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Outline
• Statistical Machine Learning Basics

– Training error, generalization error, hypothesis space
• Support Vector Machines for Classification

– Optimal hyperplanes and margins
– Soft-margin Support Vector Machine
– Primal vs. dual optimization problem
– Kernels

• Support Vector Machines for Structured Outputs
– Linear discriminant models
– Solving exponentially-size training problems
– Example: Predicting the alignment between proteins



Supervised Learning
• Find function from input space X to output space Y

such that the prediction error is low.

Microsoft announced today that they acquired 
Apple for the amount equal to the gross national 
product of Switzerland. Microsoft officials 
stated that they first wanted to buy Switzerland, 
but eventually were turned off by the mountains 
and the snowy winters…

x
y 1



Supervised Learning
• Find function from input space X to output space Y

such that the prediction error is low.

Microsoft announced today that they acquired 
Apple for the amount equal to the gross national 
product of Switzerland. Microsoft officials 
stated that they first wanted to buy Switzerland, 
but eventually were turned off by the mountains 
and the snowy winters…

x
y 1

GATACAACCTATCCCCGTATATATATTCT
ATGGGTATAGTATTAAATCAATACAACC
TATCCCCGTATATATATTCTATGGGTATA
GTATTAAATCAATACAACCTATCCCCGT
ATATATATTCTATGGGTATAGTATTAAAT
CAGATACAACCTATCCCCGTATATATAT
TCTATGGGTATAGTATTAAATCACATTTA

x
y -1



Supervised Learning
• Find function from input space X to output space Y

such that the prediction error is low.

Microsoft announced today that they acquired 
Apple for the amount equal to the gross national 
product of Switzerland. Microsoft officials 
stated that they first wanted to buy Switzerland, 
but eventually were turned off by the mountains 
and the snowy winters…

x
y 1

GATACAACCTATCCCCGTATATATATTCT
ATGGGTATAGTATTAAATCAATACAACC
TATCCCCGTATATATATTCTATGGGTATA
GTATTAAATCAATACAACCTATCCCCGT
ATATATATTCTATGGGTATAGTATTAAAT
CAGATACAACCTATCCCCGTATATATAT
TCTATGGGTATAGTATTAAATCACATTTA

x
y -1x

y 7.3



Example: Spam Filtering

• Instance Space X:
– Feature vector of word occurrences => binary features
– N features (N typically > 50000)

• Target Concept c:
– Spam (+1) / Ham (-1)



Learning as Prediction Task

• Goal: Find h with small prediction error ErrP(h) over P(X,Y).
• Strategy: Find (any?) h with small error ErrStrain

(h) on 
training sample Strain.

Real-world Process
P(X,Y)

(x1,y1), …, (xn,yn) Learner (xn+1,yn+1), …
Training Sample Strain Test Sample Stest

drawn i.i.d. drawn i.i.d.

hStrain

• Training Error: Error ErrStrain
(h) on training sample.

• Test Error: Error ErrStest
(h) on test sample is an estimate 

of ErrP(h) .



Linear Classification Rules
• Hypotheses of the form

– unbiased: 

– biased:
– Parameter vector w, scalar b

• Hypothesis space H
–
–

• Notation
–

–

–



Optimal Hyperplanes
Linear Hard-Margin Support Vector Machine

Assumption: Training examples are linearly separable.



Margin of a Linear Classifier



Hard-Margin Separation
Goal: Find hyperplane with the largest distance to the 

closest training examples.

Support Vectors: Examples with minimal distance (i.e. margin).

Optimization Problem (Primal):

δ
δ

δ



Non-Separable Training Data
Limitations of hard-margin formulation

– For some training data, there is no separating hyperplane.
– Complete separation (i.e. zero training error) can lead to 

suboptimal prediction error.



Soft-Margin Separation
Idea: Maximize margin and minimize training error.

Soft-Margin OP (Primal):Hard-Margin OP (Primal):

• Slack variable ξi measures by how 
much (xi,yi) fails to achieve margin δ

• Σξi is upper bound on number of 
training errors

• C is a parameter that controls trade-off 
between margin and training error.
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Controlling Soft-Margin Separation
• Σξi is upper bound on 
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Controlling Soft-Margin Separation
• Σξi is upper bound on 

number of training errors
• C is a parameter that 

controls trade-off between 
margin and training error.

Soft-Margin OP (Primal):



Example Reuters “acq”: Varying C



Example: Margin in High-Dimension

000001-11Hyperplane 3

Training 
Sample Strain

b
w7w6w5w4w3w2w1

0-0.05-0.050.050.050-0.950.95Hyperplane 6
000000-11Hyperplane 5
000000-0.50.5Hyperplane 4

0-1-111000Hyperplane 2
20000011Hyperplane 1

-11000010
-10100010
10010001
10001001

y
x7x6x5x4x3x2x1



SVM Solution as Linear Combination
• Primal OP:

• Theorem: The solution w* can always be written as a 
linear combination 

of the training vectors.
• Properties:

– Factor αi indicates “influence” of training example (xi,yi).
– If ξi > 0, then αi = C.
– If 0 ≤ αi < C, then ξi = 0. 
– (xi,yi) is a Support Vector, if and only if αi > 0.
– If 0 < αi < C, then yi(xi w+b)=1.
– SVM-light outputs αi using the “-a” option



Dual SVM Optimization Problem
• Primal Optimization Problem

• Dual Optimization Problem

• Theorem: If w* is the solution of the Primal and α* is the 
solution of the Dual, then



Leave-One-Out (i.e. n-fold CV)
Training Set:
Approach: Repeatedly leave one example out for testing.

Estimate: 

Question: Is there a cheaper way to compute this estimate?



Necessary Condition for Leave-One-Out Error

Lemma: For SVM,
Input:

– αi dual variable of example i
– ξi slack variable of example i 
– ||x|| ≤ R bound on length

Example:

……
Correct1.3
Correct0.1
Error3.5

Correct0.7
Correct0.0

Leave-one-out Error?Value of 2 αi R2 + ξi



Case 1: Example is not SV
Criterion: (αi = 0) ) (ξi=0) ) (2 αi R2 + ξi < 1) ) Correct



Case 2: Example is SV with Low Influence
Criterion: (αi<0.5/R2 < C) ) (ξi=0) ) (2αiR2+ξi < 1) ) Correct



Case 3: Example has Small Training Error
Criterion: (αI = C) ) (ξi < 1-2CR2) ) (2αiR2+ξi < 1) ) Correct



Experiment: Reuters Text Classification
Experiment Setup

– 6451 Training Examples
– 6451 Validation Examples to estimate true Prediction Error
– Comparison between Leave-One-Out upper bound and error 

on Validation Set (average over 10 test/validation splits)



Fast Leave-One-Out Estimation for SVMs

Lemma: Training errors are always Leave-One-Out Errors.
Algorithm:

– (R,α,ξ) = trainSVM(Strain)
– FOR (xi,yi) 2 Strain

• IF ξi >1 THEN loo++;
• ELSE IF (2 αi R2 + ξi < 1) THEN loo = loo;
• ELSE trainSVM(Strain \ {(xi,yi)}) and test explicitly

Experiment:

1132.32.56%Ohsumed (n=10000)
235.420.42%WebKB (n=2092)
32.30.58%Reuters (n=6451)

CPU-Time (sec)Retraining Steps (%)Training Sample



Non-Linear Problems

Problem:
• some tasks have non-linear structure
• no hyperplane is sufficiently accurate
How can SVMs learn non-linear classification rules?



Extending the Hypothesis Space
Idea: add more features

Learn linear rule in feature space.
Example:

The separating hyperplane in feature space is degree
two polynomial in input space.



Example
• Input Space:                     (2 attributes)
• Feature Space:

(6 attributes) 



Dual SVM Optimization Problem
• Primal Optimization Problem

• Dual Optimization Problem

• Theorem: If w* is the solution of the Primal and α* is the 
solution of the Dual, then



Kernels
Problem: Very many Parameters! Polynomials of degree p 

over N attributes in input space lead to attributes in feature 
space!

Solution: [Boser et al.] The dual OP depends only on inner 
products => Kernel Functions

Example: For                                                            
calculating                                     computes inner product 
in feature space.

no need to represent feature space explicitly.



SVM with Kernel
Training:

Classification:

New hypotheses spaces through new Kernels:
• Linear:
• Polynomial:
• Radial Basis Function:
• Sigmoid:



Examples of Kernels
Polynomial Radial Basis Function



What is a Valid Kernel?
Definition: Let X be a nonempty set. A function is a valid 

kernel in X if for all n and all x1,…, xn 2 X it produces a 
Gram matrix

Gij = K(xi, xj)
that is symmetric

G = GT

and positive semi-definite



How to Construct Valid Kernels
Theorem: Let K1 and K2 be valid Kernels over X £ X, X µ

<N, α ≥ 0, 0 ≤ λ ≤ 1, f a real-valued function on X, φ:X! <m

with a kernel K3 over <m £ <m, and K a symmetric positive 
semi-definite matrix. Then the following functions are 
valid Kernels

K(x,z) = λ K1(x,z) + (1-λ) K2(x,z)
K(x,z) = α K1(x,z)

K(x,z) = K1(x,z) K2(x,z)
K(x,z) = f(x) f(z)

K(x,z) = K3(φ(x),φ(z))
K(x,z) = xT K z



Kernels for Discrete and Structured Data
Kernels for Sequences: Two sequences are similar, if the have 

many common and consecutive subsequences.
Example [Lodhi et al., 2000]: For 0 ≤ λ ≤ 1 consider the 

following features space

=> K(car,cat) = λ4, efficient computation via dynamic 
programming

λ3λ200λ2000φ(bar)
000λ3λ2λ200φ(bat)
0λ2λ30000λ2φ(car)
00000λ2λ3λ2φ(cat)

b-ra-rc-rb-tb-aa-rc-tc-a



Kernels for Non-Vectorial Data
• Applications with Non-Vectorial Input Data 

classify non-vectorial objects
– Protein classification (x is string of amino acids)
– Drug activity prediction (x is molecule structure)
– Information extraction (x is sentence of words)
– Etc.

• Applications with Non-Vectorial Output Data
predict non-vectorial objects

– Natural Language Parsing (y is parse tree)
– Noun-Phrase Co-reference Resolution (y is clustering)
– Search engines (y is ranking)
Kernels can compute inner products efficiently!



Properties of SVMs with Kernels
• Expressiveness

– SVMs with Kernel can represent any boolean function (for 
appropriate choice of kernel)

– SVMs with Kernel can represent any sufficiently “smooth”
function to  arbitrary accuracy (for appropriate choice of 
kernel)

• Computational
– Objective function has no local optima (only one global)
– Independent of dimensionality of feature space

• Design decisions
– Kernel type and parameters
– Value of C



Reading: Support Vector Machines
• Books

– Schoelkopf, Smola, “Learning with Kernels”, MIT Press, 
2002.

– Cristianini, Shawe-Taylor. “Introduction to Support Vector 
Machines”, Cambridge University Press, 2000.

– Cristianini, Shawe-Taylor. ???



SVMs for other Problems
• Multi-class Classification

– [Schoelkopf/Smola Book, Section 7.6]
• Regression 

– [Schoelkopf/Smola Book, Section 1.6]
• Outlier Detection 

– D.M.J. Tax and R.P.W. Duin, "Support vector domain 
description", Pattern Recognition Letters, vol. 20, pp. 1191-1199, 
1999b. 26

• Ordinal Regression and Ranking
– Herbrich et al., “Large Margin Rank Boundaries for Ordinal 

Regression”, Advances in Large Margin Classifiers, MIT Press, 
1999.

– Joachims, “Optimizing Search Engines using Clickthrough Data”, 
ACM SIGKDD Conference (KDD), 2001.



Supervised Learning
• Find function from input space X to output space Y

such that the prediction error is low.

Microsoft announced today that they acquired 
Apple for the amount equal to the gross national 
product of Switzerland. Microsoft officials 
stated that they first wanted to buy Switzerland, 
but eventually were turned off by the mountains 
and the snowy winters…
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Examples of Complex Output Spaces
• Natural Language Parsing

– Given a sequence of words x, predict the parse tree y.
– Dependencies from structural constraints, since y has to 

be a tree.

The dog chased the catx
S

VPNP

Det NV
NP

Det N

y



Examples of Complex Output Spaces
• Multi-Label Classification

– Given a (bag-of-words) document x, predict a set of 
labels y.

– Dependencies between labels from correlations 
between labels (“iraq” and “oil” in newswire corpus)

Due to the continued violence
in Baghdad, the oil price is 
expected to further increase. 
OPEC officials met with …

x
antarctica
benelux
germany
iraq
oil
coal
trade
acquisitions

y -1
-1
-1
+1
+1
-1
-1
-1



Examples of Complex Output Spaces
• Non-Standard Performance Measures (e.g. F1-score, Lift)

– F1-score: harmonic average of precision and recall

– New example vector      . Predict y8=1, if P(y8=1|    )=0.4?
Depends on other examples! 

y -1
-1
-1
+1
-1
-1
+1

x

y -1x

1

F1

threshold0
0

1

p 0.2
0.1
0.3
0.6
0.4
0.0
0.9

F1

threshold0
0

1

1

p 0.2
0.1
0.3
0.4
0.4
0.0
0.3
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Examples of Complex Output Spaces
• Information Retrieval

– Given a query x, predict a ranking y.
– Dependencies between results (e.g. avoid redundant 

hits)
– Loss function over rankings (e.g. AvgPrec)

SVMx 1. Kernel-Machines
2. SVM-Light
3. Learning with Kernels
4. SV Meppen Fan Club
5. Service Master & Co.
6. School of Volunteer Management
7. SV Mattersburg Online
…

y



Examples of Complex Output Spaces
• Noun-Phrase Co-reference

– Given a set of noun phrases x, predict a clustering y.
– Structural dependencies, since prediction has to be an 

equivalence relation. 
– Correlation dependencies from interactions.

x y

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.



Examples of Complex Output Spaces
• Protein Sequence Alignment

– Given two sequences x=(s,t), predict an alignment y.
– Structural dependencies, since prediction has to be a 

valid global/local alignment. 

x y

AB-JLHBNJYAUGAI

BHJK-BN-YGU

s:ABJLHBNJYAUGAI

t:BHJKBNYGU



Outline: Structured Output Prediction 
with SVMs

• Task: Learning to predict complex outputs
• SVM algorithm for complex outputs

– Formulation as convex quadratic program
– General algorithm
– Sparsity bound

• Example 1: Learning to parse natural language
– Learning weighted context free grammar

• Example 2: Learning to align proteins
– Learning to predict optimal alignment of homologous proteins 

for comparative modelling



Why do we Need Research on 
Complex Outputs?

• Important applications for which conventional methods don’t fit!
– Noun-phrase co-reference: two step approaches of pair-wise 

classification and clustering as postprocessing, e.g [Ng & Cardie, 2002]
– Directly optimize complex loss functions (e.g. F1, AvgPrec)

• Improve upon existing methods!
– Natural language parsing: generative models like probabilistic context-

free grammars
– SVM outperforms naïve Bayes for text classification [Joachims, 1998] 

[Dumais et al., 1998]
• More flexible models!

– Avoid generative (independence) assumptions
– Kernels for structured input spaces and non-linear functions

• Transfer what we learned for classification and regression!
– Boosting
– Bagging
– Support Vector Machines



Related Work
• Generative training (i.e. learn P(Y,X))

– Hidden-Markov models
– Probabilistic context-free grammars
– Markov random fields
– Etc.

• Discriminative training (i.e. learn P(Y|X))
– Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 

1997]
– Kernel Dependency Estimation [Weston et al. 2003]
– Conditional HMM [Krogh, 1994]
– Transformer networks [LeCun et al, 1998]
– Conditional random fields [Lafferty et al., 2001]
– Perceptron training of HMM [Collins, 2002]
– Maximum-margin Markov networks [Taskar et al., 2003]



Challenges in Discriminative Learning with 
Complex Outputs

• Approach: view as multi-class classification task
– Every complex output                is one class

• Problems:
– Exponentially many classes!

• How to predict efficiently?
• How to learn efficiently?

– Potentially huge model!
• Manageable number of features?

The dog chased the catx
S VPNP

Det NV
NP

Det N

y2

S VPVP

Det NV
NP

V N

y1

S
NP

VP

Det NV
NP

Det N

yk

…



Support Vector Machine [Vapnik et al.]
• Training Examples:

• Hypothesis Space: with 

• Training: Find hyperplane with minimal 

Hard Margin
(separable)

Soft Margin
(training error)δ

δ
δ



Support Vector Machine [Vapnik et al.]
• Training Examples:

• Hypothesis Space: with 

• Training: Find hyperplane with minimal 

Hard Margin
(separable)

Soft Margin
(training error)δ

δ
δ

Optimization Problem:



Multi-Class SVM [Crammer & Singer]
• Training Examples:

• Hypothesis Space:
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Multi-Class SVM [Crammer & Singer]
• Training Examples:

• Hypothesis Space:
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Training: Find                       that solve

Problems
• How to predict efficiently?
• How to learn efficiently?
• Manageable number of parameters?



Joint Feature Map
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• Learn single weight vector and rank by
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• How to predict efficiently?
• How to learn efficiently?
• Manageable number of parameters?



Joint Feature Map for Trees
• Weighted Context Free Grammar

– Each rule     (e.g.                      )  has a weight 
– Score of a tree is the sum of its weights
– Find highest scoring tree 

The dog chased the cat
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• How to predict efficiently?
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Structural Support Vector Machine
• Joint features               describe match between x and y
• Learn weights     so that                      is max for correct y

…



Structural Support Vector Machine
• Joint features               describe match between x and y
• Learn weights     so that                      is max for correct y

…

Hard-margin optimization problem:



Loss Functions: Soft-Margin Struct
SVM

• Loss function                measures match between target and 
prediction.

…



Loss Functions: Soft-Margin Struct
SVM

• Loss function                measures match between target and 
prediction.

…Lemma: The training loss is upper bounded by

Soft-margin optimization problem:



Sparse Approximation Algorithm for 
Structural SVM

• Input:                                        
•
• REPEAT

– FOR
• compute
• IF

– optimize StructSVM over
• ENDIF

– ENDFOR
• UNTIL     has not changed during iteration

Find most 
violated 

constraint

Violated 
by more 
than ε ?

_

Add constraint 
to working set



Polynomial Sparsity Bound
• Theorem: The sparse-approximation algorithm finds a 

solution to the soft-margin optimization problem after 
adding at most

constraints to the working set    , so that the Kuhn-Tucker 
conditions are fulfilled up to a precision   . The loss has to 
be bounded                          , and                       .

[Jo03] [TsoJoHoAl05]



Polynomial Sparsity Bound
• Theorem: The sparse-approximation algorithm finds a 

solution to the soft-margin optimization problem after 
adding at most

constraints to the working set    , so that the Kuhn-Tucker 
conditions are fulfilled up to a precision   . The loss has to 
be bounded                          , and                       .

Problems
• How to predict efficiently?
• How to learn efficiently?
• Manageable number of parameters?

[Jo03] [TsoJoHoAl05]



Experiment: Natural Language Parsing
• Implemention

– Implemented Sparse-Approximation Algorithm in SVMlight

– Incorporated modified version of Mark Johnson’s CKY parser
– Learned weighted CFG with

• Data
– Penn Treebank sentences of length at most 10 (start with POS)
– Train on Sections 2-22: 4098 sentences
– Test on Section 23: 163 sentences

[TsoJoHoAl05]



More Expressive Features
• Linear composition:

• So far:

• General:

• Example:
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Experiment: Part-of-Speech Tagging

The dog chased the catx Det NVDet Ny

• Task
– Given a sequence of words x, predict sequence of tags y.

– Dependencies from tag-tag transitions in Markov model.
• Model

– Markov model with one state per tag and words as emissions
– Each word described by ~250,000 dimensional feature vector (all 

word suffixes/prefixes, word length, capitalization …)
• Experiment (by Dan Fleisher)

– Train/test on 7966/1700 sentences from Penn Treebank



Applying StructSVM to New Problem
• Basic algorithm implemented in SVM-struct

– http://svmlight.joachims.org

• Application specific
– Loss function
– Representation
– Algorithms to compute 

⇒ Generic structure that covers OMM, MPD, Finite-State 
Transducers, MRF, etc. (polynomial time inference)



Outline: Structured Output Prediction 
with SVMs

• Task: Learning to predict complex outputs
• SVM algorithm for complex outputs

– Formulation as convex quadratic program
– General algorithm
– Sparsity bound

• Example 1: Learning to parse natural language
– Learning weighted context free grammar

• Example 2: Learning to align proteins
– Learning to predict optimal alignment of homologous proteins 

for comparative modeling



Comparative Modeling of Protein Structure

• Goal: Predict structure from sequence
h(“APPGEAYLQV”)         

• Hypothesis: 
– Amino Acid sequences for into structure with lowest engery
– Problem: Huge search space (> 2100 states)

• Approach: Comparative Modeling
– Similar protein sequences fold into similar shapes 

use known shapes as templates
– Task 1: Find a similar known protein for a new protein

h(“APPGEAYLQV”,            )   yes/no
– Task 2: Map new protein into known structure

h(“APPGEAYLQV”,            )   [A 3,P 4,P 7,…]



Predicting an Alignment
• Protein Sequence to Structure Alignment (Threading)

– Given a pair x=(s,t) of new sequence s and known 
structure t, predict the alignment y.

– Elements of s and t are described by features, not just 
character identity. 

x y
BB-BLLBBLLHHHHH 
32-401450143520 
AB-JLHBNJYAUGAI

BHJK-BN-YGU  
BBLL-BB-LLH

BBBLLBBLLHHHHH 
32401450143520 
ABJLHBNJYAUGAI

BHJKBNYGU 
BBLLBBLLH

( )
( )
( )

( )



Linear Score Sequence Alignment
Method: Find alignment y that maximizes linear score
Example:

– Sequences:
s=(A B C D)
t=(B A C C)

– Alignment y1:
A B C D
B A C C score = 0+0+10-10 = 0

– Alignment y2:
- A B C D
B A C C - score = -5+10+5+10-5 = 15

Algorithm: Dynamic programming

-5-5-5-5-5-
-510-10-10-10D
-5-10105-5C
-5-105100B
-5-10-5010A
-DCBA



How to Estimate the Scores?
• General form of linear scoring function:

• Estimation:
– Generative estimation of                      via

• Log-odds
• Hidden Markov Model

– Discriminative estimation of complex models via SVM

match/gap score can be arbitrary linear function



Expressive Scoring Functions
• Conventional substitution matrix

– Poor performance at low sequence similarity, if only amino 
acid identity is considered

– Difficult to design generative models that take care of the 
dependencies between different features.

– Would like to make use of structural features like secondary 
structures, exposed surface area, and take into account the 
interactions between these features

• General feature-based scoring function
– Allows us to describe each character by feature vector (e.g. 

secondary structure, exposed surface area, contact profile)
– Learn w vector of parameters
– Computation of argmax still tractable via dynamic program



Loss Function
• Q loss: fraction of incorrect alignments

– Correct alignment    y=
∆Q(y,y’)=1/3

– Alternate alignment y’=

• Q4 loss: fraction of incorrect alignments outside window
– Correct alignment    y=

∆Q4(y,y’)=0/3
– Alternate alignment y’=

Model how “bad” different types of mistakes are for 
structural modelling.

- A B C D
B A C C -

A - B C D
B A C C -

- A B C D
B A C C -

A - B C D
B A C C -



Experiment
• Train set [Qiu & Elber]: 

– 5119 structural alignments for training, 5169 structural alignments for 
validation of regularization parameter C

• Test set: 
– 29764 structural alignments from new deposits to PDB from June 

2005 to June 2006.
– All structural alignments produced by the program CE by superposing 

the 3D coordinates of the proteins structures. All alignments have CE 
Z-score greater than 4.5.

• Features (known for structure, predicted for sequence):
– Amino acid identity (A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)
– Secondary structure (α,β,λ)
– Exposed surface area (0,1,2,3,4,5)



Results: Model Complexity
Feature Vectors:
• Simple: Ф(s,t,yi) (A|A; A|C; …;-|Y; α|α; α|β…; 0|0; 0|1;…)
• Anova2: Ф(s,t,yi) (Aα|Aα…; α0|α0…; A0|A0;…)
• Tensor: Ф(s,t,yi) (Aα0|Aα0; Aα0|Aα1; …)
• Window: Ф(s,t,yi) (AAA|AAA; …; ααααα|ααααα; …; 00000|00000;…)

46.3038.0951.26447016Window
42.8134.7952.36203280Tensor
44.9835.5842.2549634Anova2
39.8927.7926.831020Simple
TestValidationTraining# FeaturesQ-Score

Q-score when optimizing to Q-loss



Results: Comparison

Methods:
– SVM: train on Window feature vector with Q4-loss
– SSALN: generative method using same training data
– BLAST: lower baseline
– TM-align: upper baseline (disagreement between two 

structural alignment methods

(85.32)TM-align [Zhang & Skolnick]

28.44BLAST

67.30SSALN [Qiu & Elber]

70.71SVM (Window, Q4-loss)

TestQ4-score



Conclusions: 
Structured Output Prediction

• Learning to predict complex output
– Predict structured objects
– Optimize loss functions over multivariate predictions

• An SVM method for learning with complex outputs
– Learning to predict trees (natural language parsing) [Tsochantaridis et 

al. 2004 (ICML),  2005 (JMLR)] [Taskar et al., 2004 (ACL)]
– Optimize to non-standard performance measures (imbalanced classes) 

[Joachims, 2005 (ICML)]
– Learning to cluster (noun-phrase coreference resolution) [Finley, 

Joachims, 2005 (ICML)]
– Learning to align proteins [Yu et al., 2005 (ICML Workshop)]

• Software: SVMstruct

– http://svmlight.joachims.org/



Reading: Structured Output Prediction
• Generative training

– Hidden-Markov models [Manning & Schuetze, 1999]
– Probabilistic context-free grammars [Manning & Schuetze, 1999]
– Markov random fields [Geman & Geman, 1984]
– Etc.

• Discriminative training
– Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 1997]
– Kernel Dependency Estimation [Weston et al. 2003]
– Conditional HMM [Krogh, 1994]
– Transformer networks [LeCun et al, 1998]
– Conditional random fields [Lafferty et al., 2001] [Sutton & McCallum, 2005]
– Perceptron training of HMM [Collins, 2002]
– Structural SVMs / Maximum-margin Markov networks [Taskar et al., 2003] 

[Tsochantaridis et al., 2004, 2005] [Taskar 2004]



Why do we Need Research on 
Complex Outputs?

• Important applications for which conventional methods don’t fit!
– Noun-phrase co-reference: two step approaches of pair-wise 

classification and clustering as postprocessing, e.g [Ng & Cardie, 2002]
– Directly optimize complex loss functions (e.g. F1, AvgPrec)

• Improve upon existing methods!
– Natural language parsing: generative models like probabilistic context-

free grammars
– SVM outperforms naïve Bayes for text classification [Joachims, 1998] 

[Dumais et al., 1998]
• More flexible models!

– Avoid generative (independence) assumptions
– Kernels for structured input spaces and non-linear functions

• Transfer what we learned for classification and regression!
– Boosting
– Bagging
– Support Vector Machines
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