

High-order states can be allowed in a phylo-HMM through
the use of phylogenetic models that are defined in terms
of N-tuples of bases. We say that N is the order of such
a model2, and when N > 1, we call the model context-
dependent. Context-dependent phylogenetic models can be
treated much like ordinary phylogenetic models, but have
larger numbers of free parameters, and are computation-
ally more expensive to manipulate. Nevertheless, accurate
parameter estimation is feasible for 2nd and 3rd order mod-
els, with even very general parameterizations of the sub-
stitution rate matrix, provided large enough quantities of

2Somewhat confusingly, an Nth order substitution model is
used for HMM states of order N − 1.

start codon stop codon

5’ splice sitecoding exon3’ splice site

stop codonstart codon

1

3 2

3 2

1

noncoding

coding exon3’ splice site 5’ splice site

CNS

Figure 2: State-transition diagram for ExoniPhy. Each
feature (indicated by a textual phrase in the diagram)
is associated with a set of labels, each of which is iden-
tified with a state. States for variable-length features
are represented by circles, and states for signal features
by boxes. Signal features are generally defined as win-
dows around positions of interest; the shaded boxes in-
dicate the critical positions within each window (e.g.,
the start codon itself, the canonical “GT” in a 5′ splice
site). States for the positive strand are shown at top,
and states for the negative strand at bottom. The CNS
state is optional (see Section 2.3.)

data are available for training. Context-dependent mod-
els fit aligned biological sequences substantially better than
ordinary, independent-site models, in both coding and non-
coding regions, and even improve significantly on existing
codon models in coding regions. These models permit amino
acid substitution rates to be learned implicitly from nu-
cleotide data, and at the same time capture phenomena
such as the transition/transversion bias and the preference
for synonymous substitutions over nonsynonymous substi-
tutions [36].

Context-dependent phylogenetic models define joint dis-
tributions of N-tuples of alignment columns. To use them
for high-order states in a phylo-HMM, joint probabilities
must be converted to conditional probabilities. This con-
version can be accomplished simply and efficiently with a
two-pass dynamic programming algorithm, based on a miss-
ing data principle [35]. Once conditional probabilities are
available, equation 1 can be replaced by (e.g., for N = 3):

P (φ,X|θ) = bφ1P (X1|ψφ1
)aφ1,φ2P (X2|X1, ψφ2

)

×
LY

i=3

aφi−1,φiP (Xi|Xi−2,Xi−1, ψφi
). (2)

In this paper, a general reversible 3rd order model (R3) is
used for both coding and noncoding states, with a separate
parameter describing the rate of substitution between every
pair of nucleotide triples that differ by one base (multiple in-

Siepel & Haussler, 2004
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motif positions

end

background background

begin

θ1 θ2 θw

θ0 θ0

θw−1

Figure 1: State-transition diagram for an HMM essentially equivalent to the “zero-or-one-occurrence-per-
sequence” motif model.

alignments, and each element xs in that set to be one of the alignments. Each base xs,i from the single-
seequence models is now replaced by an entire alignment column xs,i. For example, x might be a set of the
promoter sequences of human genes aligned with orthologous sequences from mouse and rat, each xs might
be an alignment of a single human promoter sequence and its orthologues in mouse and rat, and each xs,i

might be a column in one of these alignments. (We’ll assume for now, as in my gene-finding work, that
correct alignments are given.) Next, we define θ0, . . . , θw to be phylogenetic models rather than multinomial
distributions. Each phylogenetic model θj has several parameters, describing the phylogeny and substitution
process. Using notation from my phylo-HMM papers, let θj = (Qj , πj , τ j , βj), where Qj is a substitution
rate matrix, πj is an equilibrium (stationary) distribution, τ j is a tree topology, and βj is a vector of branch
lengths. We’ll assume that Qj and πj are defined with respect to the alphabet {A, C, G, T}, and that
the tree topology τ j is given and is the same for all j. The probability P (xs,i|θj) is now computed, as in a
phylo-HMM, by fixing the values at the leaves of the phylogeny according to xs,i and marginalizing over all
possible labels at ancestral nodes. The conditional distributions associated with the branches of the tree are
computed, also as usual, according to a continuous-time Markov model defined by the rate matrix Qj . (The
role of the rate matrix is to define the “pattern” of substitution, i.e., the relative rates of different nucleotide
substitutions; e.g., transitions might occur at a higher rate than transversions.)

Like the single sequence models, the phylogenetic motif model has position-specific distributions over
the four bases (π0, . . . , πw). In addition, it has position-specific branch lengths, indicating the level of
conservation at each position in the motif, and positition-specific substitution patterns. As a result, this
model can potentially detect a distinctive molecular-evolution “signal” associated with a motif, as well as
a signal associated with the sequence of bases in a motif. (The phylogenetic motif model reduces to an
ordinary motif model in the case of single sequence, when the phylogeny collapses to a single node, and only
the equilibrium distributions contribute to the probability of each column.) If you could train the model
with labeled data, it would be expected to improve the performance of ordinary motif models substantially,
assuming good alignments and motifs shared across species. The phylogenetic motif model is essentially the
same as submodels of my gene prediction software that perform reasonably well in the detection of splice
sites and start/stop codons.

With unlabeled training data, however, things are more complicated. First of all, you clearly need a
simplified parameterization—it’s not going to be possible to estimate more than a handful of parameters per
motif position. I’m currently using the following strategy. First, the background model is estimated globally,
for the entire data set (all multiple alignments are pooled). The parameters of this model are subsequently
fixed. When learning a motif, only the equilibrium distribution (3 free parameters) and a single scaling
parameter for branch lengths are estimated for each motif position. In other words, the proportions of the
tree are fixed at those estimated for the background model, but the overall evolutionary rate (inverse of level
of conservation) can be different at each position. I use the F81 substitution model, in which the rate matrix
Qj is defined entirely in terms of the equilibrium frequencies πj = (πj,A, πj,C , πj,G, πj,T ):

Qj =





− πj,C πj,G πj,T

πj,A − πj,G πj,T

πj,A πj,C − πj,T

πj,A πj,C πj,G −





4

phastMotif
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Krogh et al., 1994



Forward Algorithm
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0 0 1 0

0

1

E

B
0 1 0 0

zi

xi

f4,1 = P (x1, . . . , x4, z4 = 1)



• Let fi,j be the (marginal) probability of (x1, ..., xi) 
and zi = j: 

• Base case: f0,B = 1, fi,B = 0 for i > 0

• Recurrence:

• Termination: 

21

P (x) =
∑

k

fL,kak,E

fi,j = P (x1, . . . , xi, zi = j)

fi,j = exi,j

∑

k

fi−1,kak,j

Forward Algorithm

...

fi−1,1

fi−1,2

fi−1,k

fi,j

exi,ja1,j
a2,j

ak,j



Backward Algorithm
22

0 0 1 0

0

1

E

B
0 1 0 0

zi

xi

b4,1 = P (x5, . . . , xL|z4 = 1)



• Let bi,j be the (marginal) probability of (xi+1, ..., xL) 
given zi = j: 

• Base case: bL,j = aj,E for all states j

• Recurrence:

• Termination: 

23

Backward Algorithm

bi,j = P (xi+1, . . . , xL|zi = j)

P (x) =
∑

k

aB,kex1,kb1,k

bi,j =

∑

k

aj,kexi+1,kbi+1,k

...aj,k

aj,1

aj,2

exi+1,k

bi+1,1

bi+1,2

bi+1,k

bi,j

exi+1,1

exi+1,2



Forward/Backward
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0 0 1 0

0

1

E

B
0 1 0 0

zi

xi

P (z4 = 1|x) =
P (x1, . . . , x4, z4 = 1)P (x5, . . . , xL|z4 = 1)

P (x)
=

f4,1b4,1

P (x)



Real-world Use
25

Figure 4. Screen shots of the conservation tracks in the (A) human and (B) S. cerevisiae UCSC Genome Browsers. Each conservation track has two parts,
a plot of conservation scores, and beneath it, a display showing where each of the other genomes aligns to the reference genome. (Darker shading
indicates higher BLASTZ scores; white indicates no alignment.) A separate track labeled “PhastCons Conserved Elements” shows predicted conserved
elements and log-odds scores. In A, exons 7–11 of the RNA-edited human gene GRIA2 are shown. Peaks in the conservation plot generally correspond
to exons and valleys to noncoding regions, but a 158-bp conserved noncoding element can be seen near the 3! end of exon 11. This conserved element
includes the editing complementary sequence (ECS) of the RNA editing site in exon 11. The displays seen when zooming in to the base level at a typical
exon (left) and in the region of the RNA editing site (right; see arrow) are shown as insets. On the left, several synonymous substitutions are visible
(highlighted bases) and the elevated conservation abruptly ends after the splice site, while on the right, there are fewer synonymous substitutions and
the elevated conservation extends into the intron. In the base-level display, the vertical orange bars and numbers above them indicate “hidden” indels
and their lengths—i.e., deletions in the human genome or insertions in other genomes. In B, the S. cerevisiae GAL1 gene and 5!-flanking region are
shown. Strong cross-species conservation can be seen in the regulatory region upstream of the promoter, as well as in the protein-coding portion of
the gene. The conserved element shown at bottom overlaps three GAL4-binding sites (highlighted in base-level view). A fourth GAL4-binding site also
is reflected by a small bump in the conservation scores (left arrow), as is the promoter itself (right arrow).

 on September 13, 2006 www.genome.orgDownloaded from 



Typical Phylogeny
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Recent Vertebrate Phylogeny
27



Questions
• What is the tree?

• What were the ancestral states (genomes, 
genes, etc.)?

• When did the divergences occur?

• What is the process?

• Where are the genes?

• ...

28



The Data
• Originally, morphological “characters” such 

as number of toes, shape of tooth 

• Continuous traits

• DNA or amino acid sequences*

• Gene order or copy number

• Gene expression patterns

• Networks

• ...

29



General Approaches
• Parsimony: search for tree and ancestral 

states requiring the fewest events

• Distance matrices: define distance function 
on taxa, find tree that best approximates 
matrix of pairwise distances

• Statistical: define probabilistic model, 
perform ML or Bayesian inference

• Other approaches: compatibility, quartet 
methods, phylogenetic invariants, Hadamard 
methods, ...

30



Parsimony for Sequences
• Given a multiple alignment X and a tree T, let 

UT(X) be the minimum number of changes 
(substitutions) along the branches of T 
required to explain X

• If UT(Xi) is the minimum number of changes 
for column i of X, then 

• We seek the best-scoring tree,

• Ancestral sequences reconstructed in passing

31

UT (X) =
∑

i

UT (Xi)

T̂ = argmin
T
UT (X)



Sankoff’s Algorithm

• Let xk be the base at node k.  Let Sk(a) be 
min. no. changes beneath k, given xk = a

• Base case (leaf k):

• Recurrence (ancestor k, children i & j): 

• Termination: 

32

Sk(a) =

{

0 xk = a

∞ otherwise

Stree = min
a

Sroot(a)

k
(xk = a)

k

i j

(xk = a)

(xi = b) (xj = c)

Sk(a) =min
b

(Si(b) + I(a != b))

+ min
c

(Sj(c) + I(a != c))



Parsimony Example
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1 2 2 1

A A T T C

2 1 2 1
0 2 2 2

3 3 4 2

0 ∞∞∞ 0 ∞∞∞ 0∞∞∞0∞∞∞ 0 ∞∞∞

T

T

TA



Problems with 
Parsimony

• Incapable of dealing with multiple hits.  
Especially a problem with long branches

• Not a natural framework for addressing the 
correlation between “weights” and branch 
lengths

• Not consistent!

• We would like a statistical approach

34



Poisson Processes
• Let f(x|t) denote the probability of x events 

in an interval of length t

• Suppose f(x|t) obeys the Poisson postulates:

1.  

2.  

3. The numbers of events in nonoverlapping 
intervals are independent

• Then x has a Poisson distribution:

35

∞∑

x=2

f(x|t) = o(t)

f(1|t) = λt + o(t) [λ > 0, lim
t→0

o(t)/t = 0]

f(x|t) =
(λt)xe−λt

x!



Jukes-Cantor Model
• Suppose DNA substitutions occur by           

a Poisson process 

• Some change occurs at rate 4u/3.  A new base 
is randomly drawn from the four possibilities.

• On a branch of length t, the probability of 0 
events is:  

• The probability of   1 events is:

• The probability of b|a is thus:

36

P (b|a, t) =

{

e−4ut/3 + 1

4
(1 − e−4ut/3) = 1

4
(1 + 3e−4ut/3) b = a

1

4
(1 − e−4ut/3) b "= a

≥

A C

GT
u/3

u/3

u/3

u/3

e
−4ut/3

1 − e
−4ut/3

a

b

t



Jukes-Cantor, cont.
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(DS)

(D)

D = ût = −

3

4
ln

(

1 −

4

3
DS

)

Jukes & Cantor, 1969; Felsenstein, 2004



Kimura’s Model
• Distinguishes between transitions            

and transversions

• Scaling constraint: 

This implies:

• It can be shown that:

• These relationships are also invertible

38

A C

GT

α

β
α

β

β

β

β =
1

2(R + 1)

α + 2β = 1

α =
R

R + 1
,

P (transition|t) =
1

4
−

1

2
exp

(

−
2R − 1

R + 1
t

)

+
1

4
exp

(

−
2

R + 1
t

)

P (transversion|t) =
1

2
−

1

2
exp

(

−
2

R + 1
t

)

Kimura, 1980

[

R =
α

2β

]



Some Other (DNA) Models
• Felsenstein, 1981 (F81): Rates proportional to 

equilibrium frequencies

• Felsenstein, 1984 (F84): Rates proportional to 
equilibrium frequencies, transition/
transversion bias

• Hasegawa-Kishino-Yano, 1985 (HKY85): 
Similar to F84 but different parameterization

• TN93: Generalizes both F84 & HKY85, allows 
for unequal A-G and C-T transition biases

• ...

39

(πA, πC , πG, πT )



A General Framework
40

Q =









−qA,C − qA,G − qA,T qA,C qA,G qA,T

qC,A −qC,A − qC,G − qC,T qC,G qC,T

qG,A qG,C −qG,A − qG,C − qG,T qG,T

qT,A qT,C qT,G −qT,A − qT,C − qT,G









A C

GT

qA,C

qA,GqA,T

qC,A

qC,G

qC,T

qG,A
qG,C

qG,T

qT,A

qT,C

qT,G

∑

a,b:a!=b

πaqa,b = 1Subject to:



Time-Reversibility
• The process is reversible if, for all a and b,

where     is the equilibrium frequency of base x

• This is not the same as requiring Q to be 
symmetric, but it does impose a kind of 
symmetry on the process

• At equilibrium, the expected numbers of a-to-
b and b-to-a substitutions will be equal

• Reversibility has nice mathematical properties 
and in most cases is not strongly contradicted 
by real biological data

41

πaqa,b = πbqb,a

πx



The REV (GTR) Model
• The most general reversible model is:

• This model has eight free parameters 
(accounting for constraints) and a stationary 
distribution of 

• In practice,     is often taken to be equal to 
the observed relative frequencies and the 
other five parameters are estimated by ML

42

QREV =









− aπC bπG cπT

aπA − dπG fπT

bπA dπC − gπT

cπA fπC gπG −









π = (πA, πC , πG, πT )

π



Others are Special Cases
43

QHKY =









− πC κπG πT

πA − πG κπT

κπA πC − πT

πA κπC πG −









QK2P =









− β α β
β − β α
α β − β
β α β −









QJC =









− u/3 u/3 u/3

u/3 − u/3 u/3

u/3 u/3 − u/3

u/3 u/3 u/3 −









π =

(

1

4
,

1

4
,

1

4
,

1

4

)

π =

(

1

4
,

1

4
,

1

4
,

1

4

)

π = (πA, πC , πG, πT )



Computing Probabilities
• Suppose discrete Markov process with 

transition matrix A

• Let P(k) be the matrix of conditional 
probabilities after k steps.  That is,             
Pa,b(k) = P(b|a,k).  Note P(0) = I

• Recall that P(k) = P(k-1)A, so that P(k) = Ak 
(because                                         ) 

• Therefore:

44

P (b|a, k) =
∑

c

P (c|a, k − 1)ac,b

∆P(k) = P(k) − P(k − 1)

= P(k − 1)A − P(k − 1)

= P(k − 1)(A − I)



Continuous Analog
• Suppose each step represents a tiny segment 

dt of a branch of length t, so k = t / dt.  What 
happens as dt approaches 0?

• It can be shown that P(t) is continuous, and 
that a differential equation analogous to the 
above arises:

• This equation has solution:

45

d

dt
P(t) = P(t)Q

P(t) = e
Qt = I + Qt +

Q2
t
2

2
+

Q3
t
3

6
+ · · ·

=
∞∑

n=0

Qn
t
n

n!



Diagonalization
• In practice, we diagonalize Q:

• Now:

46

Q = UΛU−1

P(t) =
∞∑

n=0

Qn
t
n

n!

=
∞∑

n=0

(UΛU−1)n
t
n

n!

=
∞∑

n=0

UΛnU−1
t
n

n!

= Ue
ΛtU−1



• Suppose X is a (gapless) alignment of x(1) and 
x(2), with Xi as the ith column.

• The sequences are derived from an 
unobserved ancestral sequence y

• Assuming independence, 

• Assuming stationarity,

Computing Likelihoods
47

P (X|Q, t,π) =
L∏

i=1

P (Xi|Q, t,π) =
L∏

i=1

∑

yi

P (x(1)
i , x

(2)
i , yi|Q, t,π)

P (x(1)
i , x

(2)
i , yi|Q, t,π) = πyi

P (x(1)
i |yi,Q, t)P (x(2)

i |yi,Q, t)

x(1) =
x(2) =

AATCGGTACGA...
ATTCAGCACGT...

Xi 

x(1) x(2)

y



• Now suppose X is a multiple alignment of 
sequences related by a (known) phylogeny

• P(xi
(1), ..., xi

(2k-1)) is a product over branches:

• But we need:

Likelihoods, cont.
48

AATCGGTACGA...
ATTCAGCACGT...

GTTGACTATGA...

x(1) =
x(2) =

Xi 

x(k) =

...
x(1)

...

· · ·

...

x(2) x(k)

x(k+1)

x(2k-1)

P
(

x
(1)
i , . . . , x

(k)
i

)

=

∑

x
(k+1)
i

,...,x
(2k−1)
i

P
(

x
(1)
i , . . . , x

(2k−1)
i

)

P
(

x
(1)
i , . . . , x

(2k−1)
i

)

= π
x
(2k−1)
i

2k−2
∏

j=1

P
(

x
(j)
i |xparent(j)i , tj

)



Recall: Sankoff’s Algorithm 

• Let xk be the base at node k.  Let Sk(a) be 
min. no. changes beneath k, given xk = a

• Base case (leaf k):

• Recurrence (ancestor k, children i & j): 

• Termination: 

49

Sk(a) =

{

0 xk = a

∞ otherwise

Stree = min
a

Sroot(a)

k
(xk = a)

k

i j

(xk = a)

(xi = b) (xj = c)

Sk(a) = min
b

(Si(b) + w(a → b))

+ min
c

(Sj(c) + w(a → c))



Felsenstein’s Algorithm
• Let P(x(k)

 | x(k)
 = a) be the probability of the 

observed bases beneath node k, given x(k)
 = a

• Base case (leaf k):

• Recurrence (ancestor k, children i & j): 

• Termination: 

50

k
(xk = a)

k

i j

(xk = a)

(xi = b) (xj = c)

P (x(k)|x(k) = a) =

{

1 x(k) = a

0 otherwise

P (x(k)|x(k) = a) =
∑

b

P (x(i)|x(i) = b)P (b|a, ti)

×
∑

c

P (x(j)|x(j) = c)P (c|a, tj)

P (x(1), . . . , x(k)) =
∑

a

πaP (x(2k−1)|x(2k−1) = a)



Estimating Parameters
• We now have an efficient way to compute 

the likelihood of a given phylogenetic model,

• If we fix the tree   ,  ML estimation of the 
other parameters is a standard nonlinear 
optimization problem:

• It can be solved numerically using well-
known algorithms (e.g., quasi-Newton 
methods) 
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P (X|T , t,π,Q)

T

(t̂, π̂, Q̂) = arg max
t,π,Q

P (X|T , t,π,Q)



Finding the Tree
• Unfortunately, finding the tree is still hard.

• Like with parsimony, we use heuristic or 
branch-and-bound methods to search the 
space of trees.  We compute a likelihood for 
each tree and keep the best one.

• Unlike with parsimony, we have to solve a 
nonlinear optimization problem for each tree!

• Divide-and-conquer heuristics can be useful, 
because the search space for small trees is 
manageable
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Posterior Probabilities
• What is the posterior distribution of bases at 

the root?  By Bayes’ rule:

• We have already computed the numerator and 
the denominator! (Felsenstein’s algorithm)

• With reversibility, we can root the tree at any 
node and compute the posterior distribution

• Possible to compute simultaneously for all 
nodes using an “inside/outside” algorithm 
resembling the forward/backward algorithm
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P (x(2k−1) = a|x(1), . . . , x(k)) =
P (x(1), . . . , x(k)|x(2k−1) = a)πa

P (x(1), . . . , x(k))



Non-nucleotide Models
• Can define Q in terms of codons, amino 

acids, paired nucleotides in RNA structures

• Codon models are especially useful.  They 
can be parameterized in terms of a 
nonsynonymous/synonymous rate ratio   . 

• Estimates of this parameter imply negative 
selection, positive selection, or neutral 
evolution

• Likelihood ratio tests for positive selection 
can be constructed
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