
  

Gene regulation

● DNA is merely the blueprint
● Shared spatially (among all tissues) and 

temporally
● But cells manage to differentiate 
– Especially but not only during developmental stage

● And cells respond to external conditions and/or 
messages from other cells

● Much of this dynamic response is attained 
through protein or gene regulation: 
– how much and which variant of the gene is present



  

The central dogma



  

Mechanisms of gene regulation

● Pre-transcription: accessibility of the gene
– the chromatin structure which packs the DNA is 

dynamic

● Transcription: rate
● Post-transcription: mRNA degradation rate
● Translation: rate
● Post-translation:
– Modifications

– Rate of degradation



  

Transcription factors
●Bind to specific DNA 
sites: Transcription 
Factor Binding Sites
●Typically downstream 
effect on mRNA 
transcription rate



  

Transcription rate



  

Motif finding

● Motif finding is the computational problem of 
identifying TFBSs

● Implicit assumption: different TFBSs of the 
same TF should be similar to another
– Hence the name motif

● Two related tasks:
– Given a specific model of TF motif compiled from a 

known list of TFBSs find additional sites (scanning)

– Identify the unknown motif given only the DNA 
sequences



  

Modelling motifs

● Consensus pattern:
– generalizes to regular expressions

TACGAT
TATAAT
TATAAT
GATACT
TATGAT
TATATT

● Discovered sites:

TATAAT

1 2 3 4 5 6
A 6 4 4
C 1 1
G 1 2
T 5 5 1 6

● Positional profile:

● How do we model the motif?
– important for finding additional 

sites



  

Generative models

● Consensus pattern: each instance is a 
randomly mutated version of the consensus
– substitution only: the same TF binds to the various 

sites, so indels are unlikely to occur as the DNA-TF 
contact region remains the same

● Profile: instances are drawn according to the 
probability implied by the positional profile 
assuming each position is drawn independently
– Pseudocounts are typically added to avoid 

excluding unseen letters



  

Counts to frequencies profile

1 2 3 4 5 6
A 6 4 4
C 1 1
G 1 2
T 5 5 1 6

1 2 3 4 5 6
A 0.1 0.7 0.1 0.5 0.5 0.1
C 0.1 0.1 0.2 0.1 0.2 0.1
G 0.2 0.1 0.1 0.3 0.1 0.1
T 0.6 0.1 0.6 0.1 0.2 0.7

What is the pseudocount in this example?
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The fitness of a TFBS

• How well does a putative TFBS w fits the model?

• For a consensus model we typically use sC(w) = dH(C,w), the

Hamming distance to the consensus pattern C.

• It is convenient to work with but more appropriate for uniform

nucleotide sample

• For a profile parametrized by M = (fik)i=1:l,k=1:4, it is natural to use

the likelihood score: sM(w) = PM(w) =
∏l

i=1 fiwi

• Better: use the LLR (loglikelihood ratio) score

sM(w) = log
PM(w)
PB(w)

=
l∑

i=1

log
fiwi

bwi

,

where B specifies an iid background model with nucleotide frequency

(bk)41, typically taken from the organism or the scanned sample
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Scanning for TFBS

• Given a parametrized motif model and an associated fitness function

looking for additional sites is algorithmically trivial

• However, setting a cutoff score typically requires carefully analyzing

the FP rates

• These FP rates are set using a model of random sequences

• Markov chains

• shuffling

• using random chunks of DNA
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Motif finding

• Do these sequences share a common TFBS?

• tagcttcatcgttgacttctgcagaaagcaagctcctgagtagctggccaagcgagc
tgcttgtgcccggctgcggcggttgtatcctgaatacgccatgcgccctgcagctgc
tagaccctgcagccagctgcgcctgatgaaggcgcaacacgaaggaaagacgggacc
agggcgacgtcctattaaaagataatcccccgaacttcatagtgtaatctgcagctg
ctcccctacaggtgcaggcacttttcggatgctgcagcggccgtccggggtcagttg
cagcagtgttacgcgaggttctgcagtgctggctagctcgacccggattttgacgga
ctgcagccgattgatggaccattctattcgtgacacccgacgagaggcgtccccccg
gcaccaggccgttcctgcaggggccaccctttgagttaggtgacatcattcctatgt
acatgcctcaaagagatctagtctaaatactacctgcagaacttatggatctgaggg
agaggggtactctgaaaagcgggaacctcgtgtttatctgcagtgtccaaatcctat
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If only life could be that simple

• The binding sites are almost never exactly the same

• A more likely sample is:

tagcttcatcgttgactttTGaAGaaagcaagctcctgagtagctggccaagcgagc
tgcttgtgcccggctgcggcggttgtatcctgaatacgccatgcgccCTGgAGctgc
tagaccCTGCAGccagctgcgcctgatgaaggcgcaacacgaaggaaagacgggacc
agggcgacgtcctattaaaagataatcccccgaacttcatagtgtaatCTGCAGctg
ctcccctacaggtgcaggcacttttcggatgCTGCttcggccgtccggggtcagttg
cagcagtgttacgcgaggttCTaCAGtgctggctagctcgacccggattttgacgga
CTGCAGccgattgatggaccattctattcgtgacacccgacgagaggcgtccccccg
gcaccaggccgttcCTaCAGgggccaccctttgagttaggtgacatcattcctatgt
acatgcctcaaagagatctagtctaaatactacCTaCAGaacttatggatctgaggg
agaggggtactctgaaaagcgggaacctcgtgtttattTGCAttgtccaaatcctat
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Searching for motifs

• Simultaneously looking for a motif model and sites that will optimize

a scoring function is significantly more difficult

• Assume for simplicity the OOPS model (One Occurrence Per Sequence

model): wm ∈ Sm for m = 1 : n

• A natural way to score a putative combination of a motif M and sites

(wm)n
1 is by summing the fitness scores of all sites:

s(M ;w1, . . . , wn) :=
n∑

m=1

sM(wm)

• Thus, our goal is to search the joint space of motifs, M (consensus or

profile), and alignments, wm ∈ Sm, so as to optimize this score

• Fortunately, for both models this can be done sequentially so we do

not have to optimize simultaneously over the alignment and the motif
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Optimizing the motif or the alignment

• Once we choose the alignment, wm ∈ Sm for m = 1 : n, the optimal

motif for that alignment is trivial

• For the consensus model it is a consensus word as it clearly minimizes

the total distance to the words in the alignment

• For the profile model we find with a little more effort that the

best model is the one which coincides with how we define a profile:

fik = nik
n , where nik is the number of occurrence of the letter k at

position i.

• Conversely, if we know the model we can find the optimal sites for the

putative motif by linearly scanning the sequences

• Often a motif finder will combine both the motif’s and the alignment’s

optimizations and indeed they are in some sense equivalent
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Heuristic vs. guaranteed optimizations

• Assume for now l is known (we can enumerate over possible ls) and

let Nm be the length of Sm

• By considering all, roughly,
∏n

m=1 Nm gapless alignments made of

wm ∈ Sm we are guaranteed to find the optimal alignment under both

possible motif models

• Unfortunately, this number is prohibitively expensive for all but

a few cases
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Finding an optimal pattern

• Consistent with our previous discussion under the OOPS model the

score of a consensus word C is often the total distance:

TD(C) :=
n∑

m=1

dH(C,Sm) =
n∑

m=1

min
w′∈Sm

dH(C,w′)

• Problem: find a word C that minimizes the total distance

• Naive solution: enumerate all 4l possible consensus words

• Complexity: O(4lD)
• While this approach is feasible for a larger set of parameters than

the one available for alignment enumeration it is still often too

expensive
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Heuristic approaches: Sample Driven

• Most of the 4l patterns we explore in the exhaustive enumeration have

little to do with our sample

• Sample driven approach: compute TD(w) only for words w in the

sample

• Complexity: O(D2) where D =
∑n

m=1 Nm is the size of the sample

• Analysis:

• fast

• but can miss the optimal pattern if it is missing from the sample

• More sophisticated methods were developed based on the sample

driven approach
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CONSENSUS - greedy profile search (Hertz &
Stormo ’99)

• Assume the OOPS model and that l is given

• There is a version that does not assume l is given (WCONSEN-

SUS)

• CONSENSUS Follows a greedy strategy looking first for the best

alignment of just two sites:

• For each i 6= j, and w ∈ Si, w′ ∈ Sj compute the information

content of the alignment made of w and w′:

I =
l∑

i=1

4∑
k=1

nik log
nik/2

bk

• Keep the top q2 alignments (matrices)
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• It then greedily adds one word at a time from the sequences that are

not already represented in the alignment

• Let m := 3 denote the number of sequences in the current alignments

• While m < n

• for each of the top saved qm−1 alignments A of m − 1 rows

compute I

([
A

w

])
for all words w which come from sequences

that are not already in A

• keep the best qm alignments and set m := m + 1
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MEME (Bailey & Elkan ’94)

• MEME: Multiple EM for Motif Elicitation

• the multiple part is for dealing with multiple motifs

• probabilistic generative model, deterministic algorithm

• Recall that given the motif model we can linearly scan the sequences

for instances

• Conversely, given the instances deducing the profile is trivial

• MEME alternates between the two tasks
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MEME’s outline

• Starting from a heuristically chosen initial profile

• Sample driven: the profile is derived from the word in the sample

that has a minimal total distance

• MEME iterates the following two steps until convergence

• score each word according to how well it fits the current profile

• update the profile by taking a weighted average of all the words

• The EM in MEME stands for Expectation Maximization (Dempster,

Laird & Rubin ’77) which MEME’s two step procedure follows

• EM is guaranteed to monotonically converge to a local maximum

(intelligent choice of a starting point is crucial)
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Gibbs Sampler (Lawrence et al. ’93)

• Probabilistic framework, random algorithm

• Assumes the OOPS model for simplicity (many more variants)

• Suppose we selected putative instances wi ∈ Si, these define the

profile or motif model as in MEME

• As in the EM context we compute the LR score of every word in the

sample: Lw = PM(w)
PB(w)

• In EM we use a soft assignment of words to the list of selected sites

(instances), alternatively we can use hard assignment:

• e.g., we can choose: wi = argmaxw∈Si Lw

• or, we can randomly choose a site with probability proportional

to its LLR score (Gibbs Sampling)

• Iterate
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Gibbs’ outline

• Start with a random choice of wi ∈ Si

• While there has been an improvement in the total LLR score (over all

sites) in the last L (the plateau period) iterations do

• For i = 1 . . . n: remove word wi from the motif model M and

randomly pick a new site from sequence Si with probability

proportional to Lw (an iteration is one such loop)

• Note that there is no convergence in the naive sense

• There is an alternative formulation in terms of a Gibbs Sampler:

the goal is to randomly sample alignments from a distribution where

each alignment’s probability is roughly proportional to its LR score.

The Gibbs Sampler defines an MCMC that converges to a stationary

distribution with that property thus allowing us to sample from this

distribution.
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Is this significant?

• Motif finders always find something

• A high scoring motif reported by CONSENSUS

• The alignment

cCGATAAGGTaAG
TCGATAAGGaGAG
TCGATAAaGTaAG
TCGATAAGGTcAG
TCGATAAGGTGAG

• The profile
A 5 5 5 1 1 2 5

C 1 5 1

G 5 4 5 2 5

T 4 5 4



17

Assessing the significance

• How likely are we to see such alignments or better by chance?

• Clearly you need more information:

• What is the null model, or how are random (chance) sequences

generated?

. typically iid (independent identically distributed or 0-th

order Markov)
• What is the size of the search space:

. How many input sequences are there and how long are

they?

. What was CONSENSUS instructed to look for?
• What is a better alignment, or how do we score a motif

. information content (Stormo 88):
∑L

i=1

∑A
j=1 nij log nij/n

bj



18

Quantifying the significance: the E-value / p-value

• The E-value of an alignment with score s is:

• The expected number of random such alignments with score ≥ s

• . . . given the size of the search space

• An E-value of 0.01 is better than 100

• It is computed by multiplying the size of the search space by the

p-value of the alignment

• The p-value of an alignment with score s is:

• The probability that the score of a random alignment of the same

width and depth is ≥ s
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Phylogenetically aware finders

• So far we looked at de novo motif finders:

• the only input is the set of presumably co-regulated sequences

• Binding sites are functional and functional elements tend to be more

conserved

• Therefore we should look for conserved words in phylogenetically

related species

• This can be done when we search for a known motif (MONKEY -

Moses et al. 2004)

• Or, when looking for unknown motif (PhyloGibbs - Siddharthan et

al. 2005)

• Other finders might add ChIP-chip data (MDscan - Liu et al. 2002)


