Introduction to Support Vector Machines

BTR Workshop Fall 2006

Thorsten Joachims Cornell University

Outline

- Statistical Machine Learning Basics
 - Training error, generalization error, hypothesis space

Support Vector Machines for Classification

- Optimal hyperplanes and margins
- Soft-margin Support Vector Machine
- Primal vs. dual optimization problem
- Kernels

• Support Vector Machines for Structured Outputs

- Linear discriminant models
- Solving exponentially-size training problems
- Example: Predicting the alignment between proteins

Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low.

X

Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low.

Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low.

Example: Spam Filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_{3} = ($	0	0	0	0	1)	$y_3 = 1$

• Instance Space X:

- Feature vector of word occurrences => binary features
- N features (N typically > 50000)

• Target Concept c:

- Spam (+1) / Ham (-1)

- Goal: Find *h* with small prediction error $Err_P(h)$ over P(X, Y).
- **Strategy:** Find (any?) *h* with small error $Err_{S_{train}}(h)$ on training sample S_{train} .
- Training Error: Error Err_{Strain}(h) on training sample.
 Test Error: Error Err_{Stest}(h) on test sample is an estimate of Err_P(h).

Linear Classification Rules

• Hypotheses of the form

- unbiased:
$$h_{\vec{w}}(\vec{x}) = \begin{cases} 1 & w_1 x_1 + ... + w_N x_N > 0 \\ -1 & else \end{cases}$$

biased: $h_{\vec{w}}(\vec{x}) = \begin{cases} 1 & w_1 x_1 + ... + w_N x_N > 0 \\ -1 & else \end{cases}$

- biased:
$$h_{\vec{w},b}(\vec{x}) = \begin{cases} 1 & w_1x_1 + \dots + w_N \\ -1 & else \end{cases}$$

- Parameter vector *w*, scalar *b*
- Hypothesis space H

$$-H_{unbiased} = \{h_{\vec{w}} : \vec{w} \in \Re^N \}$$
$$-H_{biased} = \{h_{\vec{w},b} : \vec{w} \in \Re^N \ b \in \Re\}$$

• Notation

$$-w_1x_1 + \dots + w_Nx_N = \vec{w} \cdot \vec{x} \text{ and } sign(a) = \begin{cases} 1 & a > 0 \\ -1 & else \end{cases}$$
$$-h_{\vec{w}}(\vec{x}) = sign(\vec{w} \cdot \vec{x})$$

1

$$-h_{\vec{w},b}(\vec{x}) = sign(\vec{w}\cdot\vec{x}+b)$$

Optimal Hyperplanes Linear Hard-Margin Support Vector Machine

Assumption: Training examples are linearly separable.

Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. Otherwise, functional margin.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = min_{(\vec{x},y)\in S}y(\vec{w}\cdot\vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is

$$\delta = inf_{S \sim P(X,Y)} min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$$

Hard-Margin Separation

Goal: Find hyperplane with the largest distance to the closest training examples.

Optimization Problem (Primal): $\begin{array}{l} \min_{\vec{w},b} & \frac{1}{2}\vec{w}\cdot\vec{w} \\ s.t. & y_1(\vec{w}\cdot\vec{x}_1+b) \ge 1 \\ & \cdots \\ & y_n(\vec{w}\cdot\vec{x}_n+b) \ge 1 \end{array}$

Support Vectors: Examples with minimal distance (i.e. margin).

Non-Separable Training Data

Limitations of hard-margin formulation

- For some training data, there is no separating hyperplane.
- Complete separation (i.e. zero training error) can lead to suboptimal prediction error.

Soft-Margin Separation

Idea: Maximize margin and minimize training error.

Hard-Margin OP (Primal):Soft-Margin OP (Primal): $\min_{\vec{w}, b}$ $\frac{1}{2}\vec{w}\cdot\vec{w}$ $\min_{\vec{w}, \vec{\xi}, b}$ s.t. $y_1(\vec{w}\cdot\vec{x}_1+b) \ge 1$ s.t. $y_n(\vec{w}\cdot\vec{x}_n+b) \ge 1$ s.t. $y_1(\vec{w}\cdot\vec{x}_n+b) \ge 1-\xi_1 \land \xi_1 \ge 0$ \dots \dots \dots $y_n(\vec{w}\cdot\vec{x}_n+b) \ge 1$ $y_n(\vec{w}\cdot\vec{x}_n+b) \ge 1-\xi_n \land \xi_n \ge 0$

- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin Separation

Idea: Maximize margin and minimize training error.

Hard-Margin OP (Primal): $\begin{array}{l} \min & \frac{1}{2} \vec{w} \cdot \vec{w} \\ s.t. & y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1 \\ & \cdots \\ & y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1 \end{array}$

Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$

- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Controlling Soft-Margin Separation

- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$

Controlling Soft-Margin Separation

- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$

Example: Margin in High-Dimension								
Training \vec{x}						y		
Sample S _{train}	x_1	x_2	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	<i>x</i> ₇	
(\vec{x}_1,y_1)	1	0	0	1	0	0	0	1
(\vec{x}_2, y_2)	1	0	0	0	1	0	0	1
(\vec{x}_{3}, y_{3})	0	1	0	0	0	1	0	-1
(\vec{x}_{4}, y_{4})	0	1	0	0	0	0	1	-1
	\vec{w}						b	
	<i>w</i> ₁	<i>w</i> ₂	w ₃	<i>w</i> ₄	<i>w</i> ₅	w ₆	<i>w</i> ₇	
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	0.5	-0.5	0	0	0	0	0	0
Hyperplane 5	1	-1	0	0	0	0	0	0
Hyperplane 6	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0

SVM Solution as Linear Combination

- Primal OP: minimize: $P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$ subject to: $\forall_{i=1}^{n} : y_i [\vec{w} \cdot \vec{x}_i + b] \ge 1 - \xi_i$ $\forall_{i=1}^{n} : \xi_i > 0$
- **Theorem:** The solution w^* can always be written as a linear combination $\vec{w}^* = \sum_{i=1}^n \alpha_i y_i \vec{x}_i$ with $0 \le \alpha_i \le C$ of the training vectors.
 - of the training vector
- Properties:
 - Factor α_i indicates "influence" of training example (x_i, y_i) .
 - If $\xi_i > 0$, then $\alpha_i = C$.
 - If $0 \le \alpha_i < C$, then $\xi_i = 0$.
 - (x_i, y_i) is a Support Vector, if and only if $\alpha_i > 0$.
 - If $0 < \alpha_i < C$, then $y_i(x_i w+b)=1$.
 - SVM-light outputs α_i using the "-a" option

Dual SVM Optimization Problem

Primal Optimization Problem

 $\begin{array}{ll} \text{minimize:} & P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \, \vec{w} \cdot \vec{w} + C \, \sum_{i=1}^{n} \xi_i \\ \text{subject to:} & \forall_{i=1}^n : y_i [\vec{w} \cdot \vec{x}_i + b] \geq 1 - \xi_i \\ & \forall_{i=1}^n : \xi_i > 0 \end{array}$

Dual Optimization Problem

maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$$

subject to: $\sum_{\substack{i=1 \ \forall i=1}}^{n} y_i \alpha_i = 0$
 $\forall_{i=1}^{n} : 0 \le \alpha_i \le C$

• **Theorem:** If w^* is the solution of the Primal and α^* is the solution of the Dual, then $\vec{w}^* = \sum_{i=1}^{n} \alpha_i^* y_i \vec{x}_i$

Leave-One-Out (i.e. n-fold CV)

Training Set: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$

Approach: Repeatedly leave one example out for testing.

train on	test on
$(\dot{x}_2, y_2), (\dot{x}_3, y_3), (\dot{x}_4, y_4), \dots, (\dot{x}_n, y_n)$	(\dot{x}_1, y_1)
$(\dot{x}_1, y_1), (\dot{x}_3, y_3), (\dot{x}_4, y_4), \dots, (\dot{x}_n, y_n)$	$(\overset{\rightarrow}{x_2}, y_2)$
$(\dot{x}_1, y_1), (\dot{x}_2, y_2), (\dot{x}_4, y_4), \dots, (\dot{x}_n, y_n)$	(\dot{x}_3, y_3)
$(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_{n-1}, y_{n-1})$	(\dot{x}_n, y_n)

Estimate: $Err_{loo}(A) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h_i(\vec{x}_i), y_i)$

Question: Is there a cheaper way to compute this estimate?

Necessary Condition for Leave-One-Out Error

Lemma: For SVM, $[h_i(\vec{x}_i) \neq y_i] \Longrightarrow [2\alpha_i R^2 + \xi_i \ge 1]$ **Input:**

- α_i dual variable of example i
- $-\xi_i$ slack variable of example i
- $||x|| \le R$ bound on length

Example:	Value of 2 $\alpha_i R^2 + \xi_i$	Leave-one-out Error?	
	0.0	Correct	
	0.7	Correct	
	3.5	Error	
	0.1	Correct	
	1.3	Correct	
	•••	•••	

Case 2: Example is SV with Low Influence Criterion: $(\alpha_i < 0.5/R^2 < C)) (\xi_i = 0) (2\alpha_i R^2 + \xi_i < 1))$ Correct

Case 3: Example has Small Training Error Criterion: $(\alpha_I = C) (\xi_i < 1-2CR^2) (2\alpha_i R^2 + \xi_i < 1))$ Correct

Experiment: Reuters Text Classification

Experiment Setup

- 6451 Training Examples
- 6451 Validation Examples to estimate true Prediction Error
- Comparison between Leave-One-Out upper bound and error on Validation Set (average over 10 test/validation splits)

Fast Leave-One-Out Estimation for SVMs

Lemma: Training errors are always Leave-One-Out Errors. **Algorithm:**

- $-(R,\alpha,\xi) = trainSVM(S_{train})$
- FOR (x_i, y_i) 2 S_{train}
 - IF $\xi_i > 1$ THEN loo++;
 - ELSE IF $(2 \alpha_i R^2 + \xi_i < 1)$ THEN loo = loo;
 - ELSE trainSVM(S_{train} \ {(x_i,y_i)}) and test explicitly

Experiment:

Training Sample	Retraining Steps (%)	CPU-Time (sec)
Reuters (n=6451)	0.58%	32.3
WebKB (n=2092)	20.42%	235.4
Ohsumed (n=10000)	2.56%	1132.3

Problem:

- some tasks have non-linear structure
- no hyperplane is sufficiently accurate How can SVMs learn non-linear classification rules?

Extending the Hypothesis Space

Idea: add more features

→ The separating hyperplane in feature space is degree two polynomial in input space.

Example

- Input Space: $\vec{x} = (x_1, x_2)$ (2 attributes)
- Feature Space: $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ (6 attributes)

Dual SVM Optimization Problem

Primal Optimization Problem

 $\begin{array}{ll} \text{minimize:} & P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \, \vec{w} \cdot \vec{w} + C \, \sum_{i=1}^{n} \xi_i \\ \text{subject to:} & \forall_{i=1}^n : y_i [\vec{w} \cdot \vec{x}_i + b] \geq 1 - \xi_i \\ & \forall_{i=1}^n : \xi_i > 0 \end{array}$

Dual Optimization Problem

maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$$

subject to: $\sum_{\substack{i=1 \ \forall i=1}}^{n} y_i \alpha_i = 0$
 $\forall_{i=1}^{n} : 0 \le \alpha_i \le C$

• **Theorem:** If w^* is the solution of the Primal and α^* is the solution of the Dual, then $\vec{w}^* = \sum_{i=1}^{n} \alpha_i^* y_i \vec{x}_i$

Kernels

- **Problem:** Very many Parameters! Polynomials of degree *p* over *N* attributes in input space lead to attributes in feature space!
- **Solution:** [Boser et al.] The dual OP depends only on inner products => Kernel Functions

$$K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b})$$

- **Example:** For $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ calculating $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$ computes inner product in feature space.
 - \rightarrow no need to represent feature space explicitly.

SVM with KernelTraining:maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j)$$
subject to: $\sum_{i=1}^{n} y_i \alpha_i = 0$ $\forall_{i=1}^{n} : 0 \le \alpha_i \le C$ Classification: $h(\vec{x}) = sign\left(\left[\sum_{i=1}^{n} \alpha_i y_i \Phi(\vec{x}_i)\right] \cdot \Phi(\vec{x}) + b\right)$ $= sign\left(\sum_{i=1}^{n} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b\right)$

New hypotheses spaces through new Kernels:

- Linear: $K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b}$
- Polynomial: $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d$
- Radial Basis Function: $K(\vec{a}, \vec{b}) = exp(-\gamma[\vec{a} \vec{b}]^2)$
- Sigmoid: $K(\vec{a}, \vec{b}) = tanh(\gamma[\vec{a} \cdot \vec{b}] + c)$

Examples of Kernels

Polynomial

 $K(\vec{a},\vec{b}) = [\vec{a}\cdot\vec{b}+1]^2$

Radial Basis Function

 $K(\vec{a}, \vec{b}) = exp(-\gamma[\vec{a} - \vec{b}]^2)$

What is a Valid Kernel?

Definition: Let *X* be a nonempty set. A function is a valid kernel in *X* if for all *n* and all $x_1, ..., x_n$ **2** *X* it produces a Gram matrix

$$G_{ij} = K(x_i, x_j)$$

that is symmetric

$$G = G^T$$

and positive semi-definite

 $\forall \vec{\alpha} : \vec{\alpha}^T G \vec{\alpha} \ge \mathbf{0}$

How to Construct Valid Kernels

Theorem: Let K_1 and K_2 be valid Kernels over X \pounds X, X μ <^N, $\alpha \ge 0$, $0 \le \lambda \le 1$, f a real-valued function on X, ϕ :X! <^m with a kernel K_3 over <^m \pounds <^m, and K a symmetric positive semi-definite matrix. Then the following functions are valid Kernels

$$K(\mathbf{x}, \mathbf{z}) = \lambda K_1(\mathbf{x}, \mathbf{z}) + (1-\lambda) K_2(\mathbf{x}, \mathbf{z})$$

$$K(\mathbf{x}, \mathbf{z}) = \alpha K_1(\mathbf{x}, \mathbf{z})$$

$$K(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z}) K_2(\mathbf{x}, \mathbf{z})$$

$$K(\mathbf{x}, \mathbf{z}) = f(\mathbf{x}) f(\mathbf{z})$$

$$K(\mathbf{x}, \mathbf{z}) = K_3(\phi(\mathbf{x}), \phi(\mathbf{z}))$$

$$K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T K \mathbf{z}$$
Kernels for Discrete and Structured Data

- **Kernels for Sequences:** Two sequences are similar, if the have many common and consecutive subsequences.
- **Example [Lodhi et al., 2000]:** For $0 \le \lambda \le 1$ consider the

following features space

	c-a	c-t	a-r	b-a	b-t	c-r	a-r	b-r
(cat)	λ^2	λ^3	λ^2	0	0	0	0	0
(car)	λ^2	0	0	0	0	λ^3	λ^2	0
(bat)	0	0	λ^2	λ^2	λ^3	0	0	0
(bar)	0	0	0	λ^2	0	0	λ^2	λ^3

=> K(car,cat) = λ^4 , efficient computation via dynamic programming

Kernels for Non-Vectorial Data

- Applications with Non-Vectorial Input Data
 → classify non-vectorial objects
 - Protein classification (x is string of amino acids)
 - Drug activity prediction (x is molecule structure)
 - Information extraction (x is sentence of words)
 - Etc.
- Applications with Non-Vectorial Output Data
 → predict non-vectorial objects
 - Natural Language Parsing (y is parse tree)
 - Noun-Phrase Co-reference Resolution (y is clustering)
 - Search engines (y is ranking)

→ Kernels can compute inner products efficiently!

Properties of SVMs with Kernels

• Expressiveness

- SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
- SVMs with Kernel can represent any sufficiently "smooth" function to arbitrary accuracy (for appropriate choice of kernel)

• Computational

- Objective function has no local optima (only one global)
- Independent of dimensionality of feature space
- Design decisions
 - Kernel type and parameters
 - Value of C

Reading: Support Vector Machines

- Books
 - Schoelkopf, Smola, "Learning with Kernels", MIT Press, 2002.
 - Cristianini, Shawe-Taylor. "Introduction to Support Vector Machines", Cambridge University Press, 2000.
 - Cristianini, Shawe-Taylor. ???

SVMs for other Problems

- Multi-class Classification
 - [Schoelkopf/Smola Book, Section 7.6]
- Regression
 - [Schoelkopf/Smola Book, Section 1.6]
- Outlier Detection
 - D.M.J. Tax and R.P.W. Duin, "Support vector domain description", Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999b. 26

Ordinal Regression and Ranking

- Herbrich et al., "Large Margin Rank Boundaries for Ordinal Regression", Advances in Large Margin Classifiers, MIT Press, 1999.
- Joachims, "Optimizing Search Engines using Clickthrough Data", ACM SIGKDD Conference (KDD), 2001.

Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low.

X

Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low.

Supervised Learning

• Find function from input space X to output space Y

$$h: X \longrightarrow Y$$

such that the prediction error is low.

Natural Language Parsing

- Given a sequence of words *x*, predict the parse tree *y*.
- Dependencies from structural constraints, since y has to be a tree.

Multi-Label Classification

- Given a (bag-of-words) document x, predict a set of labels y.
- Dependencies between labels from correlations between labels ("iraq" and "oil" in newswire corpus)

• Non-Standard Performance Measures (e.g. F₁-score, Lift)

 $-F_I$ -score: harmonic average of precision and recall

$$F_1 = \frac{2 \operatorname{Prec} \operatorname{Rec}}{\operatorname{Prec} + \operatorname{Rec}}$$

New example vector \$\vec{x}_8\$. Predict \$y_8=1\$, if \$P(y_8=1\$\vec{x}_8)=0.4\$?
→ Depends on other examples!

• Non-Standard Performance Measures (e.g. F₁-score, Lift)

 $-F_I$ -score: harmonic average of precision and recall

$$F_1 = \frac{2 \operatorname{Prec} \operatorname{Rec}}{\operatorname{Prec} + \operatorname{Rec}}$$

- New example vector \vec{x}_8 . Predict $y_8 = 1$, if $P(y_8 = 1 \not\in \vec{x}_8) = 0.4$?

• Information Retrieval

- Given a query x, predict a ranking y.
- Dependencies between results (e.g. avoid redundant hits)
- Loss function over rankings (e.g. AvgPrec)

• Noun-Phrase Co-reference

- Given a set of noun phrases *x*, predict a clustering *y*.
- Structural dependencies, since prediction has to be an equivalence relation.
- Correlation dependencies from interactions.

Protein Sequence Alignment

- Given two sequences x=(s,t), predict an alignment y.
- Structural dependencies, since prediction has to be a valid global/local alignment.

Outline: Structured Output Prediction with SVMs

- Task: Learning to predict complex outputs
- SVM algorithm for complex outputs
 - Formulation as convex quadratic program
 - General algorithm
 - Sparsity bound
- Example 1: Learning to parse natural language
 - Learning weighted context free grammar
- Example 2: Learning to align proteins
 - Learning to predict optimal alignment of homologous proteins for comparative modelling

Why do we Need Research on Complex Outputs?

• Important applications for which conventional methods don't fit!

- Noun-phrase co-reference: two step approaches of pair-wise classification and clustering as postprocessing, e.g [Ng & Cardie, 2002]
- Directly optimize complex loss functions (e.g. F1, AvgPrec)

• Improve upon existing methods!

- Natural language parsing: generative models like probabilistic contextfree grammars
- SVM outperforms naïve Bayes for text classification [Joachims, 1998]
 [Dumais et al., 1998]

• More flexible models!

- Avoid generative (independence) assumptions
- Kernels for structured input spaces and non-linear functions
- Transfer what we learned for classification and regression!
 - Boosting
 - Bagging
 - Support Vector Machines

Related Work

• Generative training (i.e. learn P(Y,X))

- Hidden-Markov models
- Probabilistic context-free grammars
- Markov random fields
- Etc.

• Discriminative training (i.e. learn P(Y|X))

- Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 1997]
- Kernel Dependency Estimation [Weston et al. 2003]
- Conditional HMM [Krogh, 1994]
- Transformer networks [LeCun et al, 1998]
- Conditional random fields [Lafferty et al., 2001]
- Perceptron training of HMM [Collins, 2002]
- Maximum-margin Markov networks [Taskar et al., 2003]

Challenges in Discriminative Learning with Complex Outputs

- Approach: view as multi-class classification task
 - Every complex output $y^i \in Y$ is one class
- Problems:

X

- Exponentially many classes!
 - How to predict efficiently?
 - How to learn efficiently?
- Potentially huge model!
 - Manageable number of features?

Support Vector Machine [Vapnik et al.]

- Training Examples $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n) \ \vec{x} \in \Re^N \ y \in \{+1, -1\}$
- Hypothesis Space: $h(\vec{x}) = sgn\left[\vec{w}^T\vec{x} + b\right]$ with $\vec{w} = \sum_{i=1}^{n} \alpha_i y_i \vec{x}_i$
- **Training:** Find hyperplane $\langle \vec{w}, b \rangle$ with minimal $\frac{1}{\delta^2} + C \sum_{i=1}^n \xi_i$

Support Vector Machine [Vapnik et al.]

- Training Examples $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n) \ \vec{x} \in \Re^N \ y \in \{+1, -1\}$
- Hypothesis Space: $h(\vec{x}) = sgn\left[\vec{w}^T\vec{x} + b\right]$ with $\vec{w} = \sum_{i=1}^{n} \alpha_i y_i \vec{x}_i$
- **Training:** Find hyperplane $\langle \vec{w}, b \rangle$ with minimal $\frac{1}{\delta^2} + C \sum_{i=1}^n \xi_i$

Multi-Class SVM [Crammer & Singer]

- Training Examples: $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n) \ \vec{x} \in \Re^N \ y \in \{1, ..., k\}$
- Hypothesis Space: $h(\vec{x}) = argmax_{i \in \{1,...,k\}} \left[\vec{w}_i^T \vec{x} \right]$

Joint Feature Map

- Feature vector $\Phi(x, y)$ that describes match between x and y
- Learn single weight vector and rank by $\vec{w}^T \Phi(x, y)$

$$h(\vec{x}) = argmax_{y \in Y} \left[\vec{w}^T \Phi(x, y) \right]$$

Joint Feature Map

- Feature vector $\Phi(x, y)$ that describes match between x and y
- Learn single weight vector and rank by $\vec{w}^T \Phi(x, y)$ •

$$h(\vec{x}) = argmax_{y \in Y} \left[\vec{w}^T \Phi(x, y) \right]$$

Problems

- How to predict efficiently?
- How to learn efficiently?
- Manageable number of parameters?

X The dog chased the cat

Structural Support Vector Machine

- Joint features $\Phi(x, y)$ describe match between x and y
- Learn weights \vec{w} so that $\vec{w}^T \Phi(x, y)$ is max for correct y

Loss Functions: Soft-Margin Struct SVM

Loss function △(y_i, y) measures match between target and prediction.

Sparse Approximation Algorithm for Structural SVM

- Input: $(x_1, y_1), ..., (x_n, y_n), C, \epsilon$
- $S \leftarrow \emptyset, \vec{w} \leftarrow 0, \vec{\xi} \leftarrow 0$ • **REPEAT** - FOR i = 1, ..., n• compute $\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$ • IF $(\Delta(y_i, \hat{y}) - \vec{w}^T [\Phi(x_i, y_i) - \Phi(x_i, \hat{y})]) > \xi_i + \epsilon$

$$-S \leftarrow S \cup \{ \vec{w}^T [\Phi(x_i, y_i) - \Phi(x_i, \hat{y})] \ge \Delta(y_i, \hat{y}) - \xi_i \}$$

Add constraint

to working set

$$-[\vec{w}, \vec{\xi}] \leftarrow \text{optimize StructSVM over } S$$

• ENDIF

– ENDFOR

• UNTILS has not changed during iteration

Polynomial Sparsity Bound

• **Theorem:** The sparse-approximation algorithm finds a solution to the soft-margin optimization problem after adding at most

$$n\frac{4CA^2R^2}{\epsilon^2}$$

constraints to the working set S, so that the Kuhn-Tucker conditions are fulfilled up to a precision ϵ . The loss has to be bounded $0 \le \Delta(y_i, y) \le A$, and $||\Phi(x, y)|| \le R$.

Polynomial Sparsity Bound

• **Theorem:** The sparse-approximation algorithm finds a solution to the soft-margin optimization problem after

addin

constr

Problems

- How to predict efficiently?
- How to learn efficiently?
- Manageable number of parameters?

conditions are fulfilled up to a precision ϵ . The loss has to be bounded $0 \le \Delta(y_i, y) \le A$, and $||\Phi(x, y)|| \le R$.

ucker

Experiment: Natural Language Parsing

• Implemention

- Implemented Sparse-Approximation Algorithm in SVM^{light}
- Incorporated modified version of Mark Johnson's CKY parser
- Learned weighted CFG with $\epsilon = 0.01, C = 1$
- Data
 - Penn Treebank sentences of length at most 10 (start with POS)
 - Train on Sections 2-22: 4098 sentences
 - Test on Section 23: 163 sentences

	Test Ac	ccuracy	Training Efficiency			
Method	Acc	$ $ F_1	CPU-h	Iter	Const	
PCFG with MLE	55.2	86.0	0	N/A	N/A	
SVM with $(1-F_1)$ -Loss	58.9	88.5	3.4	12	8043	
				Гт	T TT A 1	

[TsoJoHoAl05]

More Expressive Features

- Linear composition: $\Phi(x, \vec{y}) = \sum_{j=1}^{k} \phi(x, y_j)$ So far: $\phi(x, y_i) = \begin{pmatrix} 0 \\ \cdots \\ 0 \\ 1 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$ if $y_i = 'S \leftarrow NP VP'$
 - General: $\phi(x, y_i) = \phi_{kernel}(\phi(x, [rule, start, end]))$ $K(a,b) = \phi_{kernel}(a)^T \phi_{kernel}(a)$

• Example:
$$\phi(x, y_i) = \begin{pmatrix} 1 & \text{if } x_{start} = \text{'while'} \land x_{end} = \text{'.'} \\ (start - end)^2 \\ 1 & \text{span contains } x_{start} = \text{'and'} \\ ... \end{pmatrix}$$
Experiment: Part-of-Speech Tagging

- Task
 - Given a sequence of words *x*, predict sequence of tags *y*.

x The dog chased the cat \rightarrow **y** Det \rightarrow N \rightarrow V \rightarrow Det \rightarrow N

- Dependencies from tag-tag transitions in Markov model.
- Model
 - Markov model with one state per tag and words as emissions
 - Each word described by ~250,000 dimensional feature vector (all word suffixes/prefixes, word length, capitalization ...)
- Experiment (by Dan Fleisher)

Applying StructSVM to New Problem

- Basic algorithm implemented in SVM-struct
 - http://svmlight.joachims.org
- Application specific
 - Loss function $\Delta(y_i, y)$
 - Representation $\Phi(x, y)$
 - Algorithms to compute

 $\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x_i, y) \}$ $\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$

⇒ Generic structure that covers OMM, MPD, Finite-State Transducers, MRF, etc. (polynomial time inference)

Outline: Structured Output Prediction with SVMs

- Task: Learning to predict complex outputs
- SVM algorithm for complex outputs
 - Formulation as convex quadratic program
 - General algorithm
 - Sparsity bound
- Example 1: Learning to parse natural language
 - Learning weighted context free grammar
- Example 2: Learning to align proteins
 - Learning to predict optimal alignment of homologous proteins for comparative modeling

Comparative Modeling of Protein Structure

• Goal: Predict structure from sequence

h("APPGEAYLQV")

- Hypothesis:
 - Amino Acid sequences for into structure with lowest engery
 - Problem: Huge search space (> 2^{100} states)
- Approach: Comparative Modeling
 - − Similar protein sequences fold into similar shapes
 → use known shapes as templates
 - Task 1: Find a similar known protein for a new protein
 h("APPGEAYLQV", → yes/no
 - Task 2: Map new protein into known structure

h("APPGEAYLQV", $(A \rightarrow 3, P \rightarrow 4, P \rightarrow 7, ...]$

Predicting an Alignment

- Protein Sequence to Structure Alignment (Threading)
 - Given a pair x=(s,t) of new sequence s and known structure t, predict the alignment y.
 - Elements of *s* and *t* are described by features, not just character identity.

Linear Score Sequence Alignment

Method: Find alignment *y* that maximizes linear score Example:

Algorithm: Dynamic programming

How to Estimate the Scores?

• General form of linear scoring function:

score (x=(s,t),y) =
$$\sum_{i} score(y_i^s, y_i^t)$$

- Estimation:
 - Generative estimation of $score(y_i^{s}, y_i^{t})$ via
 - Log-odds
 - Hidden Markov Model
 - Discriminative estimation of complex models via SVM

$$score(\mathbf{x}=(\mathbf{s},\mathbf{t}),\mathbf{y}) = \sum_{i} score(y_{i}^{\mathbf{s}}, y_{i}^{\mathbf{t}})$$
$$= \sum_{i} \mathbf{w}^{T} \phi(\mathbf{s}, \mathbf{t}, y_{i})$$
$$= \mathbf{w}^{T} \sum_{i} \phi(\mathbf{s}, \mathbf{t}, y_{i})$$
$$= \mathbf{w}^{T} \Phi(\mathbf{x}, \mathbf{y})$$

 \rightarrow match/gap score can be arbitrary linear function

Expressive Scoring Functions

- Conventional substitution matrix $score(y_i^{s}, y_i^{t})$
 - Poor performance at low sequence similarity, if only amino acid identity is considered
 - Difficult to design generative models that take care of the dependencies between different features.
 - Would like to make use of structural features like secondary structures, exposed surface area, and take into account the interactions between these features

• General feature-based scoring function $\mathbf{w}^T \phi(\mathbf{s}, \mathbf{t}, y_i)$

- Allows us to describe each character by feature vector (e.g. secondary structure, exposed surface area, contact profile)
- Learn w vector of parameters
- Computation of argmax still tractable via dynamic program

Loss Function

- Q loss: fraction of incorrect alignments
 - Correct alignment $\mathbf{y} = \begin{bmatrix} & A & B & C & D \\ B & A & C & C & \end{bmatrix}$ - Alternate alignment $\mathbf{y}' = \begin{bmatrix} A & - & B & C & D \\ B & A & C & C & - \end{bmatrix}$ $\rightarrow \Delta_Q(\mathbf{y}, \mathbf{y}') = 1/3$
- Q4 loss: fraction of incorrect alignments outside window

- Correct alignment
$$\mathbf{y} = \begin{bmatrix} - & A & B & C & D \\ B & A & C & C & - \end{bmatrix}$$

- Alternate alignment $\mathbf{y}' = \begin{bmatrix} A & - & B & C & D \\ B & A & C & C & - \end{bmatrix}$
 $\rightarrow \Delta_{Q4}(\mathbf{y}, \mathbf{y}') = 0/3$

➔ Model how "bad" different types of mistakes are for structural modelling.

Experiment

- Train set [Qiu & Elber]:
 - 5119 structural alignments for training, 5169 structural alignments for validation of regularization parameter C
- Test set:
 - 29764 structural alignments from new deposits to PDB from June 2005 to June 2006.
 - All structural alignments produced by the program CE by superposing the 3D coordinates of the proteins structures. All alignments have CE Z-score greater than 4.5.
- Features (known for structure, predicted for sequence):
 - Amino acid identity (A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)
 - Secondary structure (α,β,λ)
 - Exposed surface area (0,1,2,3,4,5)

Results: Model Complexity

Feature Vectors:

- **Simple:** $\Phi(s,t,y_i) \Leftrightarrow (A|A;A|C;...;-|Y;\alpha|\alpha;\alpha|\beta...;0|0;0|1;...)$
- Anova2: $\Phi(s,t,y_i) \Leftrightarrow (A\alpha | A\alpha ...; \alpha 0 | \alpha 0 ...; A0 | A0;...)$
- **Tensor:** $\Phi(s,t,y_i) \Leftrightarrow (A\alpha 0 | A\alpha 0; A\alpha 0 | A\alpha 1; ...)$
- Window: $\Phi(s,t,y_i) \Leftrightarrow (AAA|AAA; ...; \alpha\alpha\alpha\alpha\alpha|\alpha\alpha\alpha\alpha\alpha; ...; 00000|00000;...)$

Q-Score	# Features	Training	Validation	Test	
Simple	1020	26.83	27.79	39.89	
Anova2	49634	42.25	35.58	44.98	
Tensor	203280	52.36	34.79	42.81	
Window	447016	51.26	38.09	46.30	

Q-score when optimizing to Q-loss

Results: Comparison

Q4-score	Test
SVM (Window, Q4-loss)	70.71
SSALN [Qiu & Elber]	67.30
BLAST	28.44
TM-align [Zhang & Skolnick]	(85.32)

Methods:

- SVM: train on Window feature vector with Q4-loss
- SSALN: generative method using same training data
- BLAST: lower baseline
- TM-align: upper baseline (disagreement between two structural alignment methods

Conclusions: Structured Output Prediction

• Learning to predict complex output

- Predict structured objects
- Optimize loss functions over multivariate predictions

• An SVM method for learning with complex outputs

- Learning to predict trees (natural language parsing) [Tsochantaridis et al. 2004 (ICML), 2005 (JMLR)] [Taskar et al., 2004 (ACL)]
- Optimize to non-standard performance measures (imbalanced classes) [Joachims, 2005 (ICML)]
- Learning to cluster (noun-phrase coreference resolution) [Finley, Joachims, 2005 (ICML)]
- Learning to align proteins [Yu et al., 2005 (ICML Workshop)]
- Software: SVM^{struct}
 - http://svmlight.joachims.org/

Reading: Structured Output Prediction

• Generative training

- Hidden-Markov models [Manning & Schuetze, 1999]
- Probabilistic context-free grammars [Manning & Schuetze, 1999]
- Markov random fields [Geman & Geman, 1984]
- Etc.

• Discriminative training

- Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 1997]
- Kernel Dependency Estimation [Weston et al. 2003]
- Conditional HMM [Krogh, 1994]
- Transformer networks [LeCun et al, 1998]
- Conditional random fields [Lafferty et al., 2001] [Sutton & McCallum, 2005]
- Perceptron training of HMM [Collins, 2002]
- Structural SVMs / Maximum-margin Markov networks [Taskar et al., 2003] [Tsochantaridis et al., 2004, 2005] [Taskar 2004]

Why do we Need Research on Complex Outputs?

• Important applications for which conventional methods don't fit!

- Noun-phrase co-reference: two step approaches of pair-wise classification and clustering as postprocessing, e.g [Ng & Cardie, 2002]
- Directly optimize complex loss functions (e.g. F1, AvgPrec)

• Improve upon existing methods!

- Natural language parsing: generative models like probabilistic contextfree grammars
- SVM outperforms naïve Bayes for text classification [Joachims, 1998]
 [Dumais et al., 1998]

• More flexible models!

- Avoid generative (independence) assumptions
- Kernels for structured input spaces and non-linear functions
- Transfer what we learned for classification and regression!
 - Boosting
 - Bagging
 - Support Vector Machines

Why do we Need Research on Complex Outputs?

• Important applications for which conventional methods don't fit!

- Noun-phrase co-reference: two step approaches of pair-wise classification and clustering as postprocessing, e.g [Ng & Cardie, 2002]
- Directly optimize complex loss functions (e.g. F1, AvgPrec)

• Improve upon existing methods!

- Natural language parsing: generative models like probabilistic contextfree grammars
- SVM outperforms naïve Bayes for text classification [Joachims, 1998]
 [Dumais et al., 1998]

•	Mor - <i>A</i>	Precision/Recall Break-Even Point	Naïve Bayes	Linear SVM
•	— ł Troj	Reuters	72.1	87.5
•		WebKB	82.0	90.3
	– I	Ohsumed	62.4	71.6
	- \$	Support Vector Machi	nes	