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Outline

« Statistical Machine Learning Basics

— Training error, generalization error, hypothesis space

« Support Vector Machines for Classification
— Optimal hyperplanes and margins
— Soft-margin Support Vector Machine
— Primal vs. dual optimization problem
— Kernels
« Support Vector Machines for Structured Outputs
— Linear discriminant models
— Solving exponentially-size training problems

— Example: Predicting the alignment between proteins




Supervised Learning

* Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.

X

Microsoft announced today that they acquired
Apple for the amount equal to the gross national
product of Switzerland. Microsoft officials > y 1
stated that they first wanted to buy Switzerland,

but eventually were turned off by the mountains
and the snowy winters. ..
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Example: Spam Filtering

viagra learning the dating nigeria | spam?
71 = ( 1 0 1 0 0 ) y1 =1
To = ( 0 1 1 0 0 ) yo = —1
_’3 — ( 0 0 0 0 1 ) Yz — 1

« Instance Space X:
— Feature vector of word occurrences => binary features
— N features (N typically > 50000)

« Target Concept c:
— Spam (+1) / Ham (-1)




Learning as Prediction Task

Real-world Process
P(X)Y)

drawn 1y \drfwn 1.1.d.

Training Sample S, ;, | Test Sample S,
(XpY)) oo (X,Y,) =Ly [earner =———d (X pVait)s o

 Goal: Find / with small prediction error Errp(h) over P(XY).

 Strategy: Find (any?) # with small error ErrStrain(h) on
training sample S, . .
 Training Error: Error Errg  (h) on training sample.

e Test Error: Error ErrStest(h) on test sample 1s an estimate
of Errp(h) .




Linear Classification Rules
« Hypotheses of the form

_ S N I wzy+ ... +wnzy >0
unbiased: h (%) = <\ —1 else
- (1 wyz o T WNX b>0
— biased: hqﬁ’,b(ﬂi) — 1 eliel T

— Parameter vector w, scalar b
» Hypothesis space H
— Hynbiased = {hg 0 € R}
— Hpiased = {hgp W€ R bR}

 Notation
1 a>0

— w11+ ... Fwyzy = @£ and sign(a) = { 1 else

— hg(#) = sign(w - ¥)

— hg (&) = sign(w - & + b)




Optimal Hyperplanes
Linear Hard-Margin Support Vector Machine

Assumption: Training examples are linearly separable.




Margin of a Linear Classifier

Definition: For a linear classifier hyy,, the margin 6 of an
example (Z,y) is 6 = y(w - ©).

Definition: The margin is called geometric margin, if
||W|| = 1. Otherwise, functional margin.
Definition: The (hard) margin of an unbiased linear

Classifier hgg on a sample S is § = min g ,)csy(W - Z).

Definition: The (hard) margin of an unbiased linear
classifier h,z on a task P(X,Y) is

d = infswp()(,y)m’m(f,y)esy(w . T).




Hard-Margin Separation

Goal: Find hyperplane with the largest distance to the
closest training examples.

Optimization Problem (Primal):

1
min —0 - W
w,b 2
s.t. yl(u_)’ . fl -+ b) > 1

yn(W - Zn +0) > 1

Support Vectors: Examples with minimal distance (i.e. margin).




Non-Separable Training Data

Limitations of hard-margin formulation
— For some training data, there is no separating hyperplane.

— Complete separation (1.e. zero training error) can lead to
suboptimal prediction error.




Soft-Margin Separation

Idea: Maximize margin and minimize training error.

Hard-Malrgin OP (Primal): Soft—l\{largin OP (Primal):

min  —w - w min ~&-d 4+ C ) _ &
Tb 2 @.Eb 2 i=1
st. y1(W-F1+b)>21 sty (W &1 +b)>1-6 A€ >0

yn(W - Zn +0b) > 1 yn(W-Tn +b) > 1—-ExNEp >0

* Slack variable & measures by how
much (x,y,) fails to achieve margin 0

 2& 1s upper bound on number of
training errors

 C 1s a parameter that controls trade-off
between margin and training error.
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Controlling Soft-Margin Separation
« 2&. 1s upper bound on Soft—MaIgirlOP (Primal):
number of training errors T g'l; SW-w+C ; i
e C 1s a parameter that st.y1(W-Z1+b)>1—E1ANEL >0
controls trade-off between

margin and training error. (B - T +b) > 1—Eu ANép >0

Large C




Controlling Soft-Margin Separation

» X£. is upper bound on Soft-Margin OP (Pgmal):

number of training errors g‘g}) 5“7 Wt Zl Si
1Sy 1=

e C 1s a parameter that st.y1(W -1 +b)>1—E1AEL >0
controls trade-off between

margin and training error. (B - T +0) > 1—EuANén >0

Large C




Example Reuters “acq”: Varying C

"svm_trainerror.dat" ——

Percent Training/Testing Errors
N

hard-margin SVM




Example: Margin in High-Dimension
Training T y
Sample Syain | X, | X, | Xs | X4 | X | X | X
(Z1,91) 1 0 0 1 0 0 0 1
(Zo,y2) 1 0 0 0 1 0 0 1
(73, y3) 0 1 0 0 0 1 0 -1
(Za,ya) 0 1 0 0 0 0 1 -1

w b

Wy Wa Ws Wy Wsg Ws W5

Hyperplanel| 1 1 0 0 0 0 0 2
Hyperplane2| 0 0 0 1 1 -1 -1 0
Hyperplane 3| 1 -1 1 0 0 0 0 0
Hyperplane4| 0.5 | -0.5 0 0 0 0 0
Hyperplane 5 1 -1 0 0 0 0 0
Hyperplane6| 095 | -095| 0 0.05 | 0.05 | -0.05 | -0.05 0




SVM Solution as Linear Combination

- L LR 1. . i
Primal OP: minimize: P(w,b,¢) zgw-w—I—C’ Y &
i=1
subject to: v ryld-T 40 >1 &
Vie1 1€ >0
Theorem: The solution w* can always be written as a

linear combination n
W= Z a;y;%; With 0 < o; < C
. . —1

of the training vectors.

Properties:
— Factor a, indicates “influence” of training example (x,y,).
— If' ¢, >0, then a, = C.
- If0<a <C,then& = 0.
— (x,y;) 1s a Support Vector, if and only 1f a; > 0.
— It 0 <a,<C, then y,(x;, w+b)=1.

(19 29

— SVM-light outputs a; using the “-a” option




Dual SVM Optimization Problem

Primal Optimization Problem

~ 1 "
minimize: P(@,b,§) 2516-134-0 Z &
=1
subject to: Viiq tylw % +0b6l>1-¢
Z:1 &, >0

Dual Optimization Problem

maximize: D(a) = Z Q; — — Z Z yiyioio (Z; - T5)
z 1=

't
subject to: ) y;03 =0
\V/,?Il 0 < Q < C

Theorem: If w* is the solution of the Primal and a* is the

solution of the Dual, then @* = ) oy
=1




Leave-One-Out (1.e. n-fold CV)

Training Set: S = ((#1,91), ..., (Zn,yn))
Approach: Repeatedly leave one example out for testing.

train on test on

Fd 7 7
(‘)‘) .] ) J‘% 1’%) 14, ,]",4)3 sy (xm}"”) (‘xleyl)

Fe Fd Fd F4 4

(xla V1 )e (3033 .]"’3)? (.?C:l, .]",4)3 cevy (x”'? .]’;H) (.1“2, -];2:|
Fe Fd Fd F4 4

(-)\’1, J’.l )e (xE, .]"’2)3 (.7{:4, ,};4)3 e (xﬁ'& J’;H) (‘1’32 J’.3 :'
4 rd 7
(xla,}:])a(xfla Vs (;‘3 1’ (‘)‘H 15 1’” 1:' (‘x”a )’.”J

: 1 &
Estimate: Err;,,(A) = — Z A(hi(Z;), yi)
n .__

Question: Is there a cheaper way to compute this estimate?




Necessary Condition for Leave-One-Out Error

Lemma: For SVM, [h;(Z;) # y;] = {Qa@-RQ + & > 1}
Input:

— a. dual variable of example 1

— &, slack variable of example 1

— ||x|| £ R bound on length
Example: | valueof 2, R2+¢ | Leave-one-out Error?

0.0 Correct
0.7 Correct
3.5 Error

0.1 Correct

1.3 Correct




Case 1: Example 1s not SV

Criterion: (o. =0)) (§=0)) (2 a. R>+ &, < 1) ) Correct

4

@




Case 2: Example 1s SV with Low Influence

Criterion: (a..<0.5/R* < C)) (§=0) ) 2a.R*+&.< 1) ) Correct




Case 3: Example has Small Training Error

Criterion: (o; =C)) (§,< 1-2CR?) ) (2a.R?+E. < 1) ) Correct

_|_




Experiment: Reuters Text Classification

Experiment Setup
— 6451 Training Examples
— 6451 Validation Examples to estimate true Prediction Error

— Comparison between Leave-One-Out upper bound and error
on Validation Set (average over 10 test/validation splits)

4.5 \ B AvgEstimatedError|
\ B AvgHoldoutError

. \\' ¥ Default
5

Error

earn acq money-fx grain crude trade interest ship wheat corn




Fast Leave-One-Out Estimation for SVMs

Lemma: Training errors are always Leave-One-Out Errors.

Algorithm:

— (R,a,&) = trainSVM(S,..;..)

— FOR (Xi9Yi) 28

train

* IF &, >1 THEN loo++;

« ELSEIF (2 o; R>+ &, < 1) THEN loo = loo;

* ELSE trainSVM(S,.;, \ {(X;,y;)}) and test explicitly

Experiment:

Training Sample

Retraining Steps (%)

CPU-Time (sec)

Reuters (n=6451) 0.58% 32.3
WebKB (n=2092) 20.42% 235.4
Ohsumed (n=10000) 2.56% 1132.3




Non-Linear Problems

Problem:
 some tasks have non-linear structure

* no hyperplane 1s sufficiently accurate
How can SVMs learn non-linear classification rules?




Extending the Hypothesis Space

Idea: add more features

Input Space
T @ e

Feature Space

=» Learn linear rule in feature space.
Example:

al| bl c

- ~

” () )
- ~
- ~
-~

al b| claalab|ac|bb|bc|cc

=» The separating hyperplane in feature space is degree
two polynomial in input space.




Input Space: ¥ = (1, z2) (2 attributes)
« Feature Space: ®(Z) = (¢7,23, V21, V222, V2x122, 1)

Example

(6 attributes)




Dual SVM Optimization Problem

Primal Optimization Problem

~ 1 "
minimize: P(@,b,§) 2516-134-0 Z &
=1
subject to: Vi, tylw %+l >1-¢
Z:1 &, >0

Dual Optimization Problem

maximize: D(a) = Z Q; — — Z Z yiyioio (Z; - T5)
z 1=

T
subject to: ) w03 =0
\V/,?Il 0 < Q <C

Theorem: If w* is the solution of the Primal and a* is the

solution of the Dual, then @* = ) oy
=1




Kernels

Problem: Very many Parameters! Polynomials of degree p
over N attributes 1n mput space lead to attributes in feature
space!

Solution: [Boser et al.] The dual OP depends only on inner
products => Kernel Functions

K(@,b) = ©(@) - (b)

Example: For ®(%) =
calculating K (&,b)
in feature space.

(2%, 23, V221, V210, V21132, 1)
= [@- b+ 1]? computes inner product

=» no need to represent feature space explicitly.




SVM with Kernel

Training: ~maximize: D(a) = Z o — — Z Z yiyjcoi K (%, Z5)
z 1=

P (Z )-I—b)

= sign [Z oy K(Z;, T) + b)
i=1

T
subject to: Z y;o; = 0
Vn 1 - -0 < Oy S C

(
Classification: h(Z) = sign Zaiyicb(:f@-)

New hypotheses spaces through new Kernels:

e Linear: K(a,b) =a-b

 Polynomial: K(@,b) = [@- b+ 1]¢

« Radial Basis Function: K(@,b) = exp(—~[@ — b]?)
 Sigmoid: K(&@,b) = tanh(y[a - b] + ¢)




Examples of Kernels

Polynomial Radial Basis Function
K(d,b) = [@- b+ 1]2 K(d,b) = exp(—[d@ — b]?)




What 1s a Valid Kernel?

Definition: Let X be a nonempty set. A function is a valid
kernel in X'if for all » and all x, ..., x, 2 X it produces a
Gram matrix

Gy = K(x;, x3)
that 1s symmetric
G=G"
and positive semi-definite

va:alGa >0




How to Construct Valid Kernels

Theorem: Let K, and K, be valid Kernels over X £ X, X 4
<N o>0,0<A<1, fareal-valued function on X, ¢:X! <m
with a kernel K5 over <™ £ <M and K a symmetric positive
semi-definite matrix. Then the following functions are

valid Kernels
K(x,z) = A K{(X,z) + (1-1) Kx(X,2)
K(x,z) = a K{(x,2)
K(x,z) = K{(x,z) K,(x,2)
K(x,z) = {(x) 1(z)
K(x,2) = Ky((x),0(2))
K(x,2) =x" K z




Kernels for Discrete and Structured Data

Kernels for Sequences: Two sequences are similar, if the have
many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For 0 <A <1 consider the

following features space

c-a c-t a-r b-a b-t C-r a-r b-r
d(cat) A2 A3 A2 0 0 0
d(car) A2 0 0 A3 A2 0
d(bat) 0 0 A2 A? AS 0 0 0
d(bar) 0 0 0 A2 0 0 A2 A3

=> K(car,cat) = A%, efficient computation via dynamic

programming




Kernels for Non-Vectorial Data

« Applications with Non-Vectorial Input Data
- classify non-vectorial objects

— Protein classification (x is string of amino acids)
— Drug activity prediction (x 1s molecule structure)

— Information extraction (X is sentence of words)
— Etc.

« Applications with Non-Vectorial Output Data
-> predict non-vectorial objects
— Natural Language Parsing (y 1is parse tree)
— Noun-Phrase Co-reference Resolution (y 1s clustering)
— Search engines (y 1s ranking)

=» Kernels can compute inner products efficiently!




Properties of SVMs with Kernels

« EXpressiveness

— SVMs with Kernel can represent any boolean function (for
appropriate choice of kernel)

— SVMs with Kernel can represent any sufficiently “smooth”

function to arbitrary accuracy (for appropriate choice of
kernel)

« Computational
— Objective function has no local optima (only one global)
— Independent of dimensionality of feature space
 Design decisions

— Kernel type and parameters
— Value of C




Reading: Support Vector Machines

Books

— Schoelkopf, Smola, “Learning with Kernels”, MIT Press,
2002.

— Cristianini, Shawe-Taylor. “Introduction to Support Vector
Machines”, Cambridge University Press, 2000.

— Cristianini, Shawe-Taylor. ??7?




SV Ms for other Problems

Multi-class Classification

— [Schoelkopf/Smola Book, Section 7.6]
Regression

— [Schoelkopf/Smola Book, Section 1.6]
Outlier Detection

— D.M.J. Tax and R.P.W. Duin, "Support vector domain
description", Pattern Recognition Letters, vol. 20, pp. 1191-1199,
1999b. 26

Ordinal Regression and Ranking

— Herbrich et al., “Large Margin Rank Boundaries for Ordinal
Regression”, Advances in Large Margin Classifiers, MIT Press,
1999.

— Joachims, “Optimizing Search Engines using Clickthrough Data”,
ACM SIGKDD Conference (KDD), 2001.




Supervised Learning

* Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.
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stated that they first wanted to buy Switzerland,

but eventually were turned off by the mountains
and the snowy winters. ..




Supervised Learning

* Find function from input space X to output space Y

h: X —Y
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Supervised Learning

Find function from input space X to output space Y
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Examples of Complex Output Spaces

« Natural Language Parsing
— (G1ven a sequence of words x, predict the parse tree y.

— Dependencies from structural constraints, since y has to
be a tree.

y S

The dog chased the cat — / \ /

Det Det N




Examples of Complex Output Spaces

Multi-Label Classification

— Given a (bag-of-words) document x, predict a set of

labels y.

— Dependencies between labels from correlations
between labels (“iraq” and “o1l” in newswire corpus)

y

Due to the continued violence

in Baghdad, the oil price is
expected to further increase.
OPEC officials met with ...

-1

antarctica
benelux
germany
iraq

o1l

coal

trade
acquisitions




Examples of Complex Output Spaces

« Non-Standard Performance Measures (e.g. F;-score, Lift)
— F,-score: harmonic average of precision and recall

I, = 2 Prec Rec
1 Prec+ Rec

— New example vector Zg. Predict y,=1, if P(y,=1¥g)=0.4?
=>» Depends on other examples!

plo2] ' A ’55\ plol2-L ]!
0.1 2 \— 0.1-[
0.3 0.3-]
0.6 Fl/ T —> y{“,4- UETI//\
0.4 Gif 0.4-[ \
0.0 Gl 0.0-[
0.9] o Ty 0.3,

0 threshaisl 1 0 threshaisl

1




Examples of Complex Output Spaces

« Non-Standard Performance Measures (e.g. F;-score, Lift)

— F,-score: harmonic average of precision and recall

I, = 2 Prec Rec
1 Prec+ Rec

— New example vector Zg. Predict y,=1, if P(y,=1¥g)=0.4?

=» Depends on other examples!

plo2] ! X| T1 y| -1
0.1 e -1
0.3 5?:3 |
0.6 Fl/ rqg| —— -l ER)
0.4 s -1 \
0.0 T6 -1
09| o T +1

0 TESTTEE] T U threshalgl

1




Examples of Complex Output Spaces

Information Retrieval

— Given a query X, predict a ranking y.

— Dependencies between results (e.g. avoid redundant

hits)

— Loss function over rankings (e.g. AvgPrec)

Ty Y1

P = ol S

Kernel-Machines

SVM-Light

Learning with Kernels

SV Meppen Fan Club

Service Master & Co.

School of Volunteer Management
SV Mattersburg Online




Examples of Complex Output Spaces

Noun-Phrase Co-reference
— (G1ven a set of noun phrases x, predict a clustering y.

— Structural dependencies, since prediction has to be an
equivalence relation.

— Correlation dependencies from interactions.

y

The policeman fed The policemag fed

the cat. He did not know

that he was late.

The cat is called Peter.




Examples of Complex Output Spaces

 Protein Sequence Alignment

— (G1ven two sequences x=(s,¢), predict an alignment y.

— Structural dependencies, since prediction has to be a
valid global/local alignment.

s:ABJLHBNJYAUGAI AB-JLHBNJYAUGAI

— |1 LT T

t:BHJIKBNYGU BHJK-BN-YGU




Outline: Structured Output Prediction
with SVMs

Task: Learning to predict complex outputs
SVM algorithm for complex outputs

— Formulation as convex quadratic program

— General algorithm

— Sparsity bound

Example 1: Learning to parse natural language
— Learning weighted context free grammar
Example 2: Learning to align proteins

— Learning to predict optimal alignment of homologous proteins
for comparative modelling




Why do we Need Research on
Complex Outputs?

Important applications for which conventional methods don’t fit!

— Noun-phrase co-reference: two step approaches of pair-wise
classification and clustering as postprocessing, €.g [Ng & Cardie, 2002]

— Directly optimize complex loss functions (e.g. F1, AvgPrec)
Improve upon existing methods!

— Natural language parsing: generative models like probabilistic context-
free grammars

— SVM outperforms naive Bayes for text classification [Joachims, 1998]
[Dumais et al., 1998]

More flexible models!
— Avoid generative (independence) assumptions
— Kernels for structured input spaces and non-linear functions
Transfer what we learned for classification and regression!
— Boosting
— Bagging
— Support Vector Machines




Related Work

Generative training (i.e. learn P(Y,X))

Hidden-Markov models
Probabilistic context-free grammars
Markov random fields

Etc.

Discriminative training (i.e. learn P(Y|X))

Multivariate output regression [[zeman, 1975] [Breiman & Friedman,
1997]

Kernel Dependency Estimation [Weston et al. 2003 ]
Conditional HMM [Krogh, 1994]

Transformer networks [LeCun et al, 1998]

Conditional random fields [Lafferty et al., 2001]
Perceptron training of HMM [Collins, 2002]
Maximum-margin Markov networks [Taskar et al., 2003]




Challenges 1n Discriminative Learning with
Complex Outputs

« Approach: view as multi-class classification task

— Every complex output yi € Y is one class
Problems:

— Exponentially many classes!

« How to predict efficiently?
* How to learn efficiently?

— Potentially huge model! i /VP\/ S\“/VP\ A
« Manageable number of features? VN V  Det
e B o
\ o2
The dog chased the cat —_ pEL L




Support Vector Machine [Vapnik et al. |
 Training Examples{(Z1,v1), ..., (Zn, yn) ZTeRY ye{+1,-1}

n
« Hypothesis Space:h(Z)=sgn [QD’T:I_:’—I— b} WithfLB’ZZaiyia_:}
1=1
.. 1 "
« Training: Find hyperplane<w, b> with minimal{s—2 +C ) ¢
=1

Hard Margin

(separable)
_

Soft Margin
(training error)




Support Vector Machine [ Vapnik et al. |
 Training Examples{(Z1,v1), ..., (Zn, yn) ZTeRY ye{+1,-1}
« Hypothesis Space:h(Z)=sgn [u?T:E—l— b] withw ZZaiyia_:’z-

1=1
.. . : ! =
* Training: Find hyperplane<w, b> with m1n1ma15—2 +C ) &
i=1

Optimization Problem:

1 n
min @@+ C Y ¢
u_j757b 2 =1

sty (@@ +b)>1-&

yn(u_ijn + b) > 1-&n




Multi-Class SVM [Crammer & Singer]

. Training Examples: (z1,y1), ..., (Zn,yn) TE€RN ye{l, .. k)

« Hypothesis Space: h(Z)= argmaz;cfy, ..k} [w@ f]

Y| ype~ S wp
/N U W E
Vv N Vv Det N
Y| npe” S yp T
V¥ N 2K pew wid
X A Puls G
¥ N wWioT
The dog chased the cat e 12
7 Senp, —»T —
NG T TR Wy T
Det N Vv Det N
e S o
Sn Wss?
Det N Vv Det N




Training: Find <, ..., w,> that solve
k
min > w7 4+ C Yy &

—

wl;---,wn,f Z:]. Z:].

. T = ~ T
st. VjFEyplWy ¥ >wi ¥ +1-§

k)

Problems
* How to predict efficiently?

* How to learn efficiently?
« Manageable number of parameters?

The dog chased the cat




Joint Feature Map

» Feature vector @ (x, y) that describes match between x and y
« Learn single weight vector and rank byu_)’TCD(a:, V)

h(Z)= argmaz,cy [u7T¢(az, y)}

wlb (@ o)

wl (@ y1)

u7T<l> x y12)

The dog chased the cat

(@ %3%)

Tl (@ ysg)




Joint Feature Map

» Feature vector @ (x, y) that describes match between x and y
« Learn single weight vector and rank byu_)’TCD(a:, V)

h(Z)= argmazycy [u7T¢(az, y)}

Problems
* How to predict efficiently? T
b
* How to learn efficiently? TeEy)
* Manageable number of parameters?\/ T (@ 1)

X u7T<l> @ y12)
The dog chased the cat A NI ( )

¥ L Y3
e\ (af, Y %

Det N
y58 S _,
I chD (37: Ys 8)
Det N




Joint Feature Map for Trees

Weighted Context Free Grammar CKY Parser

— Eachruler; (e.g. S — NP VP) has a weight V

— Score of a tree 1s the sum of its weights
— Find highest scoring tree h(Z)= argmaz,cy [U_J’TCD(:U, y)]

(1) S — NPVP
DX
The dog chased the cat ol s np
f:x-vl 2 |NP — Det N
y S 1 VP —V NP
Pxy) = 0| Det — dog
/ \ 2| Det — the
Det N v Det 1| N —>dog
l l l l l 1 |V — chased
The dog chased the cat 1) N —cat




Joint Feature Map for Trees

« Weighted Context Free Grammar

— Eachruler; (e.g. S — NP VP) has a weight V

— Score of a tree 1s the sum of its weights

CKY Parser

— Find highest scoring tree h(Z)= argmaz,cy [U_J’TCD(ZU, y)]

N

N v Det

Det

l

|

Problems

* How to predict efficiently? \/

* How to learn efficiently?
. Manageable number of parameters‘7\/ V NP

|

|

The dog chased the

l

cat

\

NP VP
NP
Det N

Det — dog
Det — the
N — dog

V — chased

) N —cat

—_— e N O




Structural Support Vector Machine
 Joint features & (x, y)describe match between x and y

. Learn weights @ so that @' ®(z,y) is max for correct y

Wb (z1,y1) @ D(x0,yp) W D(23,y3) 0! ®(zn, yn)

(1,91) (z2,y2) (z3,¥3) (zn, yn)




Structural Support Vector Machine

Hard-margin optimization problem:

* . 1 — —
min —wTw
W 2

st. Yy eY\yy:w d(zq,y1) > ! d(zq,y) + 1

=T Vy € Y\yn : TETq)(xna Yn) > TETCD(ZUn: y) +1

25 )
\ 17 1L 7 \ L) LT \ A7 \Jn7yn

(1,91) (z2,y2) (z3,¥3) (zn, yn)




Loss Functions: Soft-Margin Struct

SVM
 Loss function A(y;,y) measures match between target and
prediction.
W D(x1, 1) W P, y2) @ D(23,y3) @' D (zn, yn)
£o A(ys,y')
IA(?JL y')

(1,91) (z2,y2) (z3,¥3) (zn, yn)




Loss Functions: Soft-Margin Struct

QA WA W, 1

o]

Soft-margin optimization problem:

1 T
min  —wld+C ) ¢
s E 2 i=1

st VyeY\yr: @ d(zq,y1) > L d(21,9) + Ay1,y) —€1

Yy EY\yn, : WP (2n,yn) > T O (2n, y) + Alyn,y) —én

7n)

A(y3,y')
iIA(yl, y') ~‘|l~ 53' % _L

Lemma: The training loss is upper bounded by

1 2 1 &
Errg(h) = - > Ay, h(&)) < - > &

I I I I
(1,91) (z2,y2) (z3,¥3) (zn, yn)




* S 00,640 Find most Violated
REPEAT violated by more
—~ FORi=1,....n constraint than g ?

Sparse Approximation Algorithm for
Structural SVM

|npUt:(3717 yl)? SRR (x’l% yn)? Ce

* computey =argmaz,cy { Ay;,y) + P (x;,y)}
* IF(A(ys, §) — & [P@ipd—P@D]) > &+e

— [0, £] + optimize StructSVM over S

« ENDIF Add constraint
— ENDFOR to working set

UNTIL .S has not changed during iteration




Polynomial Sparsity Bound

« Theorem: The sparse-approximation algorithm finds a
solution to the soft-margin optimization problem after
adding at most

4C A2 R?
2

n
€

constraints to the working setS , so that the Kuhn-Tucker
conditions are fulfilled up to a precision€ . The loss has to
be bounded 0 < A(y;,1) < A, and||d(z,y)|| < R .

[Jo03] [TsoJoHoAlO5]




Polynomial Sparsity Bound

« Theorem: The sparse-approximation algorithm finds a
solution to the soft-margin optimization problem after

addin

Problems
* How to predict efficiently? \/

* How to learn efficiently?

3 )
constr Manageable number of parameters' \/ ucker

conditions are fulfilled up to a precision€ . The loss has to
be bounded 0 < A(y;,1) < A, and||d(z,y)|| < R .

[Jo03] [TsoJoHoAlO5]




Experiment: Natural Language Parsing

* Implemention
— Implemented Sparse-Approximation Algorithm in SVM!ght
— Incorporated modified version of Mark Johnson’s CKY parser
— Learned weighted CFG withe = 0.01,C =1

« Data
— Penn Treebank sentences of length at most 10 (start with POS)
— Train on Sections 2-22: 4098 sentences

— Test on Section 23: 163 sentences

Test Accuracy| Training Efficiency
Method Acc F1 |CPU-h| Iter |Const
PCFG with MLE 55.2 | 86.0 0 |[N/A| N/A
SVM with (1-Fy)-Loss| 58.9 | 88.5 | 3.4 | 12 | 8043

[TsoJoHoAIO5]




More Expressive Features

k
Linear composition: &(z,7) = Y ¢(=,y;)
=1

(0
x

Sofar: ¢(zy)=1| 1
0

\ 0

J

if y; = 'S «— NP VP’

General: ¢(z,y;) = ¢perne((z, [rule, start,end]))

K(a,b) = @kernel(a)T(ﬁkernel(a)

Example: ¢(z,v;) =

]. if ajsta"rt —— ’While’ /\ 336nd — ’.’
(start — end)2

1 span contains xgigrr = ‘and’




Experiment: Part-of-Speech Tagging

« Task
— Given a sequence of words x, predict sequence of tags y.

X The dog chased the cat| — Yl Det—=N— V— Det— N

— Dependencies from tag-tag transitions in Markov model.
« Model
— Markov model with one state per tag and words as emissions

— Each word described by ~250,000 dimensional feature vector (all
word suffixes/prefixes, word length, capitalization ...)

« Experiment (by Dan Fleisher)

— Train/test on 7966/1700 sentences from Penn Treebank
97.00 96.49

%)

<~ 96.50 -
96.00

95.50 95.02
95.00 94.68

95.78 95.63 95.75

94.50
94.00

Test Accuracy

Brill (RBT) HMM KNN (MBT) Tree Tagger SVM Multiclass SVM-HMM
(ACOPOST) (SVM-light) (SVM-struct)




Applying StructSVM to New Problem

« Basic algorithm implemented in SVM-struct
— http://svmlight. joachims.org

« Application specific
— Loss function A(y;,v)
— Representation o (z, y)
— Algorithms to compute

j=argmazycy{w ®@;y)}
§=argmaz,cy { Ny;,y) + ®@;,y)}

= Generic structure that covers OMM, MPD, Finite-State
Transducers, MRF, etc. (polynomial time inference)




Outline: Structured Output Prediction
with SVMs

Task: Learning to predict complex outputs
SVM algorithm for complex outputs

— Formulation as convex quadratic program

— General algorithm

— Sparsity bound

Example 1: Learning to parse natural language
— Learning weighted context free grammar
Example 2: Learning to align proteins

— Learning to predict optimal alignment of homologous proteins
for comparative modeling




Comparative Modeling of Protein Structure

« Goal: Predict structure from sequence
h(“APPGEAYLQV”) >

« Hypothesis:

— Amino Acid sequences for into structure with lowest engery

— Problem: Huge search space (> 2% states)
« Approach: Comparative Modeling

— Similar protein sequences fold into similar shapes
-> use known shapes as templates
— Task 1: Find a similar known protein for a new protein
h(“APPGEAYLQV”, s ) > yes/o
=== — Task 2: Map new protein into known structure
h(“APPGEAYLQV”, s ) > [AD3P>4P>7,..]




Predicting an Alignment

* Protein Sequence to Structure Alignment (Threading)
— G1ven a pair x=(s,¢) of new sequence s and known
structure ¢, predict the alignment y.
— Elements of s and ¢ are described by features, not just

character identity.

X

BBBLLBBLLHHHHH

32401450143520
ABJLHBNJYAUGAI

BHJKBNYGU
BBLLBBLLH

y

BB-BLLBBLLHHHH
32-401450143520
AB-JLHBNJYAUGAI

HIK-BN-VAL

BBLL-BB-LLH




Linear Score Sequence Alignment

Method: Find alignment y that maximizes linear score

Example:
A B C D -
— Sequences: Al10 0 5 10 5
s=(A B C D) B| 0O 10 5 -10 -5
t=(B A C ©O) C|5 5 10 -10 -5
— Alignment y,: D |-10 -10 -10 10 -5
-|-5 -5 -5 -5 -5
ABCD
B ACC -score=0+0+10-10=0
— Alignment y,:
- ABCD

B ACC - - score=-5+10+5+10-5=15
Algorithm: Dynamic programming




How to Estimate the Scores?

« General form of linear scoring function:
score (x=(s,t),y) = Z score(ys, y,f)
 Estimation: '

— Generative estimation of score(y$, yt) via
* Log-odds
* Hidden Markov Model

— Discriminative estimation of complex models via SVM

score (x=(s,t),y) = ZSCOTG(QJ@S,y@t)
ZWch(S,t,yz‘)
= WTZQb(S,t,yz‘)

= w' d(x,y)
—> match/gap score can be arbitrary linear function




Expressive Scoring Functions

« Conventional substitution matrix score(y;, y};)

— Poor performance at low sequence similarity, if only amino
acid identity is considered

— Difficult to design generative models that take care of the
dependencies between different features.

— Would like to make use of structural features like secondary
structures, exposed surface area, and take into account the
interactions between these features

« General feature-based scoring function qub(s, t, ;)

— Allows us to describe each character by feature vector (e.g.
secondary structure, exposed surface area, contact profile)

— Learn w vector of parameters

— Computation of argmax still tractable via dynamic program




[Loss Function

* Q loss: fraction of incorrect alignments

— Correct alignment y= é ﬁ [_)
> Ag(y,y)=1/3
— Alternate alignmenty’= g A C C -

* Q4 loss: fraction of incorrect alignments outside window

— Correct alignment  y= g ?

2 Aqu(y,y’)=0/3

— Alternate alignment y’= g —

=» Model how “bad” different types of mistakes are for
structural modelling.




Experiment

« Train set [Qiu & Elber]:

— 5119 structural alignments for training, 5169 structural alignments for
validation of regularization parameter C

e Test set:

— 29764 structural alignments from new deposits to PDB from June
2005 to June 2006.

— All structural alignments produced by the program CE by superposing
the 3D coordinates of the proteins structures. All alignments have CE
Z-score greater than 4.5.

« Features (known for structure, predicted for sequence):
— Amino acid identity (A,C,D,E,F,G,H,I,K,L,M,N,P.Q,R,S,T,V,W,Y)
— Secondary structure (o,3,A)
— Exposed surface area (0,1,2,3,4,5)




Results: Model Complexity

Feature Vectors:

« Simple: O©(s,ty)) & (A|A; AlC; ...;-[Y; alo; alB...; 0|0; 0]1;...)

* Anovaz: O(s,ty,) < (AalAa...; a0]a0...; A0JAO;...)

« Tensor: O(s,t,y.) < (Aa0|Aal; AaO|Aal; ...)

« Window: @(s,t,y.) & (AAA|AAA; ...; aoooa|aaaaa; ...; 00000/00000;...)

Q-Score # Features  Training  Validation Test
Simple 1020 26.83 27.79 39.89
Anovaz2 49634 42.25 35.58 4498
Tensor 203280 52.36 34.79 42.81
Window 447016 51.26 38.09 46.30

Q-score when optimizing to Q-loss




Results: Comparison

Q4-score Test

SVM (Window, Q4-loss) 70.71

SSALN [Qiu & Elber] 67.30

BLAST 28.44

TM-align [Zhang & Skolnick] (85.32)
Methods:

— SVM: train on Window feature vector with Q4-loss
— SSALN: generative method using same training data
— BLAST: lower baseline

— TM-align: upper baseline (disagreement between two
structural alignment methods




Conclusions:
Structured Output Prediction

« Learning to predict complex output

— Predict structured objects

— Optimize loss functions over multivariate predictions
* An SVM method for learning with complex outputs

— Learning to predict trees (natural language parsing) [ Tsochantaridis et
al. 2004 (ICML), 2005 (JMLR)] [Taskar et al., 2004 (ACL)]

— Optimize to non-standard performance measures (imbalanced classes)
[Joachims, 2005 (ICML)]

— Learning to cluster (noun-phrase coreference resolution) [Finley,
Joachims, 2005 (ICML)]

— Learning to align proteins [Yu et al., 2005 (ICML Workshop)]

 Software: SVMstruct
— http://svmlight.joachims.org/




Reading: Structured Output Prediction

Generative training
— Hidden-Markov models [Manning & Schuetze, 1999]

— Probabilistic context-free grammars [Manning & Schuetze, 1999]

Markov random fields [Geman & Geman, 1984]
Etc.

Discriminative training

Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 1997]
Kernel Dependency Estimation [Weston et al. 2003 ]

Conditional HMM [Krogh, 1994]

Transformer networks [LeCun et al, 1998§]

Conditional random fields [Lafferty et al., 2001] [Sutton & McCallum, 2005]
Perceptron training of HMM [Collins, 2002]

Structural SVMs / Maximum-margin Markov networks [Taskar et al., 2003]
[ Tsochantaridis et al., 2004, 2005] [Taskar 2004 ]




Why do we Need Research on
Complex Outputs?

Important applications for which conventional methods don’t fit!

— Noun-phrase co-reference: two step approaches of pair-wise
classification and clustering as postprocessing, €.g [Ng & Cardie, 2002]

— Directly optimize complex loss functions (e.g. F1, AvgPrec)
Improve upon existing methods!

— Natural language parsing: generative models like probabilistic context-
free grammars

— SVM outperforms naive Bayes for text classification [Joachims, 1998]
[Dumais et al., 1998]

More flexible models!
— Avoid generative (independence) assumptions
— Kernels for structured input spaces and non-linear functions
Transfer what we learned for classification and regression!
— Boosting
— Bagging
— Support Vector Machines




Why do we Need Research on
Complex Outputs?

Important applications for which conventional methods don’t fit!

— Noun-phrase co-reference: two step approaches of pair-wise
classification and clustering as postprocessing, €.g [Ng & Cardie, 2002]

— Directly optimize complex loss functions (e.g. F1, AvgPrec)
Improve upon existing methods!

— Natural language parsing: generative models like probabilistic context-
free grammars

— SVM outperforms naive Bayes for text classification [Joachims, 1998]
[Dumais et al., 1998]

Morn .

Precision/Recall . :
~ 4 Break-Even Point Nalve Bayes Linear SVM
| Reuters 72.1 87.5
Tral
B ]]WebKB 82.0 90.3
~ 1 Ohsumed 62.4 71.6

— dSupport Vector Machines




